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F r o m  T h e  E d i t o r

Every day we seem to read another news story about some form of 
cyber attack, be that Denial of Service incidents, ransom ware, mal-
ware, website intrusions, compromised databases, so-called phishing, 
leaked e-mails, election hacking, and much more. The underlying 
opportunities for such attacks are varied, ranging from human factors 
like easy-to-guess passwords to poorly designed and insecure technol-
ogies, as we have discussed many times in this journal. As you might 
expect, making the Internet more secure and robust involves numer-
ous efforts at every layer of the protocol stack.

Encryption is a time-tested method for securing end-to-end commu-
nication as well as for storing information in a manner that prevents 
unauthorized access. Encryption is also used in the generation of 
trusted certificates for secure web communication. In our first article, 
Daniel McCarney presents an overview of the Automatic Certificate 
Management Environment (ACME).

The Domain Name System (DNS) is one of the core components 
of the Internet. We have covered many aspects of the DNS over the 
years, but not looked closely at the root server system until now. 
Geoff Huston describes the history and evolution of the DNS and its 
root servers.

As announced in the previous edition of IPJ, the Latin America and 
Caribbean Network Information Centre (LACNIC) has agreed to 
translate selective articles from IPJ and provide summaries in Spanish. 
This service is now available at: http://lacnic.net/ipjournal

If you have a print subscription to this journal, you will find an  
expiration date printed on the back cover. For the last couple of years, 
we have “auto-renewed” your subscription, but starting with this 
issue, we ask you to log in to our subscription system and perform 
this simple task yourself. You should receive an e-mail with instruc-
tions for how to access this system. When logged in, you can update 
your mail and e-mail address and change your delivery options. For 
any questions, e-mail us at ipj@protocoljournal.org 

—Ole J. Jacobsen, Editor and Publisher 
ole@protocoljournal.org
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http://lacnic.net/ipjournal
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A Tour of the Automatic Certificate Management Environment (ACME)
by Daniel McCarney, Internet Security Research Group 

T he introduction of Let’s Encrypt has helped bolster HyperText 
Transport Protocol Secure (HTTPS) adoption by provid-
ing an easy-to-use and fully automated process for getting a 

trusted certificate for a domain name, all free of cost. Let’s Encrypt is 
a service provided by the Internet Security Research Group (ISRG), 
a nonprofit organization with a mission to reduce financial, tech-
nological, and education barriers to secure communication over the 
Internet. To date, Let’s Encrypt has issued certificates for more than 
30 million websites.

Prior to Let’s Encrypt, acquiring a certificate for a website was a 
difficult and error-prone process requiring frequent Google searches 
for obscure command-line incantations. Worse yet, this process typi-
cally had to be repeated manually with large periods of time elapsed 
between attempts—a recipe for disaster. One solution to both the 
usability and reliability issues created by placing this manual burden 
on a human is to augment the process with automation. A computer 
program will dutifully repeat complicated series of instructions at 
fixed intervals without missing a beat.

Frequently the methods of domain validation used by a certificate 
authority were difficult to automate at all (for example, e-mail-based 
validation) or required locking yourself in to a specific provider’s 
Application Program Interface (API). Unlocking interoperable auto-
mation is critical to alleviating the burden on system administrators, 
promoting greater ease of use and helping create a fully encrypted 
web. Acknowledging this need for automation has been a core focus 
of Let’s Encrypt from the very earliest days. The progress that Let’s 
Encrypt has made in this area helps validate the premise that automa-
tion helps scale usage and has been reflected in the overall increase 
in HTTPS adoption observed by Mozilla Firefox telemetry, see  
Figure 1[0]. 

Figure 1: Let’s Encrypt Statistics
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While much has been said about Let’s Encrypt and the choice to pro-
vide the service free of cost, less attention has been directed at the 
work underpinning the automation aspect. Underneath the service 
provided by Let’s Encrypt is hidden a larger effort to bring a secure, 
automated Internet Engineering Task Force (IETF) standardized pro-
tocol for certificate issuance. This protocol, called the Automatic 
Certificate Management Environment (ACME) protocol, is a multi-
organizational standards effort currently in IETF Working Group 
Last Call. This article briefly describes the core aspects of ACME 
and some of the ecosystem that surrounds it.

ACME
In the context of IETF Request for Comments (RFC) documents, 
ACME is unfinished. To date the ACME Working Group has pub-
lished six drafts as the standard has received external feedback, and 
lessons from Let’s Encrypt have been folded back into the overall 
design. It is currently in a phase of development where no new major 
changes are expected and the primary work remaining is editorial 
and interoperability-related.

This article focuses on ACME as defined in draft-07 [1], the most cur-
rent draft at the time of writing. As outlined in the next section, this 
focus means that our discussion of ACME will not perfectly match 
the Let’s Encrypt service, which most closely resembles Version 3  
(draft-03) of the draft specification for the moment while updates 
to the newer drafts are implemented.

The ACME Ecosystem
While ACME is a new protocol that is not yet standardized as an  
RFC, it already exists within an ecosystem of client and server 
implementations.

On the server side, Let’s Encrypt has contributed an open source 
ACME implementation called Boulder[2]. It’s written in Go and as 
the production backend for the service provided by Let’s Encrypt it 
is the most “battle-tested” ACME server codebase to date. At peak 
so far Let’s Encrypt and the Boulder codebase have issued more than 
1.2 million certificates in a single day. Internally Boulder is divided 
into subcomponents, each responsible for a portion of the responsi-
bilities of a Certificate Authority (CA). Notable components include 
the CA, the Validation Authority, the Registration Authority, and the 
Web Front End. Components “talk” to each other using a universal 
Remote Procedure Call (RPC) framework called gRPC.

Boulder has evolved alongside the draft ACME protocol and so nec-
essarily has some divergences where specification moved faster than 
implementation or vice versa. The Boulder developers document 
these divergences in the Boulder repository[3] and adjust the code-
base as the bounds of backwards compatibility with existing ACME  
clients allow. Since many ACME clients specifically target compat-
ibility with Let’s Encrypt and the Boulder implementation of ACME, 
most existing ACME clients will share these protocol divergences. 
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Our work to implement draft-07[1] fully is not yet complete at the 
time of writing, but is expected to be available by the end of 2017 
as a separate API endpoint to ease migration from older clients using 
the existing (largely draft-03-based) API.

One of the benefits of an open standard is the ease with which clients 
can be written to interact with Let’s Encrypt and issue certificates. 
Better yet, if other CAs adopt ACME, these clients will be able to 
interact with those CAs with minimal modification. A plethora of 
clients have been written since the launch of Let’s Encrypt targeting a 
variety of platforms, programming languages, and use cases. Whether 
you’re looking to issue a single certificate from an embedded device 
or thousands of certificates on-demand for a large platform integra-
tion, an ACME client is available for your needs.

