
June 2017 Volume 20, Number 2

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

Automatic Certificate
Management 2

The Root of the DNS............ 15

Fragments 26

Thank You 28

Call for Papers 30

Supporters and Sponsors 31

F r o m T h e E d i t o r

Every day we seem to read another news story about some form of
cyber attack, be that Denial of Service incidents, ransom ware, mal-
ware, website intrusions, compromised databases, so-called phishing,
leaked e-mails, election hacking, and much more. The underlying
opportunities for such attacks are varied, ranging from human factors
like easy-to-guess passwords to poorly designed and insecure technol-
ogies, as we have discussed many times in this journal. As you might
expect, making the Internet more secure and robust involves numer-
ous efforts at every layer of the protocol stack.

Encryption is a time-tested method for securing end-to-end commu-
nication as well as for storing information in a manner that prevents
unauthorized access. Encryption is also used in the generation of
trusted certificates for secure web communication. In our first article,
Daniel McCarney presents an overview of the Automatic Certificate
Management Environment (ACME).

The Domain Name System (DNS) is one of the core components
of the Internet. We have covered many aspects of the DNS over the
years, but not looked closely at the root server system until now.
Geoff Huston describes the history and evolution of the DNS and its
root servers.

As announced in the previous edition of IPJ, the Latin America and
Caribbean Network Information Centre (LACNIC) has agreed to
translate selective articles from IPJ and provide summaries in Spanish.
This service is now available at: http://lacnic.net/ipjournal

If you have a print subscription to this journal, you will find an
expiration date printed on the back cover. For the last couple of years,
we have “auto-renewed” your subscription, but starting with this
issue, we ask you to log in to our subscription system and perform
this simple task yourself. You should receive an e-mail with instruc-
tions for how to access this system. When logged in, you can update
your mail and e-mail address and change your delivery options. For
any questions, e-mail us at ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

http://www.cisco.com/ipj
http://lacnic.net/ipjournal
mailto:ipj%40protocoljournal.org?subject=
mailto:ole%40protocoljournal.org%20?subject=

The Internet Protocol Journal
2

A Tour of the Automatic Certificate Management Environment (ACME)
by Daniel McCarney, Internet Security Research Group

T he introduction of Let’s Encrypt has helped bolster HyperText
Transport Protocol Secure (HTTPS) adoption by provid-
ing an easy-to-use and fully automated process for getting a

trusted certificate for a domain name, all free of cost. Let’s Encrypt is
a service provided by the Internet Security Research Group (ISRG),
a nonprofit organization with a mission to reduce financial, tech-
nological, and education barriers to secure communication over the
Internet. To date, Let’s Encrypt has issued certificates for more than
30 million websites.

Prior to Let’s Encrypt, acquiring a certificate for a website was a
difficult and error-prone process requiring frequent Google searches
for obscure command-line incantations. Worse yet, this process typi-
cally had to be repeated manually with large periods of time elapsed
between attempts—a recipe for disaster. One solution to both the
usability and reliability issues created by placing this manual burden
on a human is to augment the process with automation. A computer
program will dutifully repeat complicated series of instructions at
fixed intervals without missing a beat.

Frequently the methods of domain validation used by a certificate
authority were difficult to automate at all (for example, e-mail-based
validation) or required locking yourself in to a specific provider’s
Application Program Interface (API). Unlocking interoperable auto-
mation is critical to alleviating the burden on system administrators,
promoting greater ease of use and helping create a fully encrypted
web. Acknowledging this need for automation has been a core focus
of Let’s Encrypt from the very earliest days. The progress that Let’s
Encrypt has made in this area helps validate the premise that automa-
tion helps scale usage and has been reflected in the overall increase
in HTTPS adoption observed by Mozilla Firefox telemetry, see
Figure 1[0].

Figure 1: Let’s Encrypt Statistics

The Internet Protocol Journal
3

While much has been said about Let’s Encrypt and the choice to pro-
vide the service free of cost, less attention has been directed at the
work underpinning the automation aspect. Underneath the service
provided by Let’s Encrypt is hidden a larger effort to bring a secure,
automated Internet Engineering Task Force (IETF) standardized pro-
tocol for certificate issuance. This protocol, called the Automatic
Certificate Management Environment (ACME) protocol, is a multi-
organizational standards effort currently in IETF Working Group
Last Call. This article briefly describes the core aspects of ACME
and some of the ecosystem that surrounds it.

ACME
In the context of IETF Request for Comments (RFC) documents,
ACME is unfinished. To date the ACME Working Group has pub-
lished six drafts as the standard has received external feedback, and
lessons from Let’s Encrypt have been folded back into the overall
design. It is currently in a phase of development where no new major
changes are expected and the primary work remaining is editorial
and interoperability-related.

This article focuses on ACME as defined in draft-07 [1], the most cur-
rent draft at the time of writing. As outlined in the next section, this
focus means that our discussion of ACME will not perfectly match
the Let’s Encrypt service, which most closely resembles Version 3
(draft-03) of the draft specification for the moment while updates
to the newer drafts are implemented.

The ACME Ecosystem
While ACME is a new protocol that is not yet standardized as an
RFC, it already exists within an ecosystem of client and server
implementations.

On the server side, Let’s Encrypt has contributed an open source
ACME implementation called Boulder[2]. It’s written in Go and as
the production backend for the service provided by Let’s Encrypt it
is the most “battle-tested” ACME server codebase to date. At peak
so far Let’s Encrypt and the Boulder codebase have issued more than
1.2 million certificates in a single day. Internally Boulder is divided
into subcomponents, each responsible for a portion of the responsi-
bilities of a Certificate Authority (CA). Notable components include
the CA, the Validation Authority, the Registration Authority, and the
Web Front End. Components “talk” to each other using a universal
Remote Procedure Call (RPC) framework called gRPC.

Boulder has evolved alongside the draft ACME protocol and so nec-
essarily has some divergences where specification moved faster than
implementation or vice versa. The Boulder developers document
these divergences in the Boulder repository[3] and adjust the code-
base as the bounds of backwards compatibility with existing ACME
clients allow. Since many ACME clients specifically target compat-
ibility with Let’s Encrypt and the Boulder implementation of ACME,
most existing ACME clients will share these protocol divergences.

The Internet Protocol Journal
4

Our work to implement draft-07[1] fully is not yet complete at the
time of writing, but is expected to be available by the end of 2017
as a separate API endpoint to ease migration from older clients using
the existing (largely draft-03-based) API.

One of the benefits of an open standard is the ease with which clients
can be written to interact with Let’s Encrypt and issue certificates.
Better yet, if other CAs adopt ACME, these clients will be able to
interact with those CAs with minimal modification. A plethora of
clients have been written since the launch of Let’s Encrypt targeting a
variety of platforms, programming languages, and use cases. Whether
you’re looking to issue a single certificate from an embedded device
or thousands of certificates on-demand for a large platform integra-
tion, an ACME client is available for your needs.

Most well-known of these clients is Certbot[4]. Formerly known as
the letsencrypt client, Certbot development has since been taken over
by the Electronic Frontier Foundation (EFF) under its new name.
As the first ACME client built for use with Let’s Encrypt and the
Boulder ACME server, it is still thought of as a reference client for
Let’s Encrypt. Certbot is an end-to-end solution capable of perform-
ing as much of the complicated administrative work as possible that
is required to request, issue, and install a certificate for an HTTPS
webserver.

Domain Validation
Let’s Encrypt and the ACME protocol are both focused on Domain
Validated (DV) certificates. Organization Validated (OV) and Extend-
ed Validation (EV) certificates are outside of the current scope of
both the protocol and this article. OV and EV certificates require
verification procedures that would be difficult if not impossible to
automate programmatically. Unlike OV and EV certificates, a DV
certificate does not attest identity but that the possessor of the private
key corresponding to the public key in the certificate has demon-
strated control of the domain names the certificate includes. The
attestation from the CA that validated the domain control means you
can be sure that your authenticated and encrypted Transport Layer
Security (TLS) connection to the remote server is to a party in con-
trol of the domain name and not a Man in the Middle (MITM). It is
important to know that this attestation does not vet anything about
the trustworthiness of the domain owner.

Historically the technical method of domain validation that a CA
employed was largely left to its own discretion and fairly ad-hoc. One
method was to e-mail a token or activation link to an e-mail address
believed to be authoritative for a given domain to prove ownership
for an issuance request. The question of which addresses should be
authoritative is the crux of this validation method, and mistakes in
this decision process have led to certificates being issued to unauthor-
ized parties in the past[5].

