
June 2015 Volume 18, Number 2

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

Multipath TCP 2

TCP Protocol Wars 15

Fragments 23

Call for Papers 26

Supporters and Sponsors 27

F r o m T h e E d i t o r

The Transmission Control Protocol (TCP) is one of the core protocols
used in today’s Internet. This issue of IPJ is almost entirely devoted
to discussions about TCP. Anyone who has studied TCP/IP will have
marveled at the “ASCII Art” state diagram for TCP on page 23 of
RFC 793, published in 1981. This diagram is a good illustration of
both the power and the limitations of using only text characters to
draw a “picture.” I am happy to report that efforts to define a new
format for the RFC series of documents are nearing completion. We
will report further on this new RFC format in a future issue.

Your mobile device contains several interfaces, such as USB, WiFi,
Cellular Data, and Bluetooth. Most, if not all, of these interfaces can
be used for Internet communications, specifically to carry TCP/IP
datagrams. In our first article, Geoff Huston looks at an emerging
standard, Multipath TCP (MPTCP), which allows TCP to operate
several simultaneous connections using different interfaces.

Although TCP has not fundamentally changed since its introduction
in 1981, much work has gone into improving TCP performance in the
presence of network congestion and variations in network through-
put. Our second article, entitled “TCP Protocol Wars,” recalls a term
from the late 1980s that referred to the battle between TCP/IP and
the ISO/OSI Protocol Suite. This time, the term is used more humor-
ously to compare the many special implementations and refinements
to TCP.

If you received a printed copy of this journal in the mail, you should
also have received a subscription activation e-mail with information
about how to update and renew your subscription. If you didn’t
receive such a message, it may be because we do not have your correct
e-mail address on file. To update and renew your subscription, just
send a message to ipj@protocoljournal.org and include your
subscription ID. Your subscription ID and expiration date are printed
on the back of your journal.

Let me once again remind you that IPJ relies on the support of
numerous individuals and organizations. If you or your company
would like to sponsor IPJ, please contact us for further details. Our
website at protocoljournal.org contains all back issues, sub-
scription information, a list of current sponsors, and much more.

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

http://www.cisco.com/ipj
mailto:ipj%40protocoljournal.org?subject=
protocoljournal.org
mailto:ole%40protocoljournal.org%20?subject=

The Internet Protocol Journal
2

IP Multi-Adressing and Multipath TCP
by Geoff Huston, APNIC

T he Transmission Control Protocol (TCP) is a core protocol of
the Internet networking protocol suite. This protocol trans-
forms the underlying unreliable datagram delivery service

provided by the Internet Protocol (IP) into a reliable data stream
protocol. For me this protocol was the single greatest transformative
moment in the evolution of computer networks.

Prior to TCP, computer network protocols assumed that computers
wanted a lossless reliable service from the network, and worked hard
to provide it. The Digital Data Communications Message Protocol
(DDCMP) in Digital Equipment Corporation’s DECnet was a loss-
less data link control protocol. X.25 in the telecommunications
world provided reliable stream services to the attached computers.
Indeed, I recall that Ethernet was criticized when it was introduced
to the world because of its lack of a reliable acknowledgement
mechanism. TCP changed all of that. TCP pushed all of the critical
functionality supporting reliable data transmission right out of the
network and into the shared state of the computers at each end of the
TCP conversation. TCP embodies the End-to-End Principle of the
Internet architecture, where there is no benefit in replicating within
the network functionality that can be provided by the end points
of a conversation. What TCP required of the network was a far
simpler service where packets were allowed to be delivered out of
order, but packets could be dropped and TCP would detect and
repair the problem and deliver to the far-end application precisely the
same bit stream that was passed into the TCP socket in the first place.

The TCP protocol is now some 40 years old, but that doesn’t mean
that it has been frozen over all these years.

TCP is not only a reliable data stream protocol, but also a protocol
that uses Adaptive Rate Control. TCP can operate in a mode that
allows the protocol to push as much data through the network as it
can. A common mode of operation is for an individual TCP session
to constantly probe into the network to see what the highest sustain-
able data rate is, interpreting packet loss as the signal to drop the
sending rate and resume the probing. This aspect of TCP has been
a constant field of study, and much work has been done in the area
of flow control. We now have many variants of TCP that attempt to
optimize the flow rates across various forms of networks.

Other work has looked at the TCP data acknowledgement process,
attempting to improve the efficiency of the algorithm under a broad
diversity of conditions. Selective Acknowledgments (SACK) allowed
a receiver to send back more information to the sender in response to
missing data. Forward Acknowledgment (FACK) addresses data-loss
issues during TCP Slow Start.

The Internet Protocol Journal
3

One approach to trying to improve the relative outcome of a data
transfer, as compared to other simultaneously open TCP sessions,
is to split the data into multiple parts and send each part in its own
TCP session. This splitting effectively opens up numerous parallel
TCP sessions. A variant of TCP, MulTCP, emulates the behavior of
multiple parallel TCP sessions in a single TCP session. These behav-
iors assume the same endpoints for the parallel TCP sessions and
assume the same end-to-end path through the network. An evolution
of TCP that uses multiple parallel sessions but tries to spread these
sessions across multiple paths through the network is Multipath TCP
(MPTCP).

Multipath TCP had a brief moment of prominence when it was
revealed that Apple’s release of iOS 7 contained an implementation
of Multipath TCP for the company’s Siri application, but it has the
potential to play a bigger role in the mobile Internet. In this article,
I will explore this TCP option in a little more detail, and see how it
works and how it may prove to be useful in today’s mobile networks.

Multi-Addressing in IP
First we need to return to one of the basic concepts of networking,
that of addressing and addresses. Addresses in the Internet Protocol
were subtly different from many other computer communications
protocols that were commonly used in the 1970s and 1980s. While
many other protocols used the communications protocol-level
address as the address of the host computer, the Internet Protocol
was careful to associate an IP address with the interface to a network.
This distinction was a relatively unimportant one in most cases
because computers usually had only a single network attachment
interface. But it was a critical distinction when the computer had
two or more interfaces to two or more networks. An IP host with
two network interfaces has two IP addresses—one for each interface.
In IP it is the interface between the device and the network that is
the addressed endpoint in a communication. An IP host accepts
an IP packet as being addressed to itself if the IP address in the
packet matches the IP addresses of the network interface that received
the packet, and when sending a packet, the source address in the
outgoing packet is the IP address of the network interface that was
used to pass the packet from the host into the network.

As simple as this model of network addressing may be, it does pres-
ent some operational problems. One implication of this form of
addressing is that when a host has multiple interfaces, the applica-
tion-level conversations using TCP are “sticky.” If, for example, a
TCP session was opened on one network interface, the network stack
in the host cannot quietly migrate this active session to another inter-
face while maintaining the common session state. An attempt by one
“end” of a TCP conversation to change the IP address for an active
session would not normally be recognized at the other end of the
conversation as being part of the original session. So having multiple
interfaces and multiple addresses does not create additional resiliency
of TCP connections.