Most well-known of these clients is Certbot[4]. Formerly known as 
the letsencrypt client, Certbot development has since been taken over 
by the Electronic Frontier Foundation (EFF) under its new name. 
As the first ACME client built for use with Let’s Encrypt and the 
Boulder ACME server, it is still thought of as a reference client for 
Let’s Encrypt. Certbot is an end-to-end solution capable of perform-
ing as much of the complicated administrative work as possible that 
is required to request, issue, and install a certificate for an HTTPS 
webserver.

Domain Validation
Let’s Encrypt and the ACME protocol are both focused on Domain 
Validated (DV) certificates. Organization Validated (OV) and Extend- 
ed Validation (EV) certificates are outside of the current scope of 
both the protocol and this article. OV and EV certificates require 
verification procedures that would be difficult if not impossible to 
automate programmatically. Unlike OV and EV certificates, a DV 
certificate does not attest identity but that the possessor of the private 
key corresponding to the public key in the certificate has demon-
strated control of the domain names the certificate includes. The 
attestation from the CA that validated the domain control means you 
can be sure that your authenticated and encrypted Transport Layer 
Security (TLS) connection to the remote server is to a party in con-
trol of the domain name and not a Man in the Middle (MITM). It is 
important to know that this attestation does not vet anything about 
the trustworthiness of the domain owner.

Historically the technical method of domain validation that a CA 
employed was largely left to its own discretion and fairly ad-hoc. One 
method was to e-mail a token or activation link to an e-mail address 
believed to be authoritative for a given domain to prove ownership 
for an issuance request. The question of which addresses should be 
authoritative is the crux of this validation method, and mistakes in 
this decision process have led to certificates being issued to unauthor-
ized parties in the past[5]. 

ACME continued
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Other popular methods involved generating a token to be placed in 
a well-known location in the HTTP webroot of the domain, or in a 
Domain Name System (DNS) record for the domain. Recent changes 
in the baseline requirements[6] that CAs must meet have standard-
ized the acceptable methods for domain validation and added some 
guardrails against mis-issuance.

Much of ACME directly addresses the domain validation process.  
This fact might be surprising if you were expecting to find a great 
deal of complicated cryptography related to the issuance of certifi-
cates themselves. Automating the act of issuing a certificate for a 
set of names is not the true challenge to scaling the web Public Key 
Infrastructure (PKI). The task of turning certificate signing requests 
into certificates with a software pipeline is well-understood. The 
larger challenge that must be addressed is how to scale the determi-
nation of whether the party requesting the certificate is authorized 
to act on behalf of all of the names the certificate includes. This 
contribution is one of the crucial ones of the ACME protocol: the 
introduction of clearly specified and peer-reviewed domain valida-
tion methods.

ACME Requests
All ACME requests are made over HTTPS. Protocol messages are  
primarily POSTed to HTTPS endpoints as JavaScript Object Nota-
tion (JSON) data. The JSON request data is authenticated and 
provided integrity through the application of JSON Web Signatures 
(JWS), as described in RFC 7515[10]. GET requests do not have a JWS 
body and are not authenticated by the ACME account key; therefore 
only public resources are available via GET.

To provide anti-replay protection, all ACME server responses pro-
vide a nonce header. The value of this header must be provided in 
the next request to the server. A dedicated new-nonce endpoint also 
exists to request a fresh nonce without performing a throw-away 
request only to look at the nonce reply header.

Since JWS will not cover the Uniform Resource Identifier (URI) of 
an HTTPS request, the URI is also contained in all request bodies 
and must be verified by the server to ensure that an entity terminat-
ing the ACME HTTPS request (for example, a Content Distribution 
Network (CDN) or Load Balancer) did not modify the request URI 
from the one intended to be used by the client contained in the 
authenticated request body. The ACME draft threat model section 
covers these considerations with more detail.

Components of ACME
ACME was designed to be a Representational State Transfer (REST)
ful protocol, so one way to approach understanding it is by examin-
ing the resources the protocol specifies. At its core ACME is made up 
of Accounts, Orders, Authorizations, and Challenges.
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At a high level, issuing a certificate is a matter of creating an ACME 
account, submitting an order for a certificate containing a set of 
DNS identifiers, satisfying authorizations for each of the identifiers 
by solving challenges, and finally, polling the ACME server until a 
signed certificate satisfying the order is produced.

A special directory resource serves as the entry point for the  
account creation and certificate issuance flows of the ACME proto-
col. ACME clients identify servers by their directory URI and make 
an initial request to this resource in order to learn the URIs used 
for other resources and to get a first nonce value. The directory also 
contains metadata related to the ACME server (for example, terms 
of service requirements, Certification Authority Authorization (CAA)  
identifiers, etc.).

An example of Let’s Encrypt’s current /directory endpoint, as gen-
erated by Boulder, follows:

 curl https:/ /acme-v01.api.letsencrypt.org/directory
 {
    "key-change": "https:/ /acme-v01.api.letsencrypt.org/acme/key-change",
    "new-authz": "https:/ /acme-v01.api.letsencrypt.org/acme/new-authz",
    "new-cert": "https:/ /acme-v01.api.letsencrypt.org/acme/new-cert",
    "new-reg": "https:/ /acme-v01.api.letsencrypt.org/acme/new-reg",
    "revoke-cert": "https:/ /acme-v01.api.letsencrypt.org/acme/revoke-cert"
 }

Accounts
The account resource is a container for information about a user 
and that user’s account with the ACME server. Most importantly, an 
account contains a public key encoded as a JSON Web Key (JWK)[11]. 
This public key is associated with the account at the time of account 
creation and is used to authenticate future requests. Like the other 
resources we’ll see, an account is identified by its URI per usual REST 
practice. Account resources also contain additional metadata such as 
an e-mail address to contact for the account and whether a required 
Terms of Service Agreement has been acknowledged. In the earlier 
stages of the ACME draft accounts were called registrations, and you 
may still see references using this term in older material.

Accounts are created by POSTing an account resource to the new-
account resource of the ACME server. Future updates (for example, 
to update contact information) are handled in a similar fashion. 
Notably you cannot view your current account information by send-
ing a GET request to the account URI; instead you must use a POST 
request with an empty body. The rationale for this decision is rooted 
in the security model of the protocol. Only POST requests carry the 
required JWS to authenticate the request as coming from the account 
owner. If you use a JWS signed empty body in a POST request to 
retrieve account information, only the authorized account can view 
contact information.