ACME continued

The Internet Protocol Journal
5

Other popular methods involved generating a token to be placed in
a well-known location in the HTTP webroot of the domain, or in a
Domain Name System (DNS) record for the domain. Recent changes
in the baseline requirements[6] that CAs must meet have standard-
ized the acceptable methods for domain validation and added some
guardrails against mis-issuance.

Much of ACME directly addresses the domain validation process.
This fact might be surprising if you were expecting to find a great
deal of complicated cryptography related to the issuance of certifi-
cates themselves. Automating the act of issuing a certificate for a
set of names is not the true challenge to scaling the web Public Key
Infrastructure (PKI). The task of turning certificate signing requests
into certificates with a software pipeline is well-understood. The
larger challenge that must be addressed is how to scale the determi-
nation of whether the party requesting the certificate is authorized
to act on behalf of all of the names the certificate includes. This
contribution is one of the crucial ones of the ACME protocol: the
introduction of clearly specified and peer-reviewed domain valida-
tion methods.

ACME Requests
All ACME requests are made over HTTPS. Protocol messages are
primarily POSTed to HTTPS endpoints as JavaScript Object Nota-
tion (JSON) data. The JSON request data is authenticated and
provided integrity through the application of JSON Web Signatures
(JWS), as described in RFC 7515[10]. GET requests do not have a JWS
body and are not authenticated by the ACME account key; therefore
only public resources are available via GET.

To provide anti-replay protection, all ACME server responses pro-
vide a nonce header. The value of this header must be provided in
the next request to the server. A dedicated new-nonce endpoint also
exists to request a fresh nonce without performing a throw-away
request only to look at the nonce reply header.

Since JWS will not cover the Uniform Resource Identifier (URI) of
an HTTPS request, the URI is also contained in all request bodies
and must be verified by the server to ensure that an entity terminat-
ing the ACME HTTPS request (for example, a Content Distribution
Network (CDN) or Load Balancer) did not modify the request URI
from the one intended to be used by the client contained in the
authenticated request body. The ACME draft threat model section
covers these considerations with more detail.

Components of ACME
ACME was designed to be a Representational State Transfer (REST)
ful protocol, so one way to approach understanding it is by examin-
ing the resources the protocol specifies. At its core ACME is made up
of Accounts, Orders, Authorizations, and Challenges.

The Internet Protocol Journal
6

At a high level, issuing a certificate is a matter of creating an ACME
account, submitting an order for a certificate containing a set of
DNS identifiers, satisfying authorizations for each of the identifiers
by solving challenges, and finally, polling the ACME server until a
signed certificate satisfying the order is produced.

A special directory resource serves as the entry point for the
account creation and certificate issuance flows of the ACME proto-
col. ACME clients identify servers by their directory URI and make
an initial request to this resource in order to learn the URIs used
for other resources and to get a first nonce value. The directory also
contains metadata related to the ACME server (for example, terms
of service requirements, Certification Authority Authorization (CAA)
identifiers, etc.).

An example of Let’s Encrypt’s current /directory endpoint, as gen-
erated by Boulder, follows:

 curl https:/ /acme-v01.api.letsencrypt.org/directory
 {
 "key-change": "https:/ /acme-v01.api.letsencrypt.org/acme/key-change",
 "new-authz": "https:/ /acme-v01.api.letsencrypt.org/acme/new-authz",
 "new-cert": "https:/ /acme-v01.api.letsencrypt.org/acme/new-cert",
 "new-reg": "https:/ /acme-v01.api.letsencrypt.org/acme/new-reg",
 "revoke-cert": "https:/ /acme-v01.api.letsencrypt.org/acme/revoke-cert"
 }

Accounts
The account resource is a container for information about a user
and that user’s account with the ACME server. Most importantly, an
account contains a public key encoded as a JSON Web Key (JWK)[11].
This public key is associated with the account at the time of account
creation and is used to authenticate future requests. Like the other
resources we’ll see, an account is identified by its URI per usual REST
practice. Account resources also contain additional metadata such as
an e-mail address to contact for the account and whether a required
Terms of Service Agreement has been acknowledged. In the earlier
stages of the ACME draft accounts were called registrations, and you
may still see references using this term in older material.

Accounts are created by POSTing an account resource to the new-
account resource of the ACME server. Future updates (for example,
to update contact information) are handled in a similar fashion.
Notably you cannot view your current account information by send-
ing a GET request to the account URI; instead you must use a POST
request with an empty body. The rationale for this decision is rooted
in the security model of the protocol. Only POST requests carry the
required JWS to authenticate the request as coming from the account
owner. If you use a JWS signed empty body in a POST request to
retrieve account information, only the authorized account can view
contact information.

ACME continued

The Internet Protocol Journal
7

An example POST body for a new account follows:

 {
 "terms-of-service-agreed": true,
 "key”: "...",
 "contact": [
 "mail to:example @ example.com",
]
 }

Orders
Orders encapsulate the request of an account for a certificate to
be issued by the ACME server. The most important field of an
order object is the Certificate Signing Request (CSR). You might
be familiar with non-ACME CAs; the ACME CSR is a standard
RFC 2986[12] CSR, meaning existing tools (for example, openssl)
can generate CSRs for use with ACME. For use within an Order the
CSR is base64url-encoded, a practice used elsewhere in the protocol
when binary data needs to be represented in a request.

The other important field of an Order object is the Authorizations
field, containing an array of Authorization URIs. The ACME server
is responsible for populating this field in the Order object returned to
the client when a new order is created. Completing an order to obtain
a certificate requires first completing each of the authorizations the
order links to.

An example of a request body to create a new order for two DNS
identifiers would resemble the following:

{
 "csr":”MIICmTCCAYECAQAw....cUc5i8XK-OBEMe",
}

Resulting in:

{
 "status": "pending",
 "expires”: "2017-03-14T12:41:37-04:00",
 "csr":"MIICmTCCAYECAQAw....cUc5i8XK-OBEMe",
 "authorizations": [
 "/authZ/k4jO5648Y-qqrQ_F-bD6JLgtrfV4TJb6vef9GrlybvQ",
 "/authZ/c71yuTUHsuwIVeCk9B4DrsFA1MlCZMLtt4FDZ71KI20"
]
}

The Internet Protocol Journal
8

Presently, as described in the Boulder divergences document, Let’s
Encrypt does not implement the order resource. Instead clients
must explicitly create authorization objects for each of the domains
they wish to issue for themselves using the new-authz endpoint, as
opposed to creating an order and receiving the URI of authorizations
required from the server.

Authorizations
Authorizations are the core of the domain validation process in
ACME. For an account to receive a certificate valid for an identi-
fier, the CA needs to verify control of that identifier. If control is
established, then the account is said to be authorized to request a
certificate valid for the domain. In ACME an authorization starts
its life in a pending status, indicating that the account has not yet
completed the authorization process. In order to progress from the
pending state to a valid state, the account holder must complete a set
of required challenges. Authorizations also contain an expiry date,
and both pending and valid authorizations fall out of usefulness after
their expiry date. In the case of pending authorizations, this require-
ment keeps the challenges fresh. In the case of valid authorizations, it
means that control must be reestablished through a fresh authoriza-
tion and new challenges if the expiry has passed.

An example authorization follows:

{
 "status": "pending",
 "identifier": {
 "type": "dns",
 "value": "w w w.example.com"
 },
 "challenges": [
 {
 "type": "dns-01",
 "token": "T50nPYe3YNdKeqlqae1egDVftLpqG5D8klP_K7inCHY",
 "status": "pending",
 "error": {}
 }
],
 "expires": "2017-03-14T12:41:37-04:00"
}

Challenges
One or more challenges are embedded directly into authorizations
and are identified by a type and a URI. Solving a challenge of an
authorization will demonstrate the ACME account key holder’s
control over the identifier the authorization refers to, allowing issu-
ance for that identifier. Each challenge type has its own method for
demonstrating control, but all share the use of a random token and
a key authorization.

ACME continued

The Internet Protocol Journal
9

The token is a random value used to identify the challenge. The
token is always expressed in the base64url alphabet used throughout
ACME, and to facilitate the usage in various challenge types it must
not contain any padding characters.

The challenge key authorization is used to concretely link a specified
ACME account key with the challenge for the purpose of validat-
ing an identifier. It is created by concatenating the random token
present in the challenge and the Base64 URL encoding of the JWK
thumbprint of the ACME account. The key authorization is pro-
vided in the subsequent JWS signed request from the ACME client
to update a challenge, asking the server to attempt to verify control
by performing the challenge verification process as required by the
challenge type.