The Internet Protocol Journal
4

The simplicity of giving each network interface a unique IP address
does not suit every possible use case, and it was not all that long
before the concept of secondary addresses came into use. The use of
secondary addresses was a way of using multiple addresses to refer to
a host by allowing a network interface to be configured with multiple
IP addresses. In this scenario, an interface receives packets addressed
to any of the IP addresses associated with the interface. Outgoing
packet handling allows the transport layer to specify the source IP
address, and this action overrides the default action of using the
primary address of the interface on outgoing packets. Secondary
addresses have their uses, particularly when you are trying to achieve
the appearance of multiple application-level “personas” on a single
common platform, but in IPv4 they were perhaps more of a special-
ized solution to a particular family of requirements, rather than a
commonly used approach. Applications using TCP were still “sticky”
with IP addresses that were used in the initial TCP handshake and
could not switch the session between secondary IP addresses on the
same interface.

IPv6 addressing is somewhat different. The protocol allows from the
outset for an individual interface to be assigned multiple IPv6 uni-
cast addresses without the notion of “primary” and “secondary”
addresses. The IPv6 protocol introduces the concept of an address
scope, so an address may be assuredly unique in the context of the
local link-layer network, or it may have a global scope, for example.
Privacy considerations have also introduced the concept of perma-
nent and temporary addresses, and the efforts to support a certain
form of mobility have introduced the concepts of home addresses
and care-of addresses.

However, to some extent these IPv6 changes are cosmetic modifica-
tions to the original IPv4 address model. If an IPv6 host has multiple
interfaces, each of these interfaces has its own set of IPv6 addresses,
and when a TCP session is started using one address pair TCP does
not admit the ability to shift to a different address pair in the life of
the TCP session. A TCP conversation that started over one network
interface is stuck with that network interface for the life of the con-
versation, whether it’s IPv4 or IPv6.

The Internet has changed significantly with the introduction of the
mobile Internet, and the topic of multi-addresses is central to many
of the problems with mobility. Mobile devices are adorned with
many IP addresses. The cellular radio interface has its collection of IP
addresses. Most of these “smart” devices also have a WiFi interface
that also has its set of IPv4 and possibly IPv6 addresses. And there
may be a Bluetooth network interface with IP addresses, and perhaps
some USB network interface as well. When active, each of these net-
work interfaces requires its own local IP address. We now are in an
Internet where devices with multiple active interfaces and multiple
usable IP addresses are relatively commonplace. But how can we use
these multiple addresses?

MPTCP continued

The Internet Protocol Journal
5

For many scenarios there is little value in being able to use multi-
ple addresses. The conventional behavior is where each new session
is directed to a particular interface, and the session is given an out-
bound address as determined by local policies. However, when we
start to consider applications in which the binding of location and
identity is more fluid, network connections are transient, and the cost
and capacity of connections differ (as is often the case in today’s
mobile cellular radio services and in WiFi roaming services), then
having a session that has a certain amount of agility to switch across
networks can be a significant factor.

If individual end-to-end sessions could use multiple addresses, and
by inference could use multiple interfaces, then an application could
perform a seamless handoff between cellular data and WiFi, or even
use both at the same time. Given that the TCP interface to IPv4 and
IPv6 is identical, it is even quite feasible to contemplate a seamless
handoff between the two IP protocols. The decision as to which car-
riage service to use at any time would no longer be a decision of the
mobile carrier or that of the WiFi carrier, or that of the device, or
that of its host operating system. If applications could use multiple
addresses, multiple protocols, and multiple interfaces, then the deci-
sion could be left to the application itself to determine how best to
meet its needs as connections options become available or as they
shut down. At the same time as the debate between traditional mobile
operators in the licensed spectrum space and the WiFi operators in
the unlicensed spectrum space heats up over access to the unlicensed
spectrum, the very nature of how devices and applications implement
“WiFi handoff” is changing. Who is in control of this handoff func-
tion is changing as a result. Multi-Addressing and Multipath TCP is
an interesting response to this situation; it allows individual applica-
tions to determine how they want to operate in a multi-connected
environment.

SHIM6
One of the first attempts to use multiple addresses in IP was the Site
Multihoming by IPv6 Intermediation (SHIM6) effort in IPv6.

In this case the motivation was end-site resilience in an environment
of multiple external connections, and the constraint was to avoid
the use of an independently routed IPv6 address prefix for the site.
So SHIM6 was an effort to support site multi-homing without rout-
ing fragmentation. To understand the SHIM6 model, we need to
start with an end site that does not have its own provider-indepen-
dent IPv6 address prefix, yet is connected to two or more upstream
transit providers that each provide addresses to the end site. In IPv4
it’s common to see this scenario approached with Network Address
Translators (NATs). In IPv4 the site is internally addressed using a
private address prefix, and the interface to each upstream provider is
provisioned with a NAT. Outbound packets have their source address
rewritten to use an address that is part of the provider’s prefix as it
transits the NAT.

The Internet Protocol Journal
6

Which provider is used is a case of internal routing policies toward
each of the NATs. Although it is possible to configure a similar setup
in IPv6 using an IPv6 Unique Local Address (ULA) prefix as the
internal address and NAT IPv6-to-IPv6 devices connected to each
upstream service provider, one of the concepts behind IPv6 and its
massive increase in address space was the elimination of NATs. So
how can an IPv6 end site be homed into multiple upstream service
providers without needing to advertise a more specific routing entry
in the interdomain routing tables and avoiding the use of any form of
network address translation?

The conventional IPv6 architecture has the site receiving an end-
site prefix delegation from each of its upstream service providers,
and the interface routers each advertising its end-site prefix into
the site. Hosts within the site see both router advertisements, and
they configure their interface with multiple IPv6 addresses, one for
each site prefix. Presumably, the end site chooses to multi-home in
order to benefit from the additional resiliency that such a configu-
ration should offer. When the link to one provider is down, there is
a good chance that the other link will remain up, particularly if the
site has been careful to engineer the multi-homed configuration using
discrete components at every level. It would be even better if even
when the link to the upstream provider is up and that provider can’t
reach a specific destination, another of the site’s upstream provid-
ers could continue to support all active end-to-end conversations
without interruption, in exactly the same manner as when this func-
tionality is implemented in the routing system.

What SHIM6 attempted was a host-based approach to use the addi-
tional local IPv6 addresses in the host as indicators of potential
backup paths to a destination. If a communication with a remote
counterpart were to fail (that is, the flow of incoming packets from
the remote host stopped), then the IP-level shim in the local host
would switch to use a different source/destination address pair. To
prevent the upper-level transport protocol from being fatally con-
fused by these address changes in the middle of one or more active
sessions, the local SHIM module also included a network address
translation function. This function helped ensure that although the
address pair on the wire may have changed, the address pair pre-
sented to the upper layer by the shim would remain constant, and the
path change would not be directly visible at the transport layer of the
protocol stack.

This approach essentially folds the NAT function into the host IP
protocol stack. In terms of design it avoided altering either TCP or
User Datagram Protocol (UDP), and endeavoured to preserve the
IP addresses used by active transport sessions. What this approach
implied was that if you wanted to change the routing path but not
change the IP addresses used by transport, then address translation
was an inevitable consequence.

MPTCP continued

The Internet Protocol Journal
7

Network-based NATs was the response in IPv4, and to avoid this
problem in IPv6 the SHIM6 effort attempted to push the NAT func-
tionality further “back,” implementing a NAT in each host.

SHIM6 was an approach that was less than entirely satisfactory.