ACME continued
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An example POST body for a new account follows:

   {
     "terms-of-service-agreed": true,
     "key”: "...",
     "contact": [
       "mail to:example @ example.com",
     ]
   }

Orders
Orders encapsulate the request of an account for a certificate to  
be issued by the ACME server. The most important field of an 
order object is the Certificate Signing Request (CSR). You might 
be familiar with non-ACME CAs; the ACME CSR is a standard  
RFC 2986[12] CSR, meaning existing tools (for example, openssl) 
can generate CSRs for use with ACME. For use within an Order the  
CSR is base64url-encoded, a practice used elsewhere in the protocol 
when binary data needs to be represented in a request.

The other important field of an Order object is the Authorizations 
field, containing an array of Authorization URIs. The ACME server 
is responsible for populating this field in the Order object returned to 
the client when a new order is created. Completing an order to obtain 
a certificate requires first completing each of the authorizations the 
order links to.

An example of a request body to create a new order for two DNS 
identifiers would resemble the following:

{
   "csr":”MIICmTCCAYECAQAw....cUc5i8XK-OBEMe",
}

 
Resulting in:

{
   "status": "pending",
   "expires”: "2017-03-14T12:41:37-04:00",
   "csr":"MIICmTCCAYECAQAw....cUc5i8XK-OBEMe",
   "authorizations": [
      "/authZ/k4jO5648Y-qqrQ_F-bD6JLgtrfV4TJb6vef9GrlybvQ",
      "/authZ/c71yuTUHsuwIVeCk9B4DrsFA1MlCZMLtt4FDZ71KI20"
   ]
}
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Presently, as described in the Boulder divergences document, Let’s 
Encrypt does not implement the order resource. Instead clients 
must explicitly create authorization objects for each of the domains 
they wish to issue for themselves using the new-authz endpoint, as 
opposed to creating an order and receiving the URI of authorizations 
required from the server.

Authorizations
Authorizations are the core of the domain validation process in 
ACME. For an account to receive a certificate valid for an identi-
fier, the CA needs to verify control of that identifier. If control is 
established, then the account is said to be authorized to request a 
certificate valid for the domain. In ACME an authorization starts 
its life in a pending status, indicating that the account has not yet 
completed the authorization process. In order to progress from the 
pending state to a valid state, the account holder must complete a set 
of required challenges. Authorizations also contain an expiry date, 
and both pending and valid authorizations fall out of usefulness after 
their expiry date. In the case of pending authorizations, this require-
ment keeps the challenges fresh. In the case of valid authorizations, it 
means that control must be reestablished through a fresh authoriza-
tion and new challenges if the expiry has passed.

An example authorization follows:

{
   "status": "pending",
   "identifier": {
      "type": "dns",
      "value": "w w w.example.com"
   },
   "challenges": [
      {
        "type": "dns-01",
        "token": "T50nPYe3YNdKeqlqae1egDVftLpqG5D8klP_K7inCHY",
        "status": "pending",
        "error": {}
     }
   ],
   "expires": "2017-03-14T12:41:37-04:00"
}

Challenges
One or more challenges are embedded directly into authorizations 
and are identified by a type and a URI. Solving a challenge of an 
authorization will demonstrate the ACME account key holder’s  
control over the identifier the authorization refers to, allowing issu-
ance for that identifier. Each challenge type has its own method for 
demonstrating control, but all share the use of a random token and 
a key authorization.

ACME continued
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The token is a random value used to identify the challenge. The 
token is always expressed in the base64url alphabet used throughout 
ACME, and to facilitate the usage in various challenge types it must 
not contain any padding characters.

The challenge key authorization is used to concretely link a specified 
ACME account key with the challenge for the purpose of validat-
ing an identifier. It is created by concatenating the random token 
present in the challenge and the Base64 URL encoding of the JWK  
thumbprint of the ACME account. The key authorization is pro-
vided in the subsequent JWS signed request from the ACME client 
to update a challenge, asking the server to attempt to verify control 
by performing the challenge verification process as required by the 
challenge type.

An example challenge follows:

{
   "type": "dns-01",
   "token": "T50nPYe3YNdKeqlqae1egDVftLpqG5D8klP_K7inCHY",
   "status": "pending",
   "error": {}
}

 
Getting a Certificate
After challenges have been completed successfully for each of the 
authorizations embedded in an order resource, the order is considered 
valid and the certificate can be issued. The ACME server proactively 
monitors order resources, and when an order is ready to be issued, 
it is responsible for issuing a certificate matching the domains from 
the CSR/authorizations. The order resource is then updated with a 
URI at which the client can download the issued certificate. After a 
client completes all of the authorizations the order requires, a polling 
state can be entered so the certificate URI can be added to the order 
to allow fetching the produced certificate.

Presently, as described in the Boulder divergences document, Let’s 
Encrypt does not implement the order resource, so the issuance 
process is slightly different. Instead, clients must explicitly create 
authorization objects for each of the domains they wish to issue for 
themselves using the new-authz endpoint. After the authorizations 
are validated by completing challenges, the client can submit a CSR 
to the new-cert endpoint and will receive a certificate as a response 
provided the server is able to validate that the correct unexpired 
authorizations are in place.
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Challenge Types
The ACME standard defines four distinct challenge types, each iden-
tified by the draft that it was introduced in: HTTP-01, DNS-01, 
TLS-SNI-01, and TLS-SNI-02. An additional Out-of-Band (OOB) 
challenge exists for integration with existing CAs. Let’s Encrypt 
and Boulder presently do not implement TLS-SNI-02 or the OOB 
challenges.

HTTP-01 Challenges
The HTTP-01 challenge allows authenticating a domain by making 
an externally visible change to the domain website. The primary idea 
is that the ACME client must sign the requested key authorization 
and place the result in a pre-specified location in the domain web-
root. The name of the file is the token value from the challenge, and 
the contents of the file will be the same computed key authorization 
that is included in the JWS signed POST body asking the server to 
validate the challenge.

For ACME, the pre-specified location for the challenge file is in 
/.well-known/acme-challenge/, a prefix registered with the Inter-
net Assigned Numbers Authority (IANA) for the purpose of ACME 
domain validation. When the challenge is POSTed by the ACME cli-
ent with the correct key authorization, the ACME server will make 
a GET request to this location on the domain referenced in the chal-
lenge authorization. Using the HTTP response, the server can validate 
the contents of the HTTP challenge file. If the correct key authori-
zation was present at the correct location and signed by the correct 
ACME account key, then the challenge is completed and the account 
is considered to possess a valid authorization for this domain until 
the point at which it expires. Both the challenge and authorization 
objects are updated server side with a valid status and an expiry date.