An example challenge follows:

{
 "type": "dns-01",
 "token": "T50nPYe3YNdKeqlqae1egDVftLpqG5D8klP_K7inCHY",
 "status": "pending",
 "error": {}
}

Getting a Certificate
After challenges have been completed successfully for each of the
authorizations embedded in an order resource, the order is considered
valid and the certificate can be issued. The ACME server proactively
monitors order resources, and when an order is ready to be issued,
it is responsible for issuing a certificate matching the domains from
the CSR/authorizations. The order resource is then updated with a
URI at which the client can download the issued certificate. After a
client completes all of the authorizations the order requires, a polling
state can be entered so the certificate URI can be added to the order
to allow fetching the produced certificate.

Presently, as described in the Boulder divergences document, Let’s
Encrypt does not implement the order resource, so the issuance
process is slightly different. Instead, clients must explicitly create
authorization objects for each of the domains they wish to issue for
themselves using the new-authz endpoint. After the authorizations
are validated by completing challenges, the client can submit a CSR
to the new-cert endpoint and will receive a certificate as a response
provided the server is able to validate that the correct unexpired
authorizations are in place.

The Internet Protocol Journal
10

Challenge Types
The ACME standard defines four distinct challenge types, each iden-
tified by the draft that it was introduced in: HTTP-01, DNS-01,
TLS-SNI-01, and TLS-SNI-02. An additional Out-of-Band (OOB)
challenge exists for integration with existing CAs. Let’s Encrypt
and Boulder presently do not implement TLS-SNI-02 or the OOB
challenges.

HTTP-01 Challenges
The HTTP-01 challenge allows authenticating a domain by making
an externally visible change to the domain website. The primary idea
is that the ACME client must sign the requested key authorization
and place the result in a pre-specified location in the domain web-
root. The name of the file is the token value from the challenge, and
the contents of the file will be the same computed key authorization
that is included in the JWS signed POST body asking the server to
validate the challenge.

For ACME, the pre-specified location for the challenge file is in
/.well-known/acme-challenge/, a prefix registered with the Inter-
net Assigned Numbers Authority (IANA) for the purpose of ACME
domain validation. When the challenge is POSTed by the ACME cli-
ent with the correct key authorization, the ACME server will make
a GET request to this location on the domain referenced in the chal-
lenge authorization. Using the HTTP response, the server can validate
the contents of the HTTP challenge file. If the correct key authori-
zation was present at the correct location and signed by the correct
ACME account key, then the challenge is completed and the account
is considered to possess a valid authorization for this domain until
the point at which it expires. Both the challenge and authorization
objects are updated server side with a valid status and an expiry date.

The HTTP-01 challenge is a great fit if you are already running a
world-accessible webserver on port 80 of your domains. Since the
challenge requests are standard HTTP requests and will always
be directed to a well-known path prefix, it is possible to imple-
ment more complex validation systems with ease. For instance, you
could use the URL rewriting capabilities of a webserver to divert
HTTP-01 challenge requests to a centralized server responsible for
Let’s Encrypt challenge validation. Many ACME clients (Certbot
included) can start up a standalone HTTP server explicitly for the
purpose of solving HTTP-01 challenges; this feature may be benefi-
cial for issuing certificates for non-HTTPS services like the Extensible
Messaging and Presence Protocol (XMPP) without needing to config-
ure a heavyweight HTTP server.

DNS-01 Challenges
The DNS-01 challenge is conceptually similar to the HTTP-01
challenge but instead of provisioning a file at a well-known location
the challenge responder provisions a TXT record at a well-known
label.

ACME continued

The Internet Protocol Journal
11

For ACME, the required record is a TXT record for the label
_acme-challenge. concatenated onto the domain being authorized.
Rather than placing the entire key authorization as the value of this
TXT record, the DNS-01 challenge asks that a SHA256 digest of the
computed key authorization be used as the TXT record value.

When the ACME client POSTs the challenge with the JWS signed
key authorization, the ACME server will verify the details of the key
authorization and token match, and proceed to validate the TXT
record by issuing a DNS query against one of the authoritative DNS
servers for the domain being authorized. If the contents of that TXT
record match the expectation of the server of the SHA256 of the
challenge key authorization, then the account is considered to pos-
sess a valid authorization for this domain.

The DNS-01 challenge is often used in situations where ports 80 and
443 are not globally accessible (for example, because of corporate
firewall policies), ruling out the use of HTTP-01 and TLS-SNI-02
challenges. Since the DNS-01 challenge requires only that a TXT
record be updated, there’s no requirement for a direct connection to
the domain name that a certificate is to be issued for. Instead the chal-
lenge is validated through a query to the authoritative nameservers.
The DNS-01 challenge is also well-suited to centralized management
of certificate issuance. Many DNS providers support programmatic
updates through an API, or with more traditional dynamic DNS
updates through nsupdate-like tools. Using an ACME client that
exposes hooks for adding and removing the required TXT records
makes it easy to centrally issue certificates by automatically adjusting
DNS as required by the challenges. Certbot presently supports DNS-
01 in a manual-only mode, but some other ACME clients have fully
automatic support with a variety of DNS providers.

TLS-SNI-02 Challenges
The TLS-SNI-02 challenge is perhaps the most unfamiliar of the
ACME challenge types. For this challenge type the requester must
configure a TLS server accessible at the domain to be authorized such
that it will use a special self-signed certificate when processing TLS
requests with a specific Server Name Indication (SNI)[14] value.

The ACME client creates the self-signed certificate when it wishes to
use a TLS-SNI-02 challenge to authorize a domain. The contents of
the certificate are unimportant except for one crucial detail: the cer-
tificate must have two special Subject Alternate Name (SAN) values.

The first SAN value is a domain of the form x.y.token.acme.
invalid, where x and y are computed as the SHA256 digest of the
challenge token value, split into two labels. The second SAN value is
a domain x.y.ka.acme.invalid, where x and y are computed as the
SHA256 digest of the key authorization, split into two labels.

The Internet Protocol Journal
12

The TLS server used for responding to the TLS-SNI-02 challenge
should be configured such that it returns the crafted challenge cer-
tificate whenever a TLS request arrives with the SNI value of the first
SAN (for example, x.y.token.acme.invalid).

When the ACME client POSTs the challenge to begin the validation
process, the ACME server will compute both SAN entries the same
way the client did, and will send a TLS request to the domain using a
SNI value of the first computed SAN. The ACME server can then val-
idate that the challenge server presents a self-signed certificate with
the two required SAN values verifying the challenge token and the
key authorization.

The TLS-SNI-02 challenge is a good fit for environments where a
webserver is already configured for HTTPS and you do not want
to accept HTTP requests for HTTP-01 challenges or place files in
the webroot of the domains. Similar to HTTP-01, Certbot and some
other ACME clients can run a standalone TLS server for the pur-
pose of solving TLS-SNI-02 challenges in place without requiring a
heavier-weight server. The TLS-SNI-02 challenge uniquely employs
the mechanics of certificates and TLS in order to provide authori-
zation for the issuance of certificates; this symmetry of process and
result is unique and satisfying from the perspective of an interested
engineer.

The astute reader will note that unlike HTTP-01 and DNS-01, the
TLS-SNI-02 challenge is on its second revision. Let’s Encrypt and
the Boulder codebase still use the original TLS-SNI-01 challenge
from earlier drafts, but it suffers from one design flaw whereby all
of the information required to complete the challenge was present
in the request. This situation allows for a broken design where a
TLS-SNI-01 challenge response server could be built that automati-
cally replies to a challenge request without a priori knowledge of
the challenges. To combat this design and its unintended security
implications, the TLS-SNI-02 challenge requires that the key autho-
rization, which isn’t part of the challenge request, be returned as part
of the challenge response.

What’s Next?
We’ve covered the core of the ACME protocol, but the existing drafts
have a great deal more information. Readers are encouraged to inves-
tigate the key rollover and revocation features of ACME from the
standard since they were not covered in this article. Similarly the
draft content offers more in-depth coverage of security consider-
ations that may be of interest to readers with the hacker mindset.

The ACME standardization process is still underway. The IETF
Working Group has most recently published draft-07 and is under-
going a last-call process for interoperability testing. Sometime after
this point we can expect the ACME draft will proceed to full RFC
standard status.