Network operators expressed deep distrust of pushing decision-
making functionality back into individual hosts (a distrust that
network operators continue to hold when the same issue arises with
WiFi handoff). The network operators wanted to control the connec-
tivity structure for the hosts in their network, in precisely the same
manner as the routing system provided network-level control over
traffic flows. So although these network operators had some sympa-
thy with the SHIM6 objective of avoiding further bloat in the routing
table, which reduced the “independence” of attached end sites by
using IPv6 address prefixes drawn from the upstream address block,
they were unsupportive of an approach that pushed connectivity
choice and control back to individual end host systems.

Outside of this issue of control over the end host was another multi-
homing problem that SHIM6 did not address. Although the provision
of backup paths in the case of failure of the primary path is useful,
what is even more useful is the ability to use the backup paths in
some form of load-sharing configuration. However, at this point the
SHIM6 approach runs into problems. Because SHIM6 operates at
the IP layer, it is not directly aware of packet sequencing. When a
SHIM unit at one end of a conversation splays a sequence of pack-
ets across multiple paths, the corresponding SHIM unit at the remote
end passes the packets into the upper transport layer in the order
of their arrival, not in the original order. This out-of-order delivery
can be a significant problem for TCP if SHIM6 leaves multiple paths
open. The best SHIM6 can provide is a primary/backup model for
individual sessions, where at any time all data traffic for a session is
passed along the primary path.

Inexorably, we are drawn to the conclusion that the most effective
place to insert functionality that allows a data flow to use multiple
potential paths across the network is in the transport layer itself, and
ne weed to jack ourselves further up the protocol stack from the IP
level approach of SHIM6 and re-examine the space from the perspec-
tive of TCP.

Multipath TCP
The approach of incorporating multiple IP addresses in the trans-
port protocol is comparable to the efforts of SHIM6 one level further
down in the protocol stack, in so far as this approach is an end-to-
end mechanism with a shared multiplex state maintained in the two
end hosts, and no state whatsoever in the network.

The Internet Protocol Journal
8

The basic mechanisms for MPTCP are also similar to that of SHIM6,
with an initial capability exchange to confirm that both parties sup-
port the mechanism, allowing the parties to then open up additional
paths, or channels. But at this point the functionality diverges. In
SHIM6 these alternate paths are provisioned as backup paths if the
primary path fails, whereas in the case of MPTCP these additional
paths can be used immediately to spread the load of the communica-
tion across these paths, if the application so desires.

One of the most critical assumptions of MPTCP was drawn from
SHIM6, in that the existence of multiple addresses in a host is
sufficient to indicate the existence of multiple diverse paths within
the network. Whether or not this assumption is, in fact, the case is
perhaps not that critical, in that even in the case where the addresses
are on the same path from end to end, the result is roughly equivalent
to running multiple parallel sessions of TCP.

The basic approach to MPTCP is the division of the single outbound
flow of the application into multiple subflows, each operating its own
end-to-end TCP session, and the rejoining of multiple input subflows
into a single flow to present to the remote counterpart application.
This approach is shown in Figure 1.

Figure 1: Comparison of Standard
TCP and MPTCP Protocol Stacks

APP

TCP

IP

APP

TCP

IP

APP

TCP
upper layer

APP

TCP
upper layer

IP

T
C
P

S
u
b

F
l
o
w

T
C
P

S
u
b

F
l
o
w

T
C
P

S
u
b

F
l
o
w

IP

T
C
P

S
u
b

F
l
o
w

T
C
P

S
u
b

F
l
o
w

T
C
P

S
u
b

F
l
o
w

MPTCP MPTCP

MPTCP continued

The Internet Protocol Journal
9

This solution is essentially a “shim” inserted in the TCP module. To
the upper-level application, MPTCP can operate in a manner that
is entirely consistent with TCP, so that the opening up of subflows
and the manner in which data is assigned to particular subflows is
intentionally opaque to the upper-level application. The envisaged
Application Programming Interface (API) allows the application to
add and remove addresses from the local multipath pool, but the
remainder of the operation of the MPTCP shim is not envisaged to be
managed directly by the application. MPTCP also leaves the lower-
level components of TCP essentially untouched, in so far as each
MPCTP subflow is a conventional TCP flow. On the data sender’s
side, the MPTCP shim essentially splits the received stream from the
application into blocks and directs individual blocks into separate
TCP subflows. On the receiver’s side, the MPTCP shim assembles
the blocks from each TCP subflow and reassembles the original data
stream to pass to the local application.

Operation of MPTCP
TCP has the ability to include 40 bytes of TCP options in the TCP
header, indicated by the Data Offset value. If the Data Offset value
is greater than 5, then the space between the final 32-bit word of the
TCP header (Checksum and Urgent Pointer) and the first octet of the
data can be used for options. MPTCP uses the Option Kind value of
30 to denote MPTCP options. All MPTCP signalling is contained in
this TCP header options field.

The MPTCP operation starts when the initiating host passes a
MP_CAPABLE capability message in the MPTCP options field to the
remote host as part of the initial TCP SYN message when opening the
TCP session. The SYN+ACK response contains a MP_CAPABLE flag
in its MPTCP options field of the SYN+ACK response if the other
end is also MPTCP-capable. The combined TCP and MPTCP hand-
shake concludes with the ACK and MP_CAPABLE flag, confirming that
both ends now have each other’s MPTCP session data. This capabil-
ity negotiation exchanges 64-bit keys for the session, and each party
generates a 32-bit hash of the session keys, which are subsequently
used as a shared secret between the two hosts for this particular
session to identify subsequent subjoin connection attempts.

Further TCP subflows can be added to the MPTCP session by a con-
ventional TCP SYN exchange with the MPTCP option included. In
this case the exchange contains the MP_JOIN values in the MPTCP
options field. The values in the MP_JOIN exchange include the hash
of the original receiver’s session key and the token value from the ini-
tial session, so that both ends can associate the new TCP session with
the existing session, as well as a random value intended to prevent
replay attacks.

The Internet Protocol Journal
10

The MP_JOIN option also includes the sender’s address index value to
allow both ends of the conversation to reference a particular address
even when NATs on the path perform address transforms. MPTCP
allows these MP_JOINs to be established on any port number, and
by either end of the connection. Therefore, although a MPTCP web
session may start using a port 80 service on the server, subsequent
subflows may be established on any port pair, and it is not necessary
for the server to have a LISTEN open on the new port. The MPTCP
session token allows the 5-tuple of the new subflow (protocol num-
ber, source and destination addresses, and source and destination port
numbers) to be associated with the originally established MPTCP
flow. Two hosts can also inform each other of new local addresses
without opening a new session by sending ADD_ADDR messages, and
remove them with the complementary REMOVE_ADDR message.

Individual subflows use conventional TCP signalling. However,
MPTCP adds a Data Sequence Signal (DSS) to the connection that
describes the overall state of the data flow across the aggregate of all
of the TCP subflows that are part of this MPTCP session. The sender
sequence numbers include the overall data sequence number and the
subflow sequence number that is used for the mapping of this data
segment into a particular subflow. The DSS Data ACK sequence num-
ber is the aggregate acknowledgement of the highest in-order data
that the receiver receives. MPTCP does not use SACK, because this
acknowledgement is left to the individual subflows.