The HTTP-01 challenge is a great fit if you are already running a 
world-accessible webserver on port 80 of your domains. Since the 
challenge requests are standard HTTP requests and will always 
be directed to a well-known path prefix, it is possible to imple-
ment more complex validation systems with ease. For instance, you 
could use the URL rewriting capabilities of a webserver to divert 
HTTP-01 challenge requests to a centralized server responsible for 
Let’s Encrypt challenge validation. Many ACME clients (Certbot 
included) can start up a standalone HTTP server explicitly for the 
purpose of solving HTTP-01 challenges; this feature may be benefi-
cial for issuing certificates for non-HTTPS services like the Extensible 
Messaging and Presence Protocol (XMPP) without needing to config-
ure a heavyweight HTTP server.

DNS-01 Challenges
The DNS-01 challenge is conceptually similar to the HTTP-01  
challenge but instead of provisioning a file at a well-known location 
the challenge responder provisions a TXT record at a well-known 
label. 

ACME continued
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For ACME, the required record is a TXT record for the label  
_acme-challenge. concatenated onto the domain being authorized. 
Rather than placing the entire key authorization as the value of this 
TXT record, the DNS-01 challenge asks that a SHA256 digest of the 
computed key authorization be used as the TXT record value.

When the ACME client POSTs the challenge with the JWS signed 
key authorization, the ACME server will verify the details of the key 
authorization and token match, and proceed to validate the TXT 
record by issuing a DNS query against one of the authoritative DNS 
servers for the domain being authorized. If the contents of that TXT 
record match the expectation of the server of the SHA256 of the 
challenge key authorization, then the account is considered to pos-
sess a valid authorization for this domain.

The DNS-01 challenge is often used in situations where ports 80 and 
443 are not globally accessible (for example, because of corporate 
firewall policies), ruling out the use of HTTP-01 and TLS-SNI-02 
challenges. Since the DNS-01 challenge requires only that a TXT 
record be updated, there’s no requirement for a direct connection to 
the domain name that a certificate is to be issued for. Instead the chal-
lenge is validated through a query to the authoritative nameservers. 
The DNS-01 challenge is also well-suited to centralized management 
of certificate issuance. Many DNS providers support programmatic 
updates through an API, or with more traditional dynamic DNS 
updates through nsupdate-like tools. Using an ACME client that 
exposes hooks for adding and removing the required TXT records 
makes it easy to centrally issue certificates by automatically adjusting 
DNS as required by the challenges. Certbot presently supports DNS-
01 in a manual-only mode, but some other ACME clients have fully 
automatic support with a variety of DNS providers.

TLS-SNI-02 Challenges
The TLS-SNI-02 challenge is perhaps the most unfamiliar of the 
ACME challenge types. For this challenge type the requester must 
configure a TLS server accessible at the domain to be authorized such 
that it will use a special self-signed certificate when processing TLS 
requests with a specific Server Name Indication (SNI)[14] value.

The ACME client creates the self-signed certificate when it wishes to 
use a TLS-SNI-02 challenge to authorize a domain. The contents of 
the certificate are unimportant except for one crucial detail: the cer-
tificate must have two special Subject Alternate Name (SAN) values.

The first SAN value is a domain of the form x.y.token.acme.
invalid, where x and y are computed as the SHA256 digest of the 
challenge token value, split into two labels. The second SAN value is 
a domain x.y.ka.acme.invalid, where x and y are computed as the 
SHA256 digest of the key authorization, split into two labels.
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The TLS server used for responding to the TLS-SNI-02 challenge 
should be configured such that it returns the crafted challenge cer-
tificate whenever a TLS request arrives with the SNI value of the first 
SAN (for example, x.y.token.acme.invalid).

When the ACME client POSTs the challenge to begin the validation 
process, the ACME server will compute both SAN entries the same 
way the client did, and will send a TLS request to the domain using a 
SNI value of the first computed SAN. The ACME server can then val-
idate that the challenge server presents a self-signed certificate with 
the two required SAN values verifying the challenge token and the 
key authorization.

The TLS-SNI-02 challenge is a good fit for environments where a 
webserver is already configured for HTTPS and you do not want 
to accept HTTP requests for HTTP-01 challenges or place files in 
the webroot of the domains. Similar to HTTP-01, Certbot and some 
other ACME clients can run a standalone TLS server for the pur-
pose of solving TLS-SNI-02 challenges in place without requiring a 
heavier-weight server. The TLS-SNI-02 challenge uniquely employs 
the mechanics of certificates and TLS in order to provide authori-
zation for the issuance of certificates; this symmetry of process and 
result is unique and satisfying from the perspective of an interested 
engineer.

The astute reader will note that unlike HTTP-01 and DNS-01, the 
TLS-SNI-02 challenge is on its second revision. Let’s Encrypt and 
the Boulder codebase still use the original TLS-SNI-01 challenge 
from earlier drafts, but it suffers from one design flaw whereby all 
of the information required to complete the challenge was present 
in the request. This situation allows for a broken design where a 
TLS-SNI-01 challenge response server could be built that automati-
cally replies to a challenge request without a priori knowledge of 
the challenges. To combat this design and its unintended security 
implications, the TLS-SNI-02 challenge requires that the key autho-
rization, which isn’t part of the challenge request, be returned as part 
of the challenge response.

What’s Next?
We’ve covered the core of the ACME protocol, but the existing drafts 
have a great deal more information. Readers are encouraged to inves-
tigate the key rollover and revocation features of ACME from the 
standard since they were not covered in this article. Similarly the 
draft content offers more in-depth coverage of security consider-
ations that may be of interest to readers with the hacker mindset.

The ACME standardization process is still underway. The IETF 
Working Group has most recently published draft-07 and is under-
going a last-call process for interoperability testing. Sometime after 
this point we can expect the ACME draft will proceed to full RFC 
standard status. 

ACME continued
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Plenty of work remains to upgrade existing ACME servers and cli-
ents to support the latest iterations of the draft since most of the 
ecosystem is presently implementing ACME closer to the draft-03 
standard. Let’s Encrypt intends to support the newer draft and final 
RFC version as independent directory endpoints alongside the cur-
rent legacy draft-03 era endpoint. This support will allow clients 
to gradually adopt support for the newest protocol features while 
continuing to renew legacy certificates produced with the draft-03 
endpoint.

The ACME protocol itself has left room for future improvements. 
Work is underway to develop a companion document[7] describ-
ing additions to the CAA standard, RFC 6844[13], that would allow 
domain owners to specify policy related to acceptable ACME account 
keys or challenge types. This work could allow for, as an example, 
adoption of a policy whereby only DNS-01 challenges could be used 
to issue certificates for a given domain name using ACME.

Standardization on challenges for non-DNS identifierss—such as IP  
addresses—is also an avenue for future ACME work. ACME was 
designed to handle additional identifier types and new challenges, 
and it will be interesting to see how the protocol evolves to handle 
use cases beyond domain validation of DNS identifiers.