ACME continued

The Internet Protocol Journal
13

Plenty of work remains to upgrade existing ACME servers and cli-
ents to support the latest iterations of the draft since most of the
ecosystem is presently implementing ACME closer to the draft-03
standard. Let’s Encrypt intends to support the newer draft and final
RFC version as independent directory endpoints alongside the cur-
rent legacy draft-03 era endpoint. This support will allow clients
to gradually adopt support for the newest protocol features while
continuing to renew legacy certificates produced with the draft-03
endpoint.

The ACME protocol itself has left room for future improvements.
Work is underway to develop a companion document[7] describ-
ing additions to the CAA standard, RFC 6844[13], that would allow
domain owners to specify policy related to acceptable ACME account
keys or challenge types. This work could allow for, as an example,
adoption of a policy whereby only DNS-01 challenges could be used
to issue certificates for a given domain name using ACME.

Standardization on challenges for non-DNS identifierss—such as IP
addresses—is also an avenue for future ACME work. ACME was
designed to handle additional identifier types and new challenges,
and it will be interesting to see how the protocol evolves to handle
use cases beyond domain validation of DNS identifiers.

Development of an open standard helps move the Web towards a
world where HTTPS encryption is the norm. Certificates from Let’s
Encrypt are one avenue available to system administrators looking
to increase the security of their websites. Adoption of ACME by
other CAs and tools ensures that the decision to use HTTPS doesn’t
induce vendor lock-in and allows users the chance to change pro-
viders without abandoning automation. The future of ACME is still
being written, and it’s not too late to participate in the IETF Working
Group[8]. Readers are encouraged to subscribe to the mailing list[9]

and provide feedback as they envision integrating ACME into their
own software and environments.

References
 [0] Let’s Encrypt Statistics: https://letsencrypt.org/stats

 [1] Jacob Hoffman-Andrews, James Kasten, and Richard Barnes,
“Automatic Certificate Management Environment (ACME),”
Internet Draft, work in progress, draft-ietf-acme-acme-07,
June 2017.

 [2] Github Repository for Boulder:
 https://github.com/letsencrypt/boulder

 [3] “Boulder divergences from ACME,”
 https://github.com/letsencrypt/boulder/blob/

e81f7477a3169f77fd7247a6cdb8822fb29433aa/docs/acme-
divergences.md

https://letsencrypt.org/stats
https://github.com/letsencrypt/boulder
https://github.com/letsencrypt/boulder/blob/e81f7477a3169f77fd7247a6cdb8822fb29433aa/docs/acme-divergences.md
https://github.com/letsencrypt/boulder/blob/e81f7477a3169f77fd7247a6cdb8822fb29433aa/docs/acme-divergences.md
https://github.com/letsencrypt/boulder/blob/e81f7477a3169f77fd7247a6cdb8822fb29433aa/docs/acme-divergences.md

The Internet Protocol Journal
14

 [4] “Automatically enable HTTPS on your website with EFF’s
Certbot, deploying Let’s Encrypt certificates,”

 https://certbot.eff.org/

 [5] Wayne Thayer, “Information about SSL Bug,” Godaddy Blog,
 https://www.godaddy.com/garage/godaddy/information-

about-ssl-bug/

 [6] CA Browser Forum, “Ballot 169, Revised Validation Require-
ments,” https://cabforum.org/2016/08/05/ballot-
169-revised-validation-requirements/

 [7] Hugo Landau, “CAA Record Extensions for Account URI and
ACME Method Binding,” Internet Draft, work in progress,
draft-ietf-acme-caa-01, February 2017

 [8] ACME Working Group Charter,
 https://datatracker.ietf.org/wg/acme/charter/

 [9] ACME Mailing List Archive,
 https://mailarchive.ietf.org/arch/browse/acme/

 [10] Nat Sakimura, Michael Jones, and John Bradley, “JSON Web
Signature (JWS),” RFC 7515, May 2015.

 [11] Michael Jones, “JSON Web Key (JWK),” RFC 7517, May
2015.

 [12] Burt Kaliski, “PKCS #10: Certification Request Syntax Specifi-
cation Version 1.7,” RFC 2986, November 2000.

 [13] Rob Stradling and Phillip Hallam-Baker, “DNS Certification
Authority Authorization (CAA) Resource Record,” RFC 6844,
January 2013.

 [14] Donald Eastlake 3rd, “Transport Layer Security (TLS) Exten-
sions: Extension Definitions,” RFC 6066, January 2011.

 [15] Josh Aas, “Wildcard Certificates Coming January 2018,”
 https:/ /letsencrypt.org/2017/07/06/wildcard-certifi-

cates-coming-jan-2018.html

DANIEL MCCARNEY is a developer for the Internet Security Research Group
(ISRG), where he works full-time on Boulder, the server-side software powering the
Let’s Encrypt certificate authority. Prior to the ISRG Daniel was a security architect
for a large content delivery network and focused on TLS and application security.
He has a Masters in Computer Science from Carleton University, where his research
touched both Android system security and password managers. Daniel resides in
Montréal, Canada, where he enjoys long snowy walks with his dog Bart. Daniel can
be reached at: cpu@letsencrypt.org

ACME continued

https://letsencrypt.org/2017/07/06/wildcard-certificates-coming-jan-2018.html
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc2986
https://tools.ietf.org/html/rfc6844
https://tools.ietf.org/html/rfc6066

The Internet Protocol Journal
15

The Root of the Domain Name System
by Geoff Huston, APNIC

F ew parts of the Domain Name System (DNS) are filled with
such levels of mythology as its root server system. In this article
I will explain what it is all about and ask the question whether

the system we have is still adequate, or if it’s time to think about
some further changes.

The namespace of the DNS is a hierarchically structured label space.
Each label can have an arbitrary number of immediately descen-
dant labels and only one immediate parent label. Domain names
are expressed as an ordered sequence of labels in left-to-right order
starting at the terminal label and then enumerating each successive
parent label until the root label is reached. In domain name expre-
sions, the ASCII period character denotes a label delimiter. Fully
Qualified Domain Names (FQDNs) are names that express a label
sequence from the terminal label through to the apex (or root) label.
In FQDNs this root is expressed as a trailing period character at
the end of the label sequence. But there is a little more than that,
and that’s where the hierarchal structure comes in. The sequence
of labels, as read from right to left, describes a series of name
delegations in the DNS. If we take an example DNS name, such as
www.example.com, then com is the label of a delegated zone in the
root. Here we will call a zone the collection of all defined labels
at a particular delegation point in the name hierarchy. The label
“example” is the label of a delegated zone in the com. zone. And www
is a terminal label in the www.example.com. zone.

But that is not all there is to the DNS. There are many more subtitles
and possibilities for variation, but as we want to look specifically at
the root zone, we’re going to conveniently ignore all these other mat-
ters here. If you are interested, RFC 1034[1] from November 1987 is
still a good description of the way the DNS was intended to operate,
and the recently published RFC 7719[2] provides a good compendium
of DNS jargon.

The most common operation performed on DNS names is to resolve
the name; resolving is an operation to translate a DNS name to a dif-
ferent form that is related to the name. This most common form of
name resolution is to translate a name to an associated IP address,
although many other forms of resolution are also possible. The reso-
lution function is performed by agents termed resolvers, and they
function by passing queries to, and receiving results from, so-called
name servers. In its simplest form, a name server can answer queries
about a particular zone. The name itself defines a search algorithm
that mirrors the same right-to-left delegation hierarchy.

The Internet Protocol Journal
16

Continuing with our simple example, to resolve the name
www.example.com., we may not know the IP addresses of the author-
itative name servers for example.com., or even com. for that matter.
To resolve this name, a resolver would start by asking one of the
root zone name servers to tell it the resolution outcome of the name
www.example.com. The root name server will be unable to answer
this query, but it will refer the resolver to the com. zone, and the root
server will list the servers for this delegated zone, as this delegation
information is part of the DNS root zone file for all delegated zones.
The resolver will repeat this query to one of the servers for the com.
zone, and the response is likely to be the list of servers for example.
com. Assuming www is a terminal label in the example.com. zone,
the third query, this time to a server for the example.com. zone, will
provide the response we are seeking.

In theory, as per our example, every resolution function starts with a
query to one of the servers for the root zone. But how does a resolver
know where to start? What are the IP addresses of the servers for the
root zone?

Common DNS resolver packages include a local configuration frag-
ment that provides the DNS names and IP addresses of the authorita-
tive name servers for the root zone. Another way is to pull down the
current root hints file from https://www.internic.net/domain/
named.root.