To prevent data loss that causes blockage on an individual subflow,
a sender can retransmit data on additional subflows. Each subflow
uses a conventional TCP sequencing algorithm, so an unreliable con-
nection will cause that subflow to stall. In this case MPTCP can use
a different subflow to resend the data, and if the stalled condition is
persistent it can reset the stalled subflow with a TCP RST within the
context of the subflow.

Individual subflows are stopped by a conventional TCP exchange of
FIN messages, or through the TCP RST message. The shutting down
of the MPTCP session is indicated by a data FIN message that is part
of the data sequencing signalling within the MPTCP option space.

Congestion control appears still to be an open issue for MPTCP.
An experimental approach is to couple the congestion windows of
each of the subflows, increasing the sum of the total window sizes
at a linear rate per Round-Trip Time (RTT) interval, and applying
the greatest increase to the subflows with the largest existing win-
dow. In this way the aggregate flow is no worse than a single TCP
session on the best available path, and the individual subflows take
up a fair share of each of the paths they use. Other approaches are
being considered that may reduce the level of coupling of the indi-
vidual subflows.

MPTCP continued

The Internet Protocol Journal
11

MPTCP and Middleware
Today’s Internet is not the Internet of old. It is replete with vari-
ous forms of middleware that include NATs, load balancers, traffic
shapers, proxies, filters, and firewalls. The implication of this reality
is that any deviation from the most basic forms of the use of IP will
run into various issues with various forms of middleware.

For MPTCP, the most obvious problem is that of middleware that
strips out unknown TCP options.

However, more insidious issues come with the ADD_ADDR mes-
sages and NATs on the path. Sending IP addresses within the data
payload of a NATed connection is always a failure-prone option,
and MPTCP is no exception here. MPTCP contains no inbuilt NAT
detection functions, and there is no way to determine the direction
of the NAT. A host can communicate to the remote end its own IP
address or additional available addresses, but if there is a NAT trans-
lating the local-host outbound connections, then the actual address
will be unavailable for use until the host actually starts a TCP session
using this local address as the source.

A simple approach that is effective where NATs are in place is to
leave the role of initiation of new subflows to the host that started
the connection in the first place. In a client–server environment this
solution would imply that the role of setting up new subflows is best
left to the client in such cases. However, no such constraints exist
when there are no NATs, and in that case either end can initiate
new subflows, and the ADD_ADDR messages can keep the other end
informed about potential new parallel paths between the two hosts.
Logically it makes little sense for MPTCP itself to define a NAT-
sensing probe behavior, but it makes a lot of sense for the application
using MPTCP to undertake such a test.

The Implications of MPTCP
MPTCP admits considerable flexibility in the way an application can
operate when many connection options are available.

All TCP subflows carry the MPTCP option, so that the MPTCP
shared state is shared across all active TCP subflows. No single sub-
flow is the “master” in the MCTCP sense. Subflows can be created
when interfaces come up, and removed when they go down. Subflows
are also IP protocol agnostic: they can use a collection of IPv4 and
IPv6 connections simultaneously. Subflows can be used to load-share
across multiple network paths, or operate in a primary/backup con-
figuration depending on the application and the flexibility offered in
the API in particular implementations of MPTCP.

The Internet Protocol Journal
12

When applied to mobile devices, this behavior can lead to unexpected
results. I always assumed that my device was incapable of “active
handoff.” Any connections that were initiated across the cellular
radio interface had to stay on that interface, and any connections
established over the WiFi interface would also stay on that WiFi net-
work. I always understood that active sessions could not be handed
off to a different network. Although it was never an explicitly docu-
mented feature (or if it was I have never seen it), I had also assumed
that when my mobile device was in an area with an active WiFi
connection, then the WiFi would take precedence over its fourth-
generation (4G) connection for all new connections. This assumption
matched the factor of typical data tariffs, where the marginal cost
of data over 4G is typically somewhere between 10 and 1,000 times
higher than the marginal cost of the same data volume over the WiFi
connection. But if applications use MPTCP instead of TCP, then how
will they balance their network use across the various networks? The
way MPTCP is defined it appears that applications simply open sub-
flows on all available local interfaces, and then the fastest network,
rather than the cheapest, will take on the greatest volume of traffic.

But, as usual, it can always get more complicated. What if the WiFi
network is a corporate service, with NATs, split-horizon Virtual
Private Networks (VPNs) and various secure servers? If my device
starts to perform MPTCP in such contexts, then to what extent are
the properties of my WiFi connection preserved in the cellular data
connection? Have I exposed new vulnerabilities by doing this? How
can a virtual interface, such as a VPN, inform an MPTCP-aware
application that other interfaces are not in the same security domain
as the VPN interface?

However, it does appear that MPTCP has a role to play in the area
of seamless WiFi handoff. With MPTCP is it possible for a mobile
handset to enter a WiFi-serviced area and include a WiFi subflow
into the existing data transfer without stopping and restarting the
data flow? The application may even shut down the cellular radio
subflow when the WiFi subflow is active. This functionality is under
the control of the application using MPTCP, rather than being under
the control of the host operating system of the carrier.

Going Up the Stack
Of course it does not stop at the transport layer and with the use of
MPTCP. Customized applications can perform handoffs themselves.

For example, the “mosh” application is an example of a serial form
of address agility, where the session state is a shared secret, and the
server will accept a reconnection from any client’s IP address, as long
as the client can demonstrate its knowledge of the shared secret.

MPTCP continued

The Internet Protocol Journal
13

Extending the TCP data-transfer model to enlist multiple active TCP
sessions at the application level in a load-balancing configuration is
also possible, in a manner not all that different from MPTCP.

Of course one could take this further. Rather than use multiple TCP
sessions between the same two endpoints, you could instead share
the data from the same server across multiple endpoints, and use
multiple TCP sessions to these multiple servers. At this point you
have something that looks remarkably like the peer-to-peer data-
distribution architecture.

Another approach is to format the data stream into “messages” and
permit multiple messages to be sent across diverse paths between
the two communicating systems. This approach, the Stream Control
Transmission Protocol (SCTP), is similar to MPTCP in that it can
take advantage of multiple addresses to support multiple paths. It
combines the message transaction qualities of UDP with the reliable
in-sequenced transport services of TCP. The problem of course in
today’s network is that because it is neither TCP nor UDP, many
forms of middleware, including NATs, are often hostile to SCTP and
they drop SCTP packets. One additional cost of the escalation of
middleware in today’s Internet. These days innovation in protocol
models is limited by the rather narrow rules applied by network mid-
dleware, and the approximate general rule in today’s Internet is that
it’s TCP, UDP, or middleware fodder!

It has been observed numerous times that the abstraction of a
network protocol stack is somewhat arbitrary, and it’s possible
to address exactly the same set of requirements at many different
levels in the reference stack. In the work on multipath support
in the Internet, we’ve seen approaches that exploit parallel data
streams at the data link layer, at the IP layer, within routing, in the
transport layer, and in the application layer. Each has its respective
strengths and weaknesses. But what worries me is what happens if
you inadvertently encounter a situation where you have all of these
approaches active at the same time? Is the outcome one of amazing
efficiency, or paralyzing complexity?

For Further Reading
 [1] Erik Nordmark and Marcelo Bagnulo, “Shim6: Level 3 Multi-

homing Shim Protocol for IPv6,” RFC 5533, June 2009.