Development of an open standard helps move the Web towards a 
world where HTTPS encryption is the norm. Certificates from Let’s 
Encrypt are one avenue available to system administrators looking 
to increase the security of their websites. Adoption of ACME by 
other CAs and tools ensures that the decision to use HTTPS doesn’t 
induce vendor lock-in and allows users the chance to change pro-
viders without abandoning automation. The future of ACME is still 
being written, and it’s not too late to participate in the IETF Working 
Group[8]. Readers are encouraged to subscribe to the mailing list[9] 

and provide feedback as they envision integrating ACME into their 
own software and environments.
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The Root of the Domain Name System
by Geoff Huston, APNIC 

F ew parts of the Domain Name System (DNS) are filled with 
such levels of mythology as its root server system. In this article 
I will explain what it is all about and ask the question whether 

the system we have is still adequate, or if it’s time to think about 
some further changes.

The namespace of the DNS is a hierarchically structured label space. 
Each label can have an arbitrary number of immediately descen-
dant labels and only one immediate parent label. Domain names 
are expressed as an ordered sequence of labels in left-to-right order 
starting at the terminal label and then enumerating each successive 
parent label until the root label is reached. In domain name expre-
sions, the ASCII period character denotes a label delimiter. Fully 
Qualified Domain Names (FQDNs) are names that express a label 
sequence from the terminal label through to the apex (or root) label. 
In FQDNs this root is expressed as a trailing period character at 
the end of the label sequence. But there is a little more than that, 
and that’s where the hierarchal structure comes in. The sequence 
of labels, as read from right to left, describes a series of name  
delegations in the DNS. If we take an example DNS name, such as  
www.example.com, then com is the label of a delegated zone in the 
root. Here we will call a zone the collection of all defined labels 
at a particular delegation point in the name hierarchy. The label  
“example” is the label of a delegated zone in the com. zone. And www 
is a terminal label in the www.example.com. zone.

But that is not all there is to the DNS. There are many more subtitles 
and possibilities for variation, but as we want to look specifically at 
the root zone, we’re going to conveniently ignore all these other mat-
ters here. If you are interested, RFC 1034[1] from November 1987 is 
still a good description of the way the DNS was intended to operate, 
and the recently published RFC 7719[2] provides a good compendium 
of DNS jargon.

The most common operation performed on DNS names is to resolve 
the name; resolving is an operation to translate a DNS name to a dif-
ferent form that is related to the name. This most common form of 
name resolution is to translate a name to an associated IP address, 
although many other forms of resolution are also possible. The reso-
lution function is performed by agents termed resolvers, and they 
function by passing queries to, and receiving results from, so-called 
name servers. In its simplest form, a name server can answer queries 
about a particular zone. The name itself defines a search algorithm 
that mirrors the same right-to-left delegation hierarchy. 
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Continuing with our simple example, to resolve the name  
www.example.com., we may not know the IP addresses of the author-
itative name servers for example.com., or even com. for that matter. 
To resolve this name, a resolver would start by asking one of the 
root zone name servers to tell it the resolution outcome of the name  
www.example.com. The root name server will be unable to answer 
this query, but it will refer the resolver to the com. zone, and the root 
server will list the servers for this delegated zone, as this delegation 
information is part of the DNS root zone file for all delegated zones. 
The resolver will repeat this query to one of the servers for the com. 
zone, and the response is likely to be the list of servers for example.
com. Assuming www is a terminal label in the example.com. zone, 
the third query, this time to a server for the example.com. zone, will 
provide the response we are seeking. 

In theory, as per our example, every resolution function starts with a 
query to one of the servers for the root zone. But how does a resolver 
know where to start? What are the IP addresses of the servers for the 
root zone?

Common DNS resolver packages include a local configuration frag- 
ment that provides the DNS names and IP addresses of the authorita-
tive name servers for the root zone. Another way is to pull down the 
current root hints file from https://www.internic.net/domain/
named.root.

But it may have been some time between the generation of this list 
and the reality of the IP addresses of the authoritative root servers 
today, so the first actions of a resolver on startup will be to query one 
of these addresses for the name servers of the root zone, and use these 
name servers instead. This query is the so-called priming query[3].

This priming implies that the set of root server functions includes 
supporting the initial bootstrap of recursive DNS resolvers into the 
DNS framework by responding to priming queries of the resolver, 
as well as anchoring the process of top-name name resolution by 
responding to specific name queries with the name server details of 
the next-level delegated zone. This role is critical in so far as if none 
of the root servers can respond to resolver queries, then at some point 
thereafter, as local caches of the resolvers expire, resolvers will be 
unable to respond to any DNS queries for public names. So, these 
root servers are important in that you may not know that they exist, 
or where they may be located in the net, but their absence, if that ever 
could occur, would definitely be noticed by all of us!

Moderating all considerations of the DNS is the issue of local cach-
ing of responses. For example, once a local resolver has queried a 
root server for the name www.example.com., it will have received a 
response listing the delegated name servers for the com. zone. 

DNS Root continued
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If this resolver were to subsequently attempt to resolve a different 
name in the com. zone, then for as long as the com. name servers 
are still held in the resolver cache, the resolver will use the cached 
information and not query any root server. Given that the number of 
delegated zones in the root zone is relatively small (1,528 zones as of 
the start of 2017), then a busy recursive resolver is likely to assemble 
in its local cache the name servers of many of the top-level domain 
names. Then one would expect that it would have no further need 
to query the root name servers, except as required occasionally to 
refresh its local cache, assuming that it is answering queries about 
DNS names that exist in the DNS.

In that respect, the root servers would not appear to be that critically 
important in terms of the resolution of names, and certainly not so 
for large recursive name servers that have a large client population 
and therefore have a well-populated local cache. But this conclu-
sion would not be a good one. If cached information of a recursive 
resolver for a zone has expired, it will need to refresh the cache with 
a query to a root server. At some point, all of the locally cached  
information will time out of the cache, and then the resolver will no 
longer be able to respond to any DNS query. To keep the DNS oper-
ating, recursive resolvers need to be able to query the root zone, so 
there is a requirement that collectively the root servers always need 
to be available. 

In this respect, the root servers “anchor” the entire DNS system. They 
do not participate in every name resolution query, but without their 
feed of root zone information into the caches of recursive resolvers 
the DNS would stop. So these servers are important to the Internet, 
and it might be reasonable to expect a role of such importance to be 
performed by hundreds or thousands of such servers. But there are 
just 13 such root server systems.

Why 13?
The primary reason to have more than a single root server, and use 
multiple root servers, was diversity and availability. The root serv-
ers are intentionally located in different parts of the network, within 
different service provider networks. The intended objective is that in 
the case where a DNS resolver is incapable of contacting a root name 
server, then unless the resolver was itself completely isolated from the 
Internet, then the desired number of root servers was such that the 
likelihood that it could not reach any of the root name servers was 
considered to be acceptably low. By this reasoning, two is probably 
not enough, and three could well be insufficient as well, but per-
haps hundreds of thousands of such root servers may well be a case  
of overkill!