But it may have been some time between the generation of this list
and the reality of the IP addresses of the authoritative root servers
today, so the first actions of a resolver on startup will be to query one
of these addresses for the name servers of the root zone, and use these
name servers instead. This query is the so-called priming query[3].

This priming implies that the set of root server functions includes
supporting the initial bootstrap of recursive DNS resolvers into the
DNS framework by responding to priming queries of the resolver,
as well as anchoring the process of top-name name resolution by
responding to specific name queries with the name server details of
the next-level delegated zone. This role is critical in so far as if none
of the root servers can respond to resolver queries, then at some point
thereafter, as local caches of the resolvers expire, resolvers will be
unable to respond to any DNS queries for public names. So, these
root servers are important in that you may not know that they exist,
or where they may be located in the net, but their absence, if that ever
could occur, would definitely be noticed by all of us!

Moderating all considerations of the DNS is the issue of local cach-
ing of responses. For example, once a local resolver has queried a
root server for the name www.example.com., it will have received a
response listing the delegated name servers for the com. zone.

DNS Root continued

https://www.internic.net/domain/named.root
https://www.internic.net/domain/named.root

The Internet Protocol Journal
17

If this resolver were to subsequently attempt to resolve a different
name in the com. zone, then for as long as the com. name servers
are still held in the resolver cache, the resolver will use the cached
information and not query any root server. Given that the number of
delegated zones in the root zone is relatively small (1,528 zones as of
the start of 2017), then a busy recursive resolver is likely to assemble
in its local cache the name servers of many of the top-level domain
names. Then one would expect that it would have no further need
to query the root name servers, except as required occasionally to
refresh its local cache, assuming that it is answering queries about
DNS names that exist in the DNS.

In that respect, the root servers would not appear to be that critically
important in terms of the resolution of names, and certainly not so
for large recursive name servers that have a large client population
and therefore have a well-populated local cache. But this conclu-
sion would not be a good one. If cached information of a recursive
resolver for a zone has expired, it will need to refresh the cache with
a query to a root server. At some point, all of the locally cached
information will time out of the cache, and then the resolver will no
longer be able to respond to any DNS query. To keep the DNS oper-
ating, recursive resolvers need to be able to query the root zone, so
there is a requirement that collectively the root servers always need
to be available.

In this respect, the root servers “anchor” the entire DNS system. They
do not participate in every name resolution query, but without their
feed of root zone information into the caches of recursive resolvers
the DNS would stop. So these servers are important to the Internet,
and it might be reasonable to expect a role of such importance to be
performed by hundreds or thousands of such servers. But there are
just 13 such root server systems.

Why 13?
The primary reason to have more than a single root server, and use
multiple root servers, was diversity and availability. The root serv-
ers are intentionally located in different parts of the network, within
different service provider networks. The intended objective is that in
the case where a DNS resolver is incapable of contacting a root name
server, then unless the resolver was itself completely isolated from the
Internet, then the desired number of root servers was such that the
likelihood that it could not reach any of the root name servers was
considered to be acceptably low. By this reasoning, two is probably
not enough, and three could well be insufficient as well, but per-
haps hundreds of thousands of such root servers may well be a case
of overkill!

This line of thought assumes that each named root server has a
unique name, a unique IP address, and a single location. But perhaps
we are assuming too much. There is a technique that places identi-
cally named and addressed servers at various locations across the
Internet, called anycast[5,6].

The Internet Protocol Journal
18

Using anycast, a user attempting to send an IP packet to an anycast
service would be directed to the “closest” instance of the family of
servers that share a common anycast IP address. Why not just use
anycast for a collection of root servers and put as many root servers
as we want behind a single IP address?

For a considerable time, anycast was viewed with some caution and
trepidation, particularly in the days before Domain Name System
Security Extensions (DNSSEC) of a signed root zone. What would
stop a hostile actor from setting up a fake root server and publish-
ing incorrect DNS information if the IP addresses the root servers
used could be announced mutiple times from any arbitrary location?
There was also some doubt that the Transmission Control Protocol
(TCP) would be adequately robust in such anycast scenarios. The
original conservative line of thinking was that we needed multiple
unitary DNS root zone servers, each with its own unique IP address
announced from known points in the network fabric.

But needing “multiple” DNS root zone servers and coming up with
the number 13 appears to be somewhat curious. It seems such an odd
limitation in the number of root servers given that a common general
rule in computer software design is Willem van der Poel’s Zero, One,
or Infinity Rule, which states a principle in computer science that
either an action or resource should not be permitted (zero), should
happen uniquely (one), or should have no arbitrary limit at all (infin-
ity). For root servers, it appears that we would like more than one
root server. But why set the limit to 13?

The reason may not be immediately obvious these days, but when
the DNS system was designed, the size limit of DNS responses using
the User Datagram Protocol (UDP) was set to 512 bytes (Section
2.3.4 of RFC 1035). It seems a ludicrously small limit these days, but
you have to also account for the fact that the requirement for IPv4
hosts was (and still is) that it accepts IPv4 packets up to 576 bytes
long[4]. Working backwards, that would imply that if you account for
a 20-octet IPv4 packet header and an 8-byte UDP header, then the
UDP payload could be up to 548 octets long, but no longer if you
wanted some degree of assurance that the remote host would accept
the packet. If you also allow for up to 40 bytes of IP options, then in
order to ensure UDP packet acceptance under all circumstances the
maximal UDP payload size should be 508 octets. The DNS use of a
maximum payload of 512 bytes is not completely inconsistent with
this assumption, but it is off by 4 bytes in this corner case!

This 512-byte size limit of DNS packets still holds, in that a query
without any additional signal—that is, in today’s terms, a query that
contains no DNS extension mechanisms that signal a capability to
use a larger UDP response size—is supposed to be answered by a
response with a DNS payload no greater than 512 octets long. If
the actual response would be greater than 512 octets, then the DNS
server is supposed to truncate the response to fit within 512 octets,
and mark this partial response as truncated.

DNS Root continued

The Internet Protocol Journal
19

If a client receives a truncated response, then the client may repeat
the query to the server, but use TCP instead of UDP, so that it could
be assured of receiving the larger response.

The desire in the design of the DNS priming query and response was
to provide the longest possible list of root name servers and addresses
in the priming response, but at the same time ensure that the response
was capable of being passed in the DNS using UDP, and not rely
on the use of any form of optional DNS extension mechanism. The
largest possible set of names that could be packed in a 512-octet
DNS response in this manner was 13 such names and their IPv4
addresses—so there are at most 13 distinct root name servers in order
to comply with this limit.

These days every root name server has an IPv6 address as well as an
IPv4 address, so the DNS priming response that lists all these root
servers and their IPv4 and IPv6 addresses is now 811 octets. If the
resolver also requests that the response should include the DNSSEC
signatures, then the size of the response would expand to 1,097
bytes. But if you pass a simple priming query to a root server without
a UDP buffer size extension in the query, then you will still receive no
more than 512 octets in response. The size-limited response will still
list the names of all 13 root name servers, but will not list all of their
IPv4 and IPv6 addresses in the additional section of the response.

The partial set of these additional records of root server names and
their IPv4 and IPv6 addresses is passed back without any particu-
lar indication of what is missing. The decision as to which records
to include and which to omit to meet the size restriction also varies
between root name servers. Some root name servers provide the IPv6
addresses of root servers A through J in a 508-byte response, while
others give all 13 IPv4 addresses and add the IPv6 addresses of A and
B in a 492-byte response. The remainder provide the IPv4 and IPv6
addresses for A through F and the IPv4 address of G in a 508-byte
response. I suppose that the message here is that recursive resolvers
should support the Extension Mechanisms for DNS (EDNS(0)) as
specified in RFC 6891[14], and offer a UDP buffer size that is no less
than 1,097 bytes if they want a complete DNSSEC-signed response
to a root zone priming query.

However, even then the story is incomplete. These additional records
are not DNSSEC-signed in the priming response, so if a resolver
wants to assure itself that the IP addresses that are provided in this
response are the actual IP addresses of the root servers, it needs to
separately query these names and request DNSSEC credentials in the
response. However, as of the time of writing of this article the zone
root-servers.net is not DNSSEC-signed, so right at the heart of
the DNS there is still a leap of faith that all resolvers need to make in
order to link into the DNS through the priming process.