 [2] Janardhan Iyengar, Costin Raiciu, Sebastien Barre, Mark
Handley, and Alan Ford, “Architectural Guidelines for Multi-
path TCP Development,” RFC 6182, March 2011.

 [3] Mark Handley, Alan Ford, Costin Raiciu, and Olivier
Bonaventure, “TCP Extensions for Multipath Operation with
Multiple Addresses,” RFC 6824, January 2013.

The Internet Protocol Journal
14

 [4] Bit Torrent:
https://wiki.theory.org/BitTorrentSpecification

 [5] Geoff Huston, “Anatomy: A Look inside Network Address
Translators,” The Internet Protocol Journal, Volume 7, No. 3,
September 2004.

 [6] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,” RFC 2018, October
1996.

 [7] M. Mathis and J. Mahdavi, “Forward Acknowledgment:
Refining TCP Congestion Control,” Proceedings of SIGCOMM,
August 1996.

 [8] Randall Stewart, “Stream Control Transmission Protocol,”
RFC 4960, September 2007.

 [9] Ethan Blanton and Mark Allman, “TCP Congestion Control,”
RFC 5681, September 2009.

 [10] Olivier Bonaventure, “Apple seems to also believe in Multipath
TCP,” Blog post,

 http://perso.uclouvain.be/olivier.bonaventure/blog/
html/2013/09/18/mptcp.html

 [11] Jonathan B. Postel, “Transmission Control Protocol,” RFC
793, September 1981.

 [12] Geoff Huston, “TCP Performance,” The Internet Protocol
Journal, Volume 3, No. 2, June 2000.

 [13] Geoff Huston, “The Future for TCP,” The Internet Protocol
Journal, Volume 3, No. 3, September 2000.

 [14] Wesley M. Eddy, “Defenses Against TCP SYN Flooding
Attacks,” The Internet Protocol Journal, Volume 9, No. 4,
December 2006.

GEOFF HUSTON, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books,
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. At
various times Geoff has worked as an Internet researcher, an ISP systems architect,
and a network operator. E-mail: gih@apnic.net

MPTCP continued

https://wiki.theory.org/BitTorrentSpecification
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html
http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
http://perso.uclouvain.be/olivier.bonaventure/blog/html/2013/09/18/mptcp.html
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
http://www.cisco.com/web/about/ac123/ac147/ac174/ac196/about_cisco_ipj_archive_article09186a00800c8417.html
http://www.cisco.com/web/about/ac123/ac147/ac174/ac195/about_cisco_ipj_archive_article09186a00800c83f8.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
mailto:gih%40apnic.net?subject=

The Internet Protocol Journal
15

TCP Protocol Wars
by Geoff Huston, APNIC

T here are two end-to-end transport protocols in common use
in today’s Internet: the User Datagram Protocol (UDP) and
the Transmission Control Protocol (TCP).

UDP is an abstraction of the basic IP datagram, in that UDP is an
unreliable medium. Packets sent using UDP may or may not go to
their intended destination. UDP packets may be reordered, dupli-
cated, or lost. UDP has no flow control or throttling. The packet
quantization in UDP is explicit: if the sender splits data into two UDP
packets, then the receiver will collect the data using two distinct read
operations.

TCP is a reliable end-to-end flow-controlled stream protocol. A
stream of data passed into a TCP socket at one end will be read as
a stream of data at the other end. The packet quantization is hidden
from the application, as are the mechanics of flow control, loss detec-
tion, and retransmission and session establishment and teardown.
TCP will not preserve any inherent timing within the data stream,
but will preserve the integrity of the stream.

Critically, the Internet assumes that most of the network resources
are devoted to passing TCP traffic, and it also assumes that the
flow-control algorithms used by these TCP sessions all behave in
approximately similar ways. If the switching and transmission
resources of the network are seen as a common resource, then the
assumption about the uniform behavior of TCP sessions implies that
these end-to-end transport sessions will behave similarly under con-
tention. The result is that, to a reasonable level of approximation, a
set of concurrent TCP sessions will self-equilibrate to give each TCP
session an equal share of the common resource. In other words, the
network itself does not have to impose “fairness” on the TCP flows
that pass across it—as long as all the flows are controlled by a uni-
form flow-control algorithm, the flows will interact with each other
in a manner that is likely to allocate an equal proportion of the net-
work resources to each active TCP flow. At least that’s the theory.

This theory raises numerous questions of whether these assumptions
are true in today’s Internet and what may be changing with these
assumptions.

Other Protocols?
Is it still a choice between UDP and TCP? Despite many technical
efforts to specify new end-to-end transport protocols, there is little
chance that any new protocol will gain acceptance in today’s Internet.
The network contains large numbers of intercepting “middleware,”
and these units function as security firewalls by using rules that are
very limited in the protocols that they admit.

The Internet Protocol Journal
16

The most common filters in middleware are configured to admit only
IP protocols 6 and 17 (TCP and UDP, respectively), and drop all
others. This setup has implied that more recent end-to-end trans-
port protocols, such as the Stream Control Transmission Protocol
(SCTP)[10] or the Datagram Congestion Control Protocol (DCCP)[11],
for example, have very limited applicability in the public Internet,
because they can be used only in environments where there is no such
intercepting middleware.

TCP or UDP?
In this world where choice is limited to TCP or UDP, the conventional
view was that the bulk of the traffic was carried in TCP, whereas
UDP was used in limited contexts for Domain Name System (DNS)
name resolution, running time, and network management. This view
raises the question as to whether TCP still carries the bulk of the
Internet traffic load.

It is not necessarily true that TCP still carries the bulk of the Internet
traffic load, although reliable data sources that provide visibility into
the actual traffic profile seen on end user-facing networks is not eas-
ily forthcoming. A recent study of traffic profiles between 2002 and
2009 by the Center for Applied Internet Data Analysis (CAIDA)[1]
points to a UDP/TCP ratio value of 0.11 when looking at the vol-
ume of data being transported by the two protocols. In other words,
some 90% of the traffic was carried inside TCP sessions and 10%
inside UDP sessions. For UDP this value is considerably higher than
would be conventionally expected from the combination of only
DNS and Network Time Protocol (NTP) payloads in UDP. The study
points out: “A port-based analysis suggests that the recent increase
in UDP flows on the traces analyzed stems mainly from Peer-to-Peer
(P2P) applications using UDP for their overlay signalling traffic,” a
result that corresponds to reports of the use of the Low Extra Delay
Background Transport (LEDBAT) protocol for BitTorrent[2]. More
recently, video streaming applications have also turned to TCP, using
local buffer management in the playback device to overcome TCP-
induced signal jitter.

It is reasonable to assume that the overall majority of the Internet
traffic load is carried in TCP, and therefore the behavior of the TCP
flow-control algorithm is a matter of interest.

TCP Flow Control – TCP Reno
TCP does not have a single flow-control algorithm. Although the
common TCP protocol specification defines how to establish and
shut down a session, and defines the way in which received data is
acknowledged back to the sender, the core protocol specification
does not specify how the two ends negotiate the speed at which data
is passed between them. This negotiation has been left to the various
implementations of the TCP flow-control algorithm.

“Conventional” flow control in TCP is typified by the behavior of the
TCP Reno algorithm (Figure 1).