This line of thought assumes that each named root server has a 
unique name, a unique IP address, and a single location. But perhaps 
we are assuming too much. There is a technique that places identi-
cally named and addressed servers at various locations across the 
Internet, called anycast[5,6]. 
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Using anycast, a user attempting to send an IP packet to an anycast 
service would be directed to the “closest” instance of the family of 
servers that share a common anycast IP address. Why not just use 
anycast for a collection of root servers and put as many root servers 
as we want behind a single IP address? 

For a considerable time, anycast was viewed with some caution and 
trepidation, particularly in the days before Domain Name System 
Security Extensions (DNSSEC) of a signed root zone. What would 
stop a hostile actor from setting up a fake root server and publish-
ing incorrect DNS information if the IP addresses the root servers 
used could be announced mutiple times from any arbitrary location? 
There was also some doubt that the Transmission Control Protocol 
(TCP) would be adequately robust in such anycast scenarios. The 
original conservative line of thinking was that we needed multiple 
unitary DNS root zone servers, each with its own unique IP address 
announced from known points in the network fabric.

But needing “multiple” DNS root zone servers and coming up with 
the number 13 appears to be somewhat curious. It seems such an odd 
limitation in the number of root servers given that a common general 
rule in computer software design is Willem van der Poel’s Zero, One, 
or Infinity Rule, which states a principle in computer science that 
either an action or resource should not be permitted (zero), should 
happen uniquely (one), or should have no arbitrary limit at all (infin-
ity). For root servers, it appears that we would like more than one 
root server. But why set the limit to 13?

The reason may not be immediately obvious these days, but when 
the DNS system was designed, the size limit of DNS responses using 
the User Datagram Protocol (UDP) was set to 512 bytes (Section 
2.3.4 of RFC 1035). It seems a ludicrously small limit these days, but 
you have to also account for the fact that the requirement for IPv4 
hosts was (and still is) that it accepts IPv4 packets up to 576 bytes 
long[4]. Working backwards, that would imply that if you account for 
a 20-octet IPv4 packet header and an 8-byte UDP header, then the 
UDP payload could be up to 548 octets long, but no longer if you 
wanted some degree of assurance that the remote host would accept 
the packet. If you also allow for up to 40 bytes of IP options, then in 
order to ensure UDP packet acceptance under all circumstances the 
maximal UDP payload size should be 508 octets. The DNS use of a 
maximum payload of 512 bytes is not completely inconsistent with 
this assumption, but it is off by 4 bytes in this corner case!

This 512-byte size limit of DNS packets still holds, in that a query 
without any additional signal—that is, in today’s terms, a query that 
contains no DNS extension mechanisms that signal a capability to 
use a larger UDP response size—is supposed to be answered by a 
response with a DNS payload no greater than 512 octets long. If 
the actual response would be greater than 512 octets, then the DNS 
server is supposed to truncate the response to fit within 512 octets, 
and mark this partial response as truncated. 

DNS Root continued
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If a client receives a truncated response, then the client may repeat 
the query to the server, but use TCP instead of UDP, so that it could 
be assured of receiving the larger response.

The desire in the design of the DNS priming query and response was 
to provide the longest possible list of root name servers and addresses 
in the priming response, but at the same time ensure that the response 
was capable of being passed in the DNS using UDP, and not rely 
on the use of any form of optional DNS extension mechanism. The 
largest possible set of names that could be packed in a 512-octet 
DNS response in this manner was 13 such names and their IPv4 
addresses—so there are at most 13 distinct root name servers in order 
to comply with this limit.

These days every root name server has an IPv6 address as well as an 
IPv4 address, so the DNS priming response that lists all these root 
servers and their IPv4 and IPv6 addresses is now 811 octets. If the 
resolver also requests that the response should include the DNSSEC 
signatures, then the size of the response would expand to 1,097 
bytes. But if you pass a simple priming query to a root server without 
a UDP buffer size extension in the query, then you will still receive no 
more than 512 octets in response. The size-limited response will still 
list the names of all 13 root name servers, but will not list all of their 
IPv4 and IPv6 addresses in the additional section of the response.

The partial set of these additional records of root server names and 
their IPv4 and IPv6 addresses is passed back without any particu-
lar indication of what is missing. The decision as to which records 
to include and which to omit to meet the size restriction also varies 
between root name servers. Some root name servers provide the IPv6 
addresses of root servers A through J in a 508-byte response, while 
others give all 13 IPv4 addresses and add the IPv6 addresses of A and 
B in a 492-byte response. The remainder provide the IPv4 and IPv6 
addresses for A through F and the IPv4 address of G in a 508-byte 
response. I suppose that the message here is that recursive resolvers 
should support the Extension Mechanisms for DNS (EDNS(0)) as 
specified in RFC 6891[14], and offer a UDP buffer size that is no less 
than 1,097 bytes if they want a complete DNSSEC-signed response 
to a root zone priming query.

However, even then the story is incomplete. These additional records 
are not DNSSEC-signed in the priming response, so if a resolver 
wants to assure itself that the IP addresses that are provided in this 
response are the actual IP addresses of the root servers, it needs to 
separately query these names and request DNSSEC credentials in the 
response. However, as of the time of writing of this article the zone 
root-servers.net is not DNSSEC-signed, so right at the heart of 
the DNS there is still a leap of faith that all resolvers need to make in 
order to link into the DNS through the priming process.



The Internet Protocol Journal
20

We are also entirely comfortable with anycast these days, and the 
root server system has enthusiastically adopted anycast, where most 
of the root servers are replicated in many locations. The overall result 
is that hundreds of locations host at least one instance of one of 
the root server anycast constellations, and often more. Part of the  
reason that our comfort level with anycast has increased is the use 
of a DNSSEC-signed zone, and recursive resolvers should be protect-
ing their clients by validating the response they receive to ensure that 
they are using the genuine root zone data, to the extent that this data 
has been signed in the first place.

Should we do more? 
It would certainly make some sense to sign the root-servers.net 
zone to further protect recursive resolvers from being led astray.

But what about the specification of 13 unique root server names and 
their associated anycast constellations? If we had more root servers, 
would it make everything else better? Should we contemplate further 
expanding these anycast constellations into thousands or even tens 
of thousands of root servers? Should we open up the root server let-
ter set to more letters? Is there a limit to “more” or “many”? Where 
might that limit be, and why?