The Internet Protocol Journal
20

We are also entirely comfortable with anycast these days, and the
root server system has enthusiastically adopted anycast, where most
of the root servers are replicated in many locations. The overall result
is that hundreds of locations host at least one instance of one of
the root server anycast constellations, and often more. Part of the
reason that our comfort level with anycast has increased is the use
of a DNSSEC-signed zone, and recursive resolvers should be protect-
ing their clients by validating the response they receive to ensure that
they are using the genuine root zone data, to the extent that this data
has been signed in the first place.

Should we do more?
It would certainly make some sense to sign the root-servers.net
zone to further protect recursive resolvers from being led astray.

But what about the specification of 13 unique root server names and
their associated anycast constellations? If we had more root servers,
would it make everything else better? Should we contemplate further
expanding these anycast constellations into thousands or even tens
of thousands of root servers? Should we open up the root server let-
ter set to more letters? Is there a limit to “more” or “many”? Where
might that limit be, and why?

These days the response that recursive resolvers receive in 512 bytes
or less is a partial view of the root name server system. From that
perspective, 13 is not a practical protocol-derived ceiling on the num-
ber of distinct root server letters. Whether the partial response in
512 bytes reflects 6, 10, or 13 root name servers out of a pool of 13
or 14 or any larger number is largely no longer relevant. The topic
has moved beyond a conversation about any numeric ceiling on the
letter count into a consideration of whether more root server letters
would offer any incremental benefit to the Internet, as distinct from
the current practice of enlarging the root server anycast constella-
tions. Indeed, rather than more root name servers, whether by adding
more letters or enlarging anycast constellations, should we consider
alternative approaches to the DNS that can scale and improve resil-
ience under attack through answering root queries but not directly
involving these root name servers at all? In other words, can we look
at DNS structures that use the root servers as a distribution mecha-
nism for the root zone data and use the existing recursive resolver
infrastructure to directly answer all queries that relate to data in the
root zone?

The reason to contemplate this question is that it is not clear that
more root server letters or more root server anycast instances, or even
both measures, make everything else better. Reducing the latency in
querying a root name server has only a minimal impact for end users.

The design objective of the DNS system is to push the data as close
to the user as possible in the first place, so that every effort is made
to provide an answer from a local resolver cache.

DNS Root continued

The Internet Protocol Journal
21

It is only when there is a cache miss that the resolver query will head
back into the authoritative DNS server infrastructure, a situation
that would normally affect only a very small proportion of queries
over time. The DNS derives its performance and efficiency through
resolver caches, so the overall intention is to limit the extent to which
resolvers query these root name servers to the minimal level possible.

Secondly, a local root name server may not necessarily provide any
additional name resolution resilience in the case of local network iso-
lation. Secondary root name servers also have an expiry time on the
data they serve, and in the case of extended isolation the server will
also time out a case to be able to respond. This timeout is as true for
the root zone as it is for any other zone.

In many ways, the net effect of a local root name server on local
users’ Internet experience is minimal, and could well pass completely
unnoticed in many cases.

In terms of the primary objectives of the root name server system,
diversity and availability, there is little to be gained by adding addi-
tional root name letters. A significant expansion of the number of
uniquely named root servers would ultimately make a complete prim-
ing response exceed 512 bytes, meaning either forcing all priming
queries into TCP by signalling that the UDP response was truncated,
or dropping some named root servers from a non-EDNS(0) priming
query response.

But rather than resisting the hard limits imposed by protocol spec-
ifications in some early RFCs, perhaps we are asking the wrong
question. Rather than trying to figure out how to field even more
instances of root servers and keep them all current, there is perhaps a
different question: Why do we need these special dedicated root zone
servers at all?

If the only distinguishing feature of these root servers is the propo-
sition that any response with a source address of any of these 26
distinguished IP addresses is by simple unfounded assertion the
absolute truth, then it is laughably implausible. Anyone who has
experienced DNS interceptors would have to agree that DNS lies are
commonplace, and nation states as well as service providers across
the entire Internet practice lying.

Enter DNSSEC
The DNSSEC-signing of the root zone of the DNS introduced further
possibilities to the root zone service to resolvers. If a resolver has a
validated local copy of the current Key Signing Key (KSK), then it can
independently validate any response provided to it from any signed
zone that has a chain of signing back to this KSK, including of course
any signed response about the root zone itself.

The Internet Protocol Journal
22

A validating resolver no longer needs to obsess that it is querying
a genuine root name server, and no longer needs to place a certain
level of blind faith in the belief that its DNS queries are not being
intercepted and that faked responses are not being substituted for
the actual response. With DNSSEC it simply does not matter in the
slightest how you get the response. What matters is that you can vali-
date responses with your local copy of the root zone key. If you can
perform this validation successfully, then the answer is much more
likely to be genuine!

The ubiquitous use of DNSSEC casts the root server system in an
entirely different light, and the relationship between recursive resolv-
ers and the root servers can change significantly.

A relevant observation here is that some 75% of responses from the
root zone are “no such domain” NXDOMAIN responses (for exam-
ple,[7]). Recursive resolvers could absorb much of the root server query
load and answer these queries directly with NXDOMAIN responses if
they used this form of response synthesis. The way resolvers could
answer the queries is to use so called “aggressive NSEC caching[11].”
This approach uses the Next Secure (NSEC) records provided in the
responses relating to the nonexistence of a name in the root zone to
allow recursive resolvers to synthesise an authoritative NXDOMAIN
response for queries relating to any name in the range specified in
the NSEC data. Rather than caching a root zone NXDOMAIN answer
for each individual nonexistent domain name, caching the NSEC
response allows the recursive resolver to cache a common signed
response for the entire span of query names as described in each
NSEC response. With a cache of 1,528 defined top-level domains and
another 1,528 NSEC records, a recursive resolver would be able to
provide authoritative responses for any query that would otherwise
be passed through to a root server.

Another approach is to use local secondaries for the root zone. This
approach is not an architectural change to the DNS, or at least not
intentionally so. For recursive resolvers that implement this approach,
this change is a form of change in query behaviour in so far as a
recursive resolver configured in this manner will no longer query
the root servers for queries it would normally direct to an instance
of the root. Instead, it directs these queries to a local instance of a
slave server that is listening on the loopback address of the recursive
resolver. This slave server is serving a locally held instance of the root
zone, and the recursive resolver would perform DNSSEC validation
of responses from this local slave to ensure the integrity of responses
received in this manner. In effect, this technique loads a recursive
resolver with the entire root zone into what is functionally similar
to a local secondary root zone server cache. For users of this recur-
sive resolver there is no apparent change to the DNS or to their local
configurations. Obviously, there is no change to the root zone either.

DNS Root continued

The Internet Protocol Journal
23

This proposal provides integrity in the local root server through
the mechanism of having the recursive resolver perform DNSSEC
validation against the responses received from the local root slave. If
the recursive resolver is configured as a DNSSEC-validating resolver,
then this mechanism is configurable on current implementations of
DNS recursive resolvers.

The advantage here is that the decision to set up a local slave root
server or to use aggressive NSEC caching is a decision that is entirely
local to the recursive resolver, and the impacts of this decision affect
only the clients of this recursive resolver. No coordination with the
root server operators is required, nor is any explicit notification. The
outcomes are only indirectly visible to the clients of this recursive
resolver, and no other.

Where does this leave the root server system?
In the light of increasing use of DNSSEC, the root server system is
declining in relevance as a unique source of authoritative responses
for the root zone, and we can forecast a time when their role in resolv-
ing queries would be largely anachronistic. A validated response can
be considered a genuine response regarding the contents of the root
zone, regardless of how the recursive resolver learned this response.
It is no longer necessary to have a dedicated set of name servers run-
ning on a known set of IP addresses as the only means to protect the
integrity of the root zone.

It is also true that the root servers are no longer being used as cache
refresh for recursive resolvers for delegated domains. Today we see
much of the time, effort and energy, and cost of root server opera-
tion being spent to ensure that NXDOMAIN answers are provided
promptly and reliably. This use of time really does not make any
sense these days. The use of local secondary root servers and the use
of NSEC caching can remove all of these specific queries relating to
undefined names to the root servers, and what would be left is the
cache priming queries. If all recursive resolvers were able to use either
of these measures, then the residual true role of the root server system
would not be to respond to individual queries, but simply to distrib-
ute current root zone data into the resolver infrastructure.

If the functional intention of the root server system is to distribute
signed root zone data to recursive resolvers, then perhaps we could
look more widely for potential approaches. Regularising the times
that changes are made to the root zone would help reduce opportu-
nistic polling of the root servers to detect when a change might have
occurred. Or using an approach based on Incremental Zone Transfer
(IXFR) that would allow recursive resolvers to request incremental
changes to the root zone based on differences between zone Start of
Authority (SOA) numbers may be more efficient.