TCP Protocol Wars continued

The Internet Protocol Journal
17

Figure 1: Idealised TCP Reno Flow Control

160%

140%

120%

100%

80%

60%

40%

20%

0%

Slow Start
Rate Doubles
Each RTT
Interval

Congestion Avoidance
Rate Increases by Fixed
Amount Each RTT Interval

Queue
Saturation Point

Queue
Starts to Fill

Time

Duplicate ACKs Received –– Halve the Congestion Window to Recover
Re

la
tiv

e
Th

ro
ug

hp
ut

 /
RT

T

There are two distinct phases of behavior: the Slow Start phase,
where the sending rate is doubled every Round-Trip Time (RTT)
interval, and a Congestion Avoidance phase, where the sending rate
is increased by a fixed amount—one Message Segment Size (MSS)—
in each RTT interval. When the sender is notified of packet loss—by
receiving a duplicate Acknowledgment (ACK) message from the
receiver—the actions of the sender vary according to its current
phase. In Slow Start phase a duplicate ACK will shift the sender
to Congestion Avoidance mode. In Congestion Avoidance mode a
duplicate ACK will cause the sender to halve its sending rate and
continue in this mode. Three duplicate ACKs in succession will cause
the session to restart from scratch in Slow Start mode, because three
duplicate ACKs signals a higher rate of congestion which means
that the two ends of the TCP stream have lost their shared flow
state assumption.

In steady state the TCP Reno flow-control algorithm increases the
flow rate by a constant amount each round-trip time interval, and
when a packet is dropped, because of buffer overflow in a switch,
the algorithm halves the flow rate. The result is an Additive Increase
Multiplicative Decrease (AIMD) algorithm, which tends to place
high levels of pressure on the buffers in the network while there is
still available buffer space, and react dramatically when the buffers
eventually overfill and reach the packet drop point. Crudely, this
process is a “boom and bust” form of feedback control.

The Internet Protocol Journal
18

Better than Reno
There have been strong motivations by application families to
break out of this form of TCP flow-control behavior. One moti-
vation is to use a more even packet flow across the network,
and remove some of the “jerkiness” inherent in TCP Reno.
There is also the motivation that a more sensitive flow-control
application could achieve a superior outcome compared to TCP
Reno. In other words, a different TCP flow-control algorithm could
achieve better than its “fair share” when competing against a set of
concurrent TCP Reno flows.

The first of these motivations is a simple change. In an attempt to
double the pressure on other concurrent TCP sessions, the AIMD
algorithm can be adjusted by increasing the sending speed a larger
constant amount, and decreasing it by less following packet loss
(MulTCP uses this model). For example, if the speed was increased
by 2 MSS units each RTT interval and the sending rate was reduced
by one-quarter rather than one-half upon receipt of a duplicate ACK,
then the resultant behavior would, in an approximate sense, behave
like two concurrent TCP sessions, and in a fair sharing scenario this
form of flow control would attempt to secure double the network
resources of an equivalent TCP Reno session.

Another variant of this approach is Highspeed TCP which increases
its frequency of probing into potentially claimable capacity by
increasing its sending rate by a larger volume while keeping its reduc-
tion rate at a constant value. This protocol probes for the packet-loss
onset at a far higher frequency than either TCP Reno or MulTCP,
and is capable of accelerating to much higher flow speeds in a much
shorter time interval.

Binary Increase Congestion Control (BIC) and its variant CUBIC use
a nonlinear increase function rather than a constant rate increase
function (Figure 2). Instead of increasing the speed by a fixed amount
each RTT in Congestion Avoidance mode, BIC remembers the
sending rate at the onset of packet drop, and each RTT interval
increases its speed by one-half of the difference between the current
sending rate and the assumed bottleneck rate.

BIC quickly drives the session towards the bottleneck capacity, and
then probes more cautiously when the sending speed is close to the
bottleneck capacity. Again, compared to a Reno flow session, CUBIC
should produce a superior outcome.

Other flow-control algorithms move away from using packet loss as
the control indication and tend to oscillate more frequently around
the point of the onset of queuing in the routers in the network path.
This form of feedback control is sensitive to the relative time differ-
ences between sent packets and received ACKs.

TCP Protocol Wars continued

The Internet Protocol Journal
19

An example is “packet-pair” flow-controlled TCP, where the send-
ing rate is increased as long as the time interval between two packets
being sent is equal to the time interval of the received ACKs. If the
ACK interval becomes larger, then this increase is interpreted as
the onset of queuing in the sending path, and the sending rate is
decreased until the ACK timing interval once again equals the send
timing interval.

Figure 2: Idealized TCP BIC Flow Control

160%

140%

120%

100%

80%

60%

40%

20%

0%

Slow Start
Rate Doubles
Each RTT
Interval

Congestion Avoidance
Variable Rate Increase

Queue
Saturation Point

Queue
Starts to Fill

Time

Duplicate ACKs Received –– Halve the Congestion Window to Recover

Re
la

tiv
e

Th
ro

ug
hp

ut
 /

RT
T

Recent Microsoft systems use Compound TCP, which combines TCP
Reno and delay-based flow control. The algorithm attempts to mea-
sure the amount of in-flight data held in queues (higher delay traffic),
and upon packet loss the algorithm reduces its sending rate to below
the onset of growth in queuing.

Apple’s Macintosh systems use New Reno, a variant of the Reno
flow-control algorithm that improves the Reno loss recovery pro-
cedure, but is otherwise the same AIMD control algorithm. Linux
kernels have switched to use CUBIC, a variant of the BIC algorithm
that uses a cubic function rather than an exponential function to gov-
ern window inflation.

Crossing the Beams: TCP implemented in UDP
Other approaches have headed further away from conventional TCP
and change both the server and the client. One way to change both
the server and the client is to avoid the use of the operating sys-
tem-provided implementation of TCP completely, place a TCP-styled
reliable flow-control streaming protocol into the application itself,
and use the UDP interface of the operating system to pass packets to
and from the network.

The Internet Protocol Journal
20

TCP Protocol Wars continued

This approach has been used in the widely deployed BitTorrent
application (LEDBAT), and more recently by Google in its experi-
ments with Quick UDP Internet Connections (QUIC)[8] and SPDY
(pronounced “speedy”).

Google’s QUIC uses a TCP emulation in UDP that has a data encod-
ing that includes Forward Error Correcting Codes (FEC) as a way
of performing a limited amount of repair of the data stream in the
face of packet loss without retransmission. QUIC performs band-
width estimation as a means of rapidly reaching an efficient sending
rate. SPDY further assists QUIC by multiplexing application sessions
within a single end-to-end transport protocol session. This approach
avoids the startup overhead of each TCP session, and leverages the
observation that TCP takes some time to establish the bottleneck
capacity of the network. The use of UDP also avoids intercepting
middleware that performs deep packet inspection on TCP flows and
modifies their advertised window size to perform external modera-
tion on TCP flow rate.