These days the response that recursive resolvers receive in 512 bytes 
or less is a partial view of the root name server system. From that 
perspective, 13 is not a practical protocol-derived ceiling on the num-
ber of distinct root server letters. Whether the partial response in 
512 bytes reflects 6, 10, or 13 root name servers out of a pool of 13 
or 14 or any larger number is largely no longer relevant. The topic 
has moved beyond a conversation about any numeric ceiling on the 
letter count into a consideration of whether more root server letters 
would offer any incremental benefit to the Internet, as distinct from 
the current practice of enlarging the root server anycast constella-
tions. Indeed, rather than more root name servers, whether by adding 
more letters or enlarging anycast constellations, should we consider 
alternative approaches to the DNS that can scale and improve resil-
ience under attack through answering root queries but not directly 
involving these root name servers at all? In other words, can we look 
at DNS structures that use the root servers as a distribution mecha-
nism for the root zone data and use the existing recursive resolver 
infrastructure to directly answer all queries that relate to data in the 
root zone?

The reason to contemplate this question is that it is not clear that 
more root server letters or more root server anycast instances, or even 
both measures, make everything else better. Reducing the latency in 
querying a root name server has only a minimal impact for end users.

The design objective of the DNS system is to push the data as close 
to the user as possible in the first place, so that every effort is made 
to provide an answer from a local resolver cache. 

DNS Root continued
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It is only when there is a cache miss that the resolver query will head 
back into the authoritative DNS server infrastructure, a situation 
that would normally affect only a very small proportion of queries 
over time. The DNS derives its performance and efficiency through 
resolver caches, so the overall intention is to limit the extent to which 
resolvers query these root name servers to the minimal level possible. 

Secondly, a local root name server may not necessarily provide any 
additional name resolution resilience in the case of local network iso-
lation. Secondary root name servers also have an expiry time on the 
data they serve, and in the case of extended isolation the server will 
also time out a case to be able to respond. This timeout is as true for 
the root zone as it is for any other zone. 

In many ways, the net effect of a local root name server on local 
users’ Internet experience is minimal, and could well pass completely 
unnoticed in many cases.

In terms of the primary objectives of the root name server system, 
diversity and availability, there is little to be gained by adding addi-
tional root name letters. A significant expansion of the number of 
uniquely named root servers would ultimately make a complete prim-
ing response exceed 512 bytes, meaning either forcing all priming 
queries into TCP by signalling that the UDP response was truncated, 
or dropping some named root servers from a non-EDNS(0) priming 
query response. 

But rather than resisting the hard limits imposed by protocol spec-
ifications in some early RFCs, perhaps we are asking the wrong 
question. Rather than trying to figure out how to field even more 
instances of root servers and keep them all current, there is perhaps a 
different question: Why do we need these special dedicated root zone 
servers at all?

If the only distinguishing feature of these root servers is the propo-
sition that any response with a source address of any of these 26 
distinguished IP addresses is by simple unfounded assertion the 
absolute truth, then it is laughably implausible. Anyone who has 
experienced DNS interceptors would have to agree that DNS lies are 
commonplace, and nation states as well as service providers across 
the entire Internet practice lying.

Enter DNSSEC
The DNSSEC-signing of the root zone of the DNS introduced further 
possibilities to the root zone service to resolvers. If a resolver has a 
validated local copy of the current Key Signing Key (KSK), then it can 
independently validate any response provided to it from any signed 
zone that has a chain of signing back to this KSK, including of course 
any signed response about the root zone itself. 
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A validating resolver no longer needs to obsess that it is querying 
a genuine root name server, and no longer needs to place a certain 
level of blind faith in the belief that its DNS queries are not being 
intercepted and that faked responses are not being substituted for 
the actual response. With DNSSEC it simply does not matter in the 
slightest how you get the response. What matters is that you can vali-
date responses with your local copy of the root zone key. If you can 
perform this validation successfully, then the answer is much more 
likely to be genuine!

The ubiquitous use of DNSSEC casts the root server system in an 
entirely different light, and the relationship between recursive resolv-
ers and the root servers can change significantly.

A relevant observation here is that some 75% of responses from the 
root zone are “no such domain” NXDOMAIN responses (for exam-
ple,[7]). Recursive resolvers could absorb much of the root server query 
load and answer these queries directly with NXDOMAIN responses if 
they used this form of response synthesis. The way resolvers could 
answer the queries is to use so called “aggressive NSEC caching[11].” 
This approach uses the Next Secure (NSEC) records provided in the 
responses relating to the nonexistence of a name in the root zone to 
allow recursive resolvers to synthesise an authoritative NXDOMAIN 
response for queries relating to any name in the range specified in 
the NSEC data. Rather than caching a root zone NXDOMAIN answer 
for each individual nonexistent domain name, caching the NSEC 
response allows the recursive resolver to cache a common signed 
response for the entire span of query names as described in each 
NSEC response. With a cache of 1,528 defined top-level domains and 
another 1,528 NSEC records, a recursive resolver would be able to 
provide authoritative responses for any query that would otherwise 
be passed through to a root server. 

Another approach is to use local secondaries for the root zone. This 
approach is not an architectural change to the DNS, or at least not 
intentionally so. For recursive resolvers that implement this approach, 
this change is a form of change in query behaviour in so far as a 
recursive resolver configured in this manner will no longer query 
the root servers for queries it would normally direct to an instance 
of the root. Instead, it directs these queries to a local instance of a 
slave server that is listening on the loopback address of the recursive 
resolver. This slave server is serving a locally held instance of the root 
zone, and the recursive resolver would perform DNSSEC validation 
of responses from this local slave to ensure the integrity of responses 
received in this manner. In effect, this technique loads a recursive 
resolver with the entire root zone into what is functionally similar 
to a local secondary root zone server cache. For users of this recur-
sive resolver there is no apparent change to the DNS or to their local 
configurations. Obviously, there is no change to the root zone either.

DNS Root continued
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This proposal provides integrity in the local root server through 
the mechanism of having the recursive resolver perform DNSSEC  
validation against the responses received from the local root slave. If 
the recursive resolver is configured as a DNSSEC-validating resolver, 
then this mechanism is configurable on current implementations of 
DNS recursive resolvers. 

The advantage here is that the decision to set up a local slave root 
server or to use aggressive NSEC caching is a decision that is entirely 
local to the recursive resolver, and the impacts of this decision affect 
only the clients of this recursive resolver. No coordination with the 
root server operators is required, nor is any explicit notification. The 
outcomes are only indirectly visible to the clients of this recursive 
resolver, and no other.

Where does this leave the root server system? 
In the light of increasing use of DNSSEC, the root server system is 
declining in relevance as a unique source of authoritative responses 
for the root zone, and we can forecast a time when their role in resolv-
ing queries would be largely anachronistic. A validated response can 
be considered a genuine response regarding the contents of the root 
zone, regardless of how the recursive resolver learned this response. 
It is no longer necessary to have a dedicated set of name servers run-
ning on a known set of IP addresses as the only means to protect the 
integrity of the root zone.