The Internet Protocol Journal
24

Maybe we can look further afield for additional ways to distribute
the root zone contents. Social networks appear to be remarkably
adept in their ability to distribute updates, and a thought is that the
small set of incremental changes to the signed root zone would be
highly amenable to similar techniques or even using the same social
networks. One can readily imagine a feed of incremental root zone
updates on media such as Twitter, for example!

I also can’t help but wonder about the wisdom of the root zone serv-
ers being promiscuous with respect to whom they answer. Root zone
query data points to some 75% of queries seen at the root zone serv-
ers generating NXDOMAIN responses, meaning that three-quarters of
the responses from root servers are nonsensical questions in the con-
text of the root zone. It’s not clear to what extent the other 25% of
queries reflect actual user activity. In an APNIC measurement exer-
cise using synthetic domain names that included a time component, it
was evident that more than 30% of the queries seen at the authorita-
tive servers of the measurement reflected “old” queries, generated by
query log replay or other DNS forms of stalking activities.

One way to respond to this situation is to farm out the query volume
currently seen at the root servers into the existing recursive resolver
infrastructure, so that all root zone responses are generated by these
recursive resolvers, rather than passing queries onward to the root
servers. If the root servers exclusively served some form of incremen-
tal zone transfer and did not answer any other query type directly,
then we would see a shift in query traffic away from the root servers
as a crucial DNS query attractor, leaving only a lower profile role as
a server to recursive resolvers.

There is much to learn about the DNS, and there is still much we
can do in trying to optimise the DNS infrastructure to continue to
be robust, scalable, and accurate—all essential attributes to underpin
the continued growth pressures of the Internet.

References and Further Reading
 [1] P.V. Mockapetris, “Domain names - concepts and facilities,”

RFC 1034, November 1987.

 [2] Kazunori Fujiwara, Paul Hoffman, and Andrew Sullivan, “DNS
Terminology,” RFC 7719, December 2015.

 [3] Peter Koch, Matt Larson, and Paul Hoffman, “Initializing a
DNS Resolver with Priming Queries,” RFC 8109, March 2017.

 [4] J. Postel, “Internet Protocol,” RFC 791, September 1981.

 [5] Kurt Erik Lindqvist and Joe Abley, “Operation of Anycast
Services,” RFC 4786, December 2006.

DNS Root continued

https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc7719
https://tools.ietf.org/html/rfc8109
https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc4786

The Internet Protocol Journal
25

 [6] David Oran, Dave Thaler, Eric Osterweil, and Danny
McPherson, “Architectural Considerations of IP Anycast,”
RFC 7094, January 2014.

 [7] http://stats.dns.icann.org/rssac/2017/01/rcode-volume/
l-root-20170130-rcode-volume.yaml

 [8] “RSSAC023: History of the Root Server System—A Report
from the ICANN Root Server System Advisory Committee
(RSSAC),” November 4, 2016.

 https://www.icann.org/en/system/files/files/rssac-023-
04nov16-en.pdf

 [9] Marc Blanchet and Lars-Johann Liman, “DNS Root Name
Service Protocol and Deployment Requirements,” RFC 7720,
December 2015.

 [10] Paul Hoffman and Warren Kumari, “Decreasing Access Time
to Root Servers by Running One on Loopback,” RFC 7706,
November 2015.

 [11] Akira Kato, Warren Kumari, and Kazunori Fujiwara, “Aggres-
sive use of DNSSEC-validated Cache,” May 2017, Internet Draft,
work in progress, draft-ietf-dnsop-nsec-aggressiveuse-10

 [12] Geoff Huston, “Workshop on DNS Future Root Service,”
December 2014.

 http://www.potaroo.net/ispcol/2014-12/futureroots.html

 [13] DNS RFCs: https://www.isc.org/community/rfcs/dns/

 [14] Paul Vixie, Joao Damas, and Michael Graff, “Extension Mech-
anisms for DNS (EDNS(0)),” RFC 6891, April 2013.

GEOFF HUSTON, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books,
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. At
various times Geoff has worked as an Internet researcher, an ISP systems architect,
and a network operator. E-mail: gih@apnic.net

https://tools.ietf.org/html/rfc7094
http://stats.dns.icann.org/rssac/2017/01/rcode-volume/l-root-20170130-rcode-volume.yaml
http://stats.dns.icann.org/rssac/2017/01/rcode-volume/l-root-20170130-rcode-volume.yaml
https://www.icann.org/en/system/files/files/rssac-023-04nov16-en.pdf
https://www.icann.org/en/system/files/files/rssac-023-04nov16-en.pdf
https://tools.ietf.org/html/rfc7720
https://tools.ietf.org/html/rfc7706
http://www.potaroo.net/ispcol/2014-12/futureroots.html
https://www.isc.org/community/rfcs/dns/
https://tools.ietf.org/html/rfc6891
mailto:gih%40apnic.net?subject=

The Internet Protocol Journal
26

Fragments
ISOC Issues Paper on Content Blocking
The Internet Society (ISOC) recently voiced its commitment to keep-
ing the Internet on for everyone, in response to the increasing number
of government orders to temporarily shut down or restrict access
to Internet services. Speaking out at RightsCon 2017, the world’s
leading conference on Internet and human rights that took place in
late March in Brussels, the organization underscored that any delib-
erate attempt to interrupt Internet communications or control the
flow of information over the Internet puts society at risk.

Internet shutdowns, including those that impact social media sites or
entire networks, occur when governments intentionally disrupt the
Internet or mobile apps, often used in the context of elections, dem-
onstrations or other tense social contexts. According to Access Now,
there were 56 Internet shutdowns recorded worldwide in 2016, an
upward trend from previous years.

A paper entitled “Internet Society Perspectives on Internet Content
Blocking,”[1] explores the most common Internet restriction tech-
niques and highlights the shortcomings and collateral damage from
the use of such measures. “From censorship to SMEs going out of
business, the human, economic and technical costs of Internet shut-
downs are just too high,” explains Nicolas Seidler, Senior Policy
advisor at the Internet Society.

The paper describes and evaluates the most common content block-
ing techniques used by governments to restrict access to information
(or related services) that is either illegal in a particular jurisdiction, is
considered a threat to public order, or is objectionable for a particu-
lar audience.

According to Freedom House’s Freedom on the Net report 2016,
governments in 24 of the 65 countries assessed impeded access to
social media and communication tools, up from 15 the previous year.

“Before they take action, we are calling policymakers to think twice:
Internet shutdowns and content filtering are not the answer,” said
Constance Bommelaer, Senior Director for Global Internet Policy at
the Internet Society. “We are at a crossroads, and the actions we take
today will determine whether the Internet will continue to be a driver
of empowerment, or whether it will threaten personal freedoms and
rights online,” added Bommelaer.

The Content Blocking paper can be downloaded in various formas
and languages from ISOC’s website[1]. Quoting from the Foreword:
“The use of Internet blocking by governments to prevent access to
illegal content is a worldwide and growing trend. There are many
reasons why policy makers choose to block access to some content,
such as online gambling, intellectual property, child protection, and
national security.

The Internet Protocol Journal
27

However, apart from issues relating to child pornography, there is
little international consensus on what constitutes appropriate con-
tent from a public policy perspective.

The goal of this paper is to provide a technical assessment of differ-
ent methods of blocking Internet content, including how well each
method works and what are the pitfalls and problems associated
with each. We make no attempt to assess the legality or policy moti-
vations of blocking Internet content.

Our conclusion, based on technical analyses, is that using Internet
blocking to address illegal content or activities is generally inefficient,
often ineffective and generally causes unintended damages to Internet
users.

From a technical point of view, we recommend that policy makers
think twice when considering the use of Internet blocking tools to
solve public policy issues. If they do and choose to pursue alternative
approaches, this will be an important win for a global, open, interop-
erable and trusted Internet.”

 [1] https://www.internetsociety.org/doc/internet-content-
blocking

IAB Issues RFC on Protocol Adoption and Transition
The Internet Architecture Board (IAB) has recently published a
Request for Comments (RFC) on Protocol Adoption and Transition[1].
The abstract states: “Over the many years since the introduction of
the Internet Protocol, we have seen a number of transitions through-
out the protocol stack, such as deploying a new protocol, or updating
or replacing an existing protocol. Many protocols and technolo-
gies were not designed to enable smooth transition to alternatives
or to easily deploy extensions; thus, some transitions, such as the
introduction of IPv6, have been difficult. This document attempts to
summarize some basic principles to enable future transitions, and it
also summarizes what makes for a good transition plan.”