There is, however, one issue with the use of UDP as a substitute for
TCP, and although public reports from Google on this topic have
not been published, it is a source of concern. The problem relates to
the use of UDP through Network Address Translators (NATs)[12] and
the issue of address binding times within the NAT. In TCP a NAT
takes its directions from TCP. When the NAT sees an opening TCP
handshake packet from the “inside,” it creates a temporary address
binding and sends the packet to its intended destination (with the
translated source address of course). The reception of the response
part of the handshake at the NAT causes the NAT to confirm its
binding entry and apply it to subsequent packets in this TCP flow.
The NAT holds state until it sees a closing exchange or a reset signal
that closes the TCP session, or until an idle timer expires. For TCP
the NAT is attempting to hold the binding for as long as the TCP ses-
sion is active. For NATs, UDP is different. Unlike TCP, there is no
flow-status information in UDP. So when the NAT creates a UDP
binding, it has to hold it for a certain amount of time. There is no
clear technical standard here, so implementations vary. Some NATs
use very short timers and release the binding quickly, matching the
expectation of the use of UDP as a simple query/response protocol.
The use of UDP as an ersatz packet-framing protocol for user-level
TCP implementation requires the NAT to hold the UDP address bind-
ing for longer intervals, corresponding to the hidden TCP session.
Some NATs will do so, while others will destroy the binding even
though there are still UDP packets active, thus disturbing the hidden
TCP session.

This example illustrates the level of compromise in today’s environ-
ment between end-to-end protocols and network middleware. TCP
sessions are being modified by active middleware that attempts to
govern the TCP flow rate by active modification of window sizes
within the TCP session, negating some of the efforts of the TCP
session to optimize its flow speed.

The Internet Protocol Journal
21

TCP in UDP passes control of the TCP flow management to the
application, and hides the TCP flow parameters from the network.
However, UDP sessions are susceptible to interruption by NAT
intervention, because some NATs assume that UDP is used only for
micro-sessions, and long-held UDP sessions are some form of anom-
alous behavior that should be filtered by removing the UDP port
binding in the NAT.

The Transport Protocol Ecosystem
The Internet is somewhat unique in so far as there is no intrinsic
network-level functionality that can allocate a certain amount of
network resources to each active flow being carried across the net-
work. The network is not actively “managed.” Network resources
are allocated to traffic flows in a manner similar to fluid-flow equilib-
rium. Each active flow exerts pressure on all other concurrent flows.
The higher the relative imbalance, the more the largest flows are
pressured to reduce their flow rate by the smaller flows. The system
reaches a meta-equilibrium point when all concurrent flows receive
approximately equal amounts of network resource.

The underlying assumption here is that a fair result is achieved if
all the concurrent flows are operating in a similar manner. What is
happening in the network today is a fragmentation of the TCP flow-
control algorithm as operating systems, and even applications, prefer
to use a customized flow-control algorithm that attempts to opti-
mize their position by exerting slightly more pressure on other TCP
sessions, causing them to drop their flow rates in response. These
techniques do not create additional network transmission capacity,
they bias the way in which network capacity is available to individual
traffic flows in their favor. So if a TCP session is able to secure better
than its “fair share” of a laden network, then other sessions are nec-
essarily affected and receive less than their “fair share.”

There is some relationship between these protocol-level efforts and
the Net Neutrality policy debates. The proponents of a Net Neutrality
position argue that the network should be a largely passive entity, and
that the interaction of the various traffic flows produces a fair and
efficient outcome. The network resources will be fully allocated to car-
rying traffic with relatively small levels of retransmission (efficiency),
and the concurrent flows will interact with each other to produce
an outcome where each flow gathers approximately equal network
resource (fair). With the increasing level of diversity in approaches to
packet-flow management, and the options of whether to use the flow-
control services provided by the operating system platform or go the
path of using UDP as the transport protocol and passing the flow-
control algorithm to the application, what is being witnessed is some
amount of escalation in competitive pressure between applications to
secure network resources.

The Internet Protocol Journal
22

For Further Reading
 [0] Geoff Huston, “IP Multi-Addressing and Multipath TCP,” The

Internet Protocol Journal, Volume 18, No. 2, June 2015.

 [1] CAIDA Traffic Analysis,
 http://www.caida.org/research/traffic-analysis/

tcpudpratio/

 [2] http://en.wikipedia.org/wiki/LEDBAT

 [3] Van Jacobson and Mike Karels, “Congestion Avoidance and
Control,” 1988, http://ee.lbl.gov/papers/congavoid.pdf

 [4] W. Richard Stevens, “TCP Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery Algorithms, RFC 2001,
January 1997.

 [5] Ethan Blanton and Mark Allman, “TCP Congestion Control,”
RFC 5681, September 2009.

 [6] Peter Dodcal, “15 Newer TCP Implementations,”

 http://intronetworks.cs.luc.edu/current/html/
newtcps.html

 [7] FAST: https://en.wikipedia.org/wiki/FAST_TCP

 [8] Google’s QUIC:
 https://www.chromium.org/quic
 http://blog.chromium.org/2015/04/a-quic-update-on-

googles-experimental.htm

 [9] IETF activity on TCP flow control: TCP Maintenance and
Minor Extensions (tcpm)

 https://datatracker.ietf.org/wg/tcpm/charter/

 [10] Randall Stewart, “Stream Control Transmission Protocol,”
RFC 4960, September 2007.

 [11] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion
Control Protocol (DCCP),” RFC 4340, March 2006.

 [12] Geoff Huston, “Anatomy: A Look inside Network Address
Translators,” The Internet Protocol Journal, Volume 7, No. 3,
September 2004.

GEOFF HUSTON, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books,
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. At
various times Geoff has worked as an Internet researcher, an ISP systems architect,
and a network operator. E-mail: gih@apnic.net

TCP Protocol Wars continued

http://www.caida.org/research/traffic-analysis/tcpudpratio/
http://www.caida.org/research/traffic-analysis/tcpudpratio/
http://en.wikipedia.org/wiki/LEDBAT
http://ee.lbl.gov/papers/congavoid.pdf
https://tools.ietf.org/html/rfc2001
https://tools.ietf.org/html/rfc5681
http://intronetworks.cs.luc.edu/current/html/newtcps.html
http://intronetworks.cs.luc.edu/current/html/newtcps.html
https://en.wikipedia.org/wiki/FAST_TCP
https://www.chromium.org/quic
http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.htm
http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.htm
https://datatracker.ietf.org/wg/tcpm/charter/
https://tools.ietf.org/html/rfc4960
https://tools.ietf.org/html/rfc4340
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_7-3/anatomy.html
mailto:gih%40apnic.net?subject=

The Internet Protocol Journal
23

Fragments

IAB Statement on the Trade in Security Technologies
The Internet Architecture Board (IAB) published the following state-
ment on June 15, 2015:

“The Internet Architecture Board is deeply sympathetic with the
desire to enhance the security of Internet protocols, infrastructure,
and Internet-connected systems. We believe, however, that efforts to
enhance Internet security must proceed from a thorough knowledge
of the threats against the network, its protocols, and the systems
attached to it. Efforts to limit the export or transfer of Internet
security technologies seem likely to limit that knowledge in ways
that ultimately will frustrate the general goal of a secure and stable
Internet.

The identification of vulnerabilities is a fundamental part of security
practice. Restrictions on systems which perform that function will
make it substantially more difficult for those performing that func-
tion to design and deploy secure systems.

Traffic analysis systems, though they may be used in other ways, are
a similarly crucial part of the methods used to identify attacks and
to analyze the success of remediations put in place. The Internet is a
deeply interconnected set of networks that spans international bor-
ders, and attacks may occur in one part of the Internet that have
extensive ramifications for the operation of the whole. Limiting traf-
fic analysis technologies to specific territories seems likely to hinder
efforts to detect and thwart both active threats and other network
issues.