It is also true that the root servers are no longer being used as cache 
refresh for recursive resolvers for delegated domains. Today we see 
much of the time, effort and energy, and cost of root server opera-
tion being spent to ensure that NXDOMAIN answers are provided 
promptly and reliably. This use of time really does not make any 
sense these days. The use of local secondary root servers and the use 
of NSEC caching can remove all of these specific queries relating to 
undefined names to the root servers, and what would be left is the 
cache priming queries. If all recursive resolvers were able to use either 
of these measures, then the residual true role of the root server system 
would not be to respond to individual queries, but simply to distrib-
ute current root zone data into the resolver infrastructure. 

If the functional intention of the root server system is to distribute 
signed root zone data to recursive resolvers, then perhaps we could 
look more widely for potential approaches. Regularising the times 
that changes are made to the root zone would help reduce opportu-
nistic polling of the root servers to detect when a change might have 
occurred. Or using an approach based on Incremental Zone Transfer 
(IXFR) that would allow recursive resolvers to request incremental 
changes to the root zone based on differences between zone Start of 
Authority (SOA) numbers may be more efficient. 
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Maybe we can look further afield for additional ways to distribute 
the root zone contents. Social networks appear to be remarkably 
adept in their ability to distribute updates, and a thought is that the 
small set of incremental changes to the signed root zone would be 
highly amenable to similar techniques or even using the same social 
networks. One can readily imagine a feed of incremental root zone 
updates on media such as Twitter, for example!

I also can’t help but wonder about the wisdom of the root zone serv-
ers being promiscuous with respect to whom they answer. Root zone 
query data points to some 75% of queries seen at the root zone serv-
ers generating NXDOMAIN responses, meaning that three-quarters of 
the responses from root servers are nonsensical questions in the con-
text of the root zone. It’s not clear to what extent the other 25% of 
queries reflect actual user activity. In an APNIC measurement exer-
cise using synthetic domain names that included a time component, it 
was evident that more than 30% of the queries seen at the authorita-
tive servers of the measurement reflected “old” queries, generated by 
query log replay or other DNS forms of stalking activities.

One way to respond to this situation is to farm out the query volume 
currently seen at the root servers into the existing recursive resolver 
infrastructure, so that all root zone responses are generated by these 
recursive resolvers, rather than passing queries onward to the root 
servers. If the root servers exclusively served some form of incremen-
tal zone transfer and did not answer any other query type directly, 
then we would see a shift in query traffic away from the root servers 
as a crucial DNS query attractor, leaving only a lower profile role as 
a server to recursive resolvers.

There is much to learn about the DNS, and there is still much we 
can do in trying to optimise the DNS infrastructure to continue to 
be robust, scalable, and accurate—all essential attributes to underpin 
the continued growth pressures of the Internet.
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Fragments
ISOC Issues Paper on Content Blocking
The Internet Society (ISOC) recently voiced its commitment to keep-
ing the Internet on for everyone, in response to the increasing number 
of government orders to temporarily shut down or restrict access 
to Internet services. Speaking out at RightsCon 2017, the world’s 
leading conference on Internet and human rights that took place in  
late March in Brussels, the organization underscored that any delib-
erate attempt to interrupt Internet communications or control the 
flow of information over the Internet puts society at risk.

Internet shutdowns, including those that impact social media sites or 
entire networks, occur when governments intentionally disrupt the 
Internet or mobile apps, often used in the context of elections, dem-
onstrations or other tense social contexts. According to Access Now, 
there were 56 Internet shutdowns recorded worldwide in 2016, an 
upward trend from previous years.

A paper entitled “Internet Society Perspectives on Internet Content 
Blocking,”[1] explores the most common Internet restriction tech-
niques and highlights the shortcomings and collateral damage from 
the use of such measures. “From censorship to SMEs going out of 
business, the human, economic and technical costs of Internet shut-
downs are just too high,” explains Nicolas Seidler, Senior Policy 
advisor at the Internet Society.

The paper describes and evaluates the most common content block-
ing techniques used by governments to restrict access to information 
(or related services) that is either illegal in a particular jurisdiction, is 
considered a threat to public order, or is objectionable for a particu-
lar audience.

According to Freedom House’s Freedom on the Net report 2016, 
governments in 24 of the 65 countries assessed impeded access to 
social media and communication tools, up from 15 the previous year.

“Before they take action, we are calling policymakers to think twice: 
Internet shutdowns and content filtering are not the answer,” said 
Constance Bommelaer, Senior Director for Global Internet Policy at 
the Internet Society. “We are at a crossroads, and the actions we take 
today will determine whether the Internet will continue to be a driver 
of empowerment, or whether it will threaten personal freedoms and 
rights online,” added Bommelaer.

The Content Blocking paper can be downloaded in various formas 
and languages from ISOC’s website[1]. Quoting from the Foreword: 
“The use of Internet blocking by governments to prevent access to 
illegal content is a worldwide and growing trend. There are many 
reasons why policy makers choose to block access to some content, 
such as online gambling, intellectual property, child protection, and 
national security. 
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However, apart from issues relating to child pornography, there is 
little international consensus on what constitutes appropriate con-
tent from a public policy perspective.

The goal of this paper is to provide a technical assessment of differ-
ent methods of blocking Internet content, including how well each 
method works and what are the pitfalls and problems associated 
with each. We make no attempt to assess the legality or policy moti-
vations of blocking Internet content. 

Our conclusion, based on technical analyses, is that using Internet 
blocking to address illegal content or activities is generally inefficient, 
often ineffective and generally causes unintended damages to Internet 
users. 

From a technical point of view, we recommend that policy makers 
think twice when considering the use of Internet blocking tools to 
solve public policy issues. If they do and choose to pursue alternative 
approaches, this will be an important win for a global, open, interop-
erable and trusted Internet.”

 [1] https://www.internetsociety.org/doc/internet-content- 
blocking

 
IAB Issues RFC on Protocol Adoption and Transition
The Internet Architecture Board (IAB) has recently published a 
Request for Comments (RFC) on Protocol Adoption and Transition[1]. 
The abstract states: “Over the many years since the introduction of 
the Internet Protocol, we have seen a number of transitions through-
out the protocol stack, such as deploying a new protocol, or updating 
or replacing an existing protocol. Many protocols and technolo-
gies were not designed to enable smooth transition to alternatives 
or to easily deploy extensions; thus, some transitions, such as the 
introduction of IPv6, have been difficult. This document attempts to 
summarize some basic principles to enable future transitions, and it 
also summarizes what makes for a good transition plan.”

 [1] Thaler, D., Ed., “Planning for Protocol Adoption and Subsequent 
Transitions,” RFC 8170, May 2017.
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