 [1] Thaler, D., Ed., “Planning for Protocol Adoption and Subsequent
Transitions,” RFC 8170, May 2017.

Follow us on Twitter and Facebook

@protocoljournal https://www.facebook.com/newipj

https://www.internetsociety.org/doc/internet-content-blocking
https://www.internetsociety.org/doc/internet-content-blocking
https://tools.ietf.org/html/rfc8170
https://www.facebook.com/newipj

The Internet Protocol Journal
28

Fabrizio Accatino
Scott Aitken

Antonio Cuñat Alario
Matteo D’Ambrosio

Jens Andersson
Danish Ansari
David Atkins
Jaime Badua
John Bigrow
Axel Boeger
Kevin Breit

Ilia Bromberg
Christophe Brun

Gareth Bryan
Stefan Buckmann

Scott Burleigh
Jon Harald Bøvre
Olivier Cahagne

Roberto Canonico
Lj Cemeras

Dave Chapman
Stefanos Charchalakis

Greg Chisholm
Narelle Clark
Steve Corbató

Brian Courtney
Dave Crocker
Kevin Croes
John Curran

Morgan Davis
Freek Dijkstra
Geert Van Dijk

Ernesto Doelling
Karlheinz Dölger

Andrew Dul
Holger Durer

Peter Robert Egli
George Ehlers

Peter Eisses
Torbjörn Eklöv
ERNW GmbH

ESdatCo
Steve Esquivel

Mikhail Evstiounin
Paul Ferguson

Christopher Forsyth
Craig Fox

Tomislav Futivic
Edward Gallagher

Andrew Gallo
Chris Gamboni

Xosé Bravo Garcia
Kevin Gee

Serge Van Ginderachter
Greg Goddard

Octavio Alfageme Gorostiaga
Barry Greene

Martijn Groenleer
Geert Jan de Groot
Gulf Coast Shots

Sheryll de Guzman
Martin Hannigan

John Hardin
Edward Hauser
Headcrafts SRLS
Robert Hinden
Edward Hotard

Bill Huber
Hagen Hultzsch

Karsten Iwen
David Jaffe

Dennis Jennings

Edward Jennings
Jim Johnston

Jonatan Jonasson
Daniel Jones
Gary Jones
Amar Joshi

Merike Kaeo
David Kekar

Shan Ali Khan
Nabeel Khatri
Henry Kluge

Carsten Koempe
Alexader Kogan
Mathias Körber

John Kristoff
Terje Krogdahl

Bobby Krupczak
Warren Kumari

Darrell Lack
Yan Landriault

Markus Langenmair
Fred Langham
Richard Lamb

Tracy LaQuey Parker
Robert Lewis
Sergio Loreti

Guillermo a Loyola
Hannes Lubich

Dan Lynch
Miroslav Madic´

Alexis Madriz
Carl Malamud
Michael Malik
Yogesh Mangar

Bill Manning
Harold March

Thank You!
Publication of IPJ is made possible by organizations and individuals around the world dedicated to
the design, growth, evolution, and operation of the global Internet and private networks built on the
Internet Protocol. The following individuals have provided support to IPJ. You can join them by visiting
http://tinyurl.com/IPJ-donate

http://tinyurl.com/IPJ-donate

The Internet Protocol Journal
29

David Martin
Timothy Martin

Gabriel Marroquin
Carles Mateu

Juan Jose Marin Martinez
Brian McCullough

Joe McEachern
Carsten Melberg
Kevin Menezes

Bart Jan Menkveld
William Mills
Thomas Mino

Mohammad Moghaddas
Charles Monson

Andrea Montefusco
Fernando Montenegro

Soenke Mumm
Tariq Mustafa
Stuart Nadin

Mazdak Rajabi Nasab
Krishna Natarajan
Darryl Newman

Ovidiu Obersterescu
Mike O’Connor

Carlos Astor Araujo Palmeira
Alexis Panagopoulos

Manuel Uruena Pascual
Ricardo Patara
Dipesh Patel

Alex Parkinson
Craig Partridge

Dan Paynter
Leif-Eric Pedersen

Juan Pena
Chris Perkins

Rob Pirnie

Blahoslav Popela
Tim Pozar

David Raistrick
Priyan R Rajeevan

Paul Rathbone
Bill Reid

Rodrigo Ribeiro
Justin Richards
Mark Risinger
Ron Rockrohr

Carlos Rodrigues
Lex Van Roon
William Ross

Boudhayan Roychowdhury
Carlos Rubio
RustedMusic
Babak Saberi

George Sadowsky
Scott Sandefur
Sachin Sapkal

Arturas Satkovskis
Phil Scarr

Jeroen Van Ingen Schenau
Carsten Scherb
Roger Schwartz

SeenThere
Scott Seifel
Yury Shefer

Yaron Sheffer
Tj Shumway

Jeffrey Sicuranza
Thorsten Sideboard

Henry Sinnreich
Geoff Sisson

Helge Skrivervik
Darren Sleeth

Mark Smith
Job Snijders

Ignacio Soto Campos
Peter Spekreijse

Thayumanavan Sridhar
Matthew Stenberg

Adrian Stevens
Clinton Stevens
Viktor Sudakov
Edward-W. Suor
Vincent Surillo
Roman Tarasov
David Theese

Sandro Tumini
Phil Tweedie
Steve Ulrich

Unitek Engineering AG
John Urbanek

Martin Urwaleck
Betsy Vanderpool

Surendran Vangadasalam
Alejandro Vennera

Luca Ventura
Tom Vest

Dario Vitali
Randy Watts

Andrew Webster
Tim Weil
Jd Wegner

Rick Wesson
Peter Whimp

Jurrien Wijlhuizen
Pindar Wong

Bernd Zeimetz

The Internet Protocol Journal
30

Call for Papers

The Internet Protocol Journal (IPJ) is a quarterly technical publication
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about
all aspects of Internet technology. IPJ is not intended to promote any
specific products or services, but rather is intended to serve as an
informational and educational resource for engineering profession-
als involved in the design, development, and operation of public and
private internets and intranets. In addition to feature-length articles,
IPJ contains technical updates, book reviews, announcements, opin-
ion columns, and letters to the Editor. Topics include but are not
limited to:

• Access and infrastructure technologies such as: Wi-Fi, Gigabit
Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile
wireless.

• Transport and interconnection functions such as: switching, rout-
ing, tunneling, protocol transition, multicast, and performance.

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
troubleshooting, and mapping.

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed sys-
tems, cloud computing, and quality of service.

• Application and end-user issues such as: E-mail, Web authoring,
server technologies and systems, electronic commerce, and appli-
cation management.

• Legal, policy, regulatory and governance topics such as: copyright,
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

mailto:ole%40protocoljournal.org?subject=
mailto:olejacobsen%40me.com?subject=
http://creativecommons.org/

The Internet Protocol Journal
31

Supporters and Sponsors

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsor Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

Your logo here!

https://www.dns-oarc.net
http://comcast.net
http://www.google.com
mailto:sponsor%40protocoljournal.org?subject=
www.cisco.com
http://labs.verisigninc.com
http://www.wide.ad.jp/
http://www.team-cymru.org
http://www.ripe.net
http://www.juniper.net
http://www.equinix.com
http://de-cix.net
http://www.limelight.com/
http://www.netnod.se/
https://ams-ix.net
http://www.sidn.nl
http://www.cisco.com
http://www.us.ntt.net/
http://nsrc.org/
http://www.linkedin.com
http://www.qacafe.com
http://www.lacnic.net
http://afilias.info/
http://www.internetsociety.org
http://www.apnic.net
http://iwl.com
https://www.icann.org
http://www.cnnic.cn
https://www.isc.org
https://afrinic.net
http://apricot.net

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

David Conrad, Chief Technology Officer
Internet Corporation for Assigned Names and Numbers

Dr. Steve Crocker, Chairman
Internet Corporation for Assigned Names and Numbers

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Dr. Cullen Jennings, Cisco Fellow
Cisco Systems, Inc.

Olaf Kolkman, Chief Internet Technology Officer
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor
Faculty of Environmental and Information Studies,
Keio University, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
NMS
535 Brennan Street
San Jose, CA 95131

ADDRESS SERVICE REQUESTED

http://creativecommons.org/licenses/by-nc-nd/2.0/