We note that in 1996 the IAB and Internet Engineering Steering
Group (IESG) jointly published RFC 1984[1], with the following
comments on a similar matter, the export of encryption technology:

Export controls on encryption place companies in that country at a
competitive disadvantage. Their competitors from countries without
export restrictions can sell systems whose only design constraint is
being secure, and easy to use.

Usage controls on encryption will also place companies in that coun-
try at a competitive disadvantage because these companies cannot
securely and easily engage in electronic commerce.

Export controls and usage controls are slowing the deployment of
security at the same time as the Internet is exponentially increasing in
size and attackers are increasing in sophistication. This puts users in
a dangerous position as they are forced to rely on insecure electronic
communication.

The Internet Protocol Journal
24

We believe the same points to be fundamentally true for the export of
traffic analysis, penetration testing, and similar security technologies.

While it may appear possible to narrowly circumscribe restric-
tions so that they target technologies that serve no possible
purpose but attack, any modular system, including those intended
solely for research, will like have some elements that, divorced
from the system, would serve no other purpose. Efforts to
target such systems will thus likely sweep up many other security
technologies. We therefore recommend that export restrictions on
security technologies be generally avoided.”

 [1] IAB and IESG, “IAB and IESG Statement on Cryptographic
Technology and the Internet,” RFC 1984, August 1996.

A Primer on IPv4 Scarcity
The April 2015 Issue of the ACM SIGCOMM Computer Communi-
cation Review contained an excellent summary of the rise and
fall of the IPv4 address space[1]. The authors have managed to be
wonderfully concise, packing into just a little over 8 pages a history
of the initial address allocation practices, the evolution of needs-
based address provisioning through the Regional Internet Registry
(RIR) framework, and the onset of depletion and exhaustion in the
last five years. The paper also reviews the routed address space, and
explains the differences between occupied, routed, and allocated
address space. It also explains the concept of efficiency of utilization
of addresses. The authors consider IPv4 addresses as a resource and
the long standing debate over whether addresses can be considered
as conventional “property‚” as well as the tension between the
policies of the various registries and the perspectives of the holders
of address space. The paper outlines recent efforts to augment the
registry functions with a form of certification allowing third parties
to use a Public Key Infrastructure (PKI) to validate the authenticity of
attestations about addresses and their use, particularly in the context
of the Internet’s routing system. The paper details current efforts in
coping with an environment where the traditional source of IPv4
addresses has been exhausted, considers address markets, and the
interplay between efforts to increase the address utilization efficiency
in IPv4 and incentives to adopt IPv6.

 [1] Philipp Richter, Mark Allman, Randy Bush, Vern Paxson,
“A Primer on IPv4 Scarcity,” ACM SIGCOMM Computer
Communication Review, Volume 45, Number 2, April 2015.

 http://www.sigcomm.org/sites/default/files/ccr/
papers/2015/April/0000000-0000002.pdf

Fragments continued

https://tools.ietf.org/html/rfc1984
http://www.sigcomm.org/sites/default/files/ccr/papers/2015/April/0000000-0000002.pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2015/April/0000000-0000002.pdf

The Internet Protocol Journal
25

Corrections
While we are all looking forward to Terabit (1000G) Ethernet, the
article in IPJ Volume 18, No.1 entitled “Gigabit Ethernet,” contained
errors in the table on page 27. Thanks to reader Marcin Cieślak for
pointing this out. Here is the corrected version:

Table 2: Media Options for 40- and 100-Gbps Ethernet

40 Gbps 100 Gbps

1-m backplane 40GBASE-KR4

10-m copper 40GBASE-CR4 100GBASE-CR10

100-m multimode fiber 40GBASE-SR4 100GBASE-SR10

10-km single-mode fiber 40GBASE-LR4 100GBASE-LR4

40-km single-mode fiber 100GBASE-ER4

Naming nomenclature:
 Copper: K = Backplane; C = Cable assembly
 Optical: S = Short reach (100 m); L - Long reach (10 km);
 E = Extended long reach (40 km)
 Coding scheme: R = 64B/66B block coding
 Final number: Number of lanes (copper wires or fiber wavelengths)

Also in Volume 18, No. 1, we told you about Bolt Beranek and
Newman Report 4799 entitled “A History of the ARPANET: The
First Decade.” It appears that this document is no longer available
from the link we gave, so we have placed a copy in the “Downloads”
section of our website at protocoljournal.org.

http://protocoljournal.org
http://protocoljournal.org

The Internet Protocol Journal
26

Call for Papers

The Internet Protocol Journal (IPJ) is a quarterly technical publication
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about
all aspects of Internet technology. IPJ is not intended to promote any
specific products or services, but rather is intended to serve as an
informational and educational resource for engineering professionals
involved in the design, development, and operation of public and
private internets and intranets. In addition to feature-length articles,
IPJ contains technical updates, book reviews, announcements,
opinion columns, and letters to the Editor. Topics include but are not
limited to:

• Access and infrastructure technologies such as: Wi-Fi, Gigabit
Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile
wireless.

• Transport and interconnection functions such as: switching, rout-
ing, tunneling, protocol transition, multicast, and performance.

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
troubleshooting, and mapping.

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed sys-
tems, cloud computing, and quality of service.

• Application and end-user issues such as: E-mail, Web authoring,
server technologies and systems, electronic commerce, and appli-
cation management.

• Legal, policy, regulatory and governance topics such as: copyright,
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

mailto:ole%40protocoljournal.org?subject=
mailto:olejacobsen%40me.com?subject=
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/

The Internet Protocol Journal
27

Supporters and Sponsors
Publication of this journal is made possible by:

Individual Sponsors

Lyman Chapin, Steve Corbató, Dave Crocker, Jay Etchings, Martin Hannigan, Hagen Hultzsch,
Dennis Jennings, Jim Johnston, Merike Kaeo, Bobby Krupczak, Richard Lamb, Tracy LaQuey Parker,
Bill Manning, Andrea Montefusco, Tariq Mustafa, Mike O’Connor, Tim Pozar, George Sadowsky,
Helge Skrivervik, Rob Thomas, Tom Vest, Rick Wesson.

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsor Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

http://www.en.21vianet.com/
http://www.juniper.net
mailto:sponsor%40protocoljournal.org?subject=
http://nsrc.org/
http://www.internetsociety.org
www.cisco.com
http://icann.org
http://afilias.info/
http://dyn.com/
http://apia.org/
www.cisco.com
http://comcast.net
http://www.ripe.net/
http://www.team-cymru.org/
http://labs.verisigninc.com
http://google.com
http://www.auda.org.au
http://www.limelight.com/
http://www.netnod.se/
https://www.sidn.nl/
https://ams-ix.net
http://www.isc.org
http://www.us.ntt.net/
http://www.apnic.net/
http://www.wide.ad.jp/
https://www.dns-oarc.net

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Fred Baker, Cisco Fellow
Cisco Systems, Inc.

Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

Dr. Steve Crocker, Chairman
Internet Corporation for Assigned Names and Numbers

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Olaf Kolkman, Chief Internet Technology Officer
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor
Faculty of Environmental and Information Studies,
Keio University, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
NMS
535 Brennan Street
San Jose, CA 95131

ADDRESS SERVICE REQUESTED

http://creativecommons.org/licenses/by-nc-nd/2.0/

