
April 2018 Volume 21, Number 1

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

Considerations in
Network Complexity 2

IPv6 Fragmentation 13

Letters to the Editor 24

Thank You 28

Call for Papers 30

Supporters and Sponsors 31

F r o m T h e E d i t o r

We live in a complex and increasingly interconnected world. With this
complexity comes a desire by network engineers to design systems
that can cope with increasing demands while still offering predictable
performance, manageability, and maintainability. In our first article,
Russ White discusses ways to analyze network designs from a com-
plexity point of view.

The Internet Protocol (IP) was designed to operate over a variety
of underlying network technologies, such as Ethernet, X.25, FDDI,
Frame Relay, WiFi, and even mobile telephone networks. Applications
that use IP must deal with the fact that datagrams may be split
into fragments as they travel across the network with subsequent
reassembly at the receiving end. Previous articles in this journal have
discussed fragmentation, largely in the context of IPv4. This time
Geoff Huston describes fragmentation in IPv6 and the particular
challenges that arise with this protocol in conjunction with applica-
tions such as the Domain Name System (DNS).

We usually provide a section of announcements entitled “Fragments,”
but this time it has been replaced by a selection of Letters to the
Editor—all in response to articles in our November 2017 issue. We
are very happy to receive feedback on any aspect of this journal, and
we would also point you to our website, which contains additional
articles and material as well as all of our back issues in PDF format.

As mentioned in previous issues, if you have a print subscription to
this journal, you will find an expiration date printed on the back
cover. For the last couple of years, we have “auto-renewed” your
subscription, but now we ask you to log in to our subscription
system and perform this simple task yourself. The subscription portal
is here: https://www.ipjsubscription.org/ This process will
ensure that we have your current contact information as well as
delivery preference (print edition or download). For any questions,
contact us by e-mail at: ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

The Internet Protocol Journal
2

Considerations in Network Complexity
by Russ White

C omputer networks are complex—and getting more complex
by the day. At one time, knowing the Internet Protocol (IP)
was enough; today there are underlays, overlays, virtualized

services, service chains, and a host of other technologies engineers
need to plan around and for. With complexity on the rise, maybe it’s
time to ask some fundamental questions, such as—what does com-
plexity mean? Can complexity be solved? How can engineers manage
complexity?

Why So Complex?
While the most obvious place to begin might be with a definition
of complexity, it’s actually more useful to consider why complexity
is required in a more general sense. To put it more succinctly, is it
possible to “solve” complexity? Why not just design networks and
protocols that are simpler? Why does every attempt to make any-
thing simpler in the networking world end up apparently making
things more complex in the long run? For instance, tunneling on top
of (or through) IP reduces the complexity of the control plane and
makes the network simpler overall. Why is it, then, that tunneled
overlays end up containing so much complexity?

This question has two answers: The first is that human nature being
what it is, engineers will always invent 10 different ways to solve
the same problem. This reality is especially true in the virtual world,
where new solutions are (relatively) easy to deploy, it’s (relatively)
easy to find a problem with the last set of proposed solutions, and it’s
(relatively) easy to move some bits around to create a new solution
that is “better than the old one.” The virtual space, in other words, is
partially so messy because it’s so easy to build something new there.

• Abstract the complexity away, to build a black box around each
part of the system, so each piece and the interactions among these
pieces are more immediately understandable.

• Toss the complexity over the cubicle wall—to move the problem
out of the networking realm into the realm of applications, or cod-
ing, or a protocol. As RFC 1925[1] says, “It is easier to move a
problem around (for example, by moving the problem to a differ-
ent part of the overall network architecture) than it is to solve it.”

• Add another layer on top, to treat all the complexity as a black
box by putting another protocol or tunnel on top of what’s already
there. Returning to RFC 1925, “It is always possible to add another
level of indirection.”

• Become overwhelmed with the complexity, label what exists as
“legacy,” and chase some new shiny thing that will solve all the
problems in what is perceived as a much less complex way.

The Internet Protocol Journal
3

• Ignore the problem and hope it will go away. Argue for an excep-
tion “just this once,” to meet a particular business goal, or fix
some problem, within a very tight schedule, with the promise that
the complexity issue will be dealt with “later,” is a good example.

The second answer, however, lies in a more fundamental problem:
complexity is necessary to deal with the uncertainty involved in prob-
lems that are difficult to solve (Figure 1).

Figure 1: Complexity, Effectiveness,
and Robustness

Increasing Complexity

Solution Effectiveness
Robustness

In
cr

ea
si

ng
 R

ob
us

tn
es

s
&

 E
ffe

ct
iv

en
es

s

Adding complexity, then, allows a network to handle future require-
ments and unexpected events more easily, as well as providing more
services over a smaller set of base functions. If this condition is the
case, why not simply build a single protocol running on a single net-
work that can handle all the requirements potentially thrown at it,
and can handle any sequence of events you can imagine? A single net-
work running a single protocol would certainly reduce the number
of moving parts network engineers need to deal with, making all our
lives simpler, right?

Maybe not. At some point, any complex system becomes brittle—
robust yet fragile is one phrase you can use to describe this condition.
A system is robust yet fragile when it is able to react resiliently to
an expected set of circumstances, but an unexpected set of circum-
stances will cause it to fail. As an example from the real world—knife
blades are required to have a somewhat unique combination of char-
acteristics. They must be hard enough to hold an edge and cut, and
yet flexible enough to bend slightly in use, returning to their original
shape without any evidence of damage, and they must not shatter
when dropped. It has taken years of research and experience to find
the right metal to make a knife blade, and there are still long and
deeply technical discussions about which material is right for specific
properties, under what conditions, etc.

Complexity is necessary, then: it cannot be “solved.”

The Internet Protocol Journal
4

Defining Complexity
Given complexity is necessary, engineers are going to need to learn
to manage it in some way, by finding or building a model or frame-
work. The best place to begin to build such a model is with the most
fundamental question: what does complexity mean in terms of net-
works? Can you put a network on a scale and have the needle point
to “complex?” Is there a mathematical model into which you can
plug the configurations and topology of a set of network devices that
will, in turn, produce a “complexity index?” How do the concepts of
scale, resilience, brittleness, and elegance relate to complexity? The
best place to begin in building a model is with an example.

Control-Plane State versus Stretch
What is network stretch? In the simplest terms possible, it is the dif-
ference between the shortest path in a network and the path traffic
between two points actually takes. Figure 2 illustrates this concept.

Figure 2: A Small Network to
Illustrate State and Stretch

A C

B

D E

Assuming the cost of each link in this network is the same, the shortest
physical path between Routers A and C will also be the shortest logi-
cal path: [A,B,C]. What happens, however, if we change the metric
on the [A,B] link to 3? The shortest physical path is still [A,B,C], but
the shortest logical path is now [A,D,E,C]. The differential between
the shortest physical path and the shortest logical path is the distance
a packet being forwarded between Routers A and C must travel—in
this case, the stretch can be calculated as (4 [A,D,E,C])−(3 [A,B,C]),
for a stretch of 1.

How Is Stretch Measured?
In terms of hop count, is stretch measured by the summary of the met-
rics, the delay through the network, or some other way? It depends
on what is most important in any given situation, but the most com-
mon way is by comparing hop counts through the network, and this
method is used in the examples here for simplicity. In some cases, it
might be more important to consider the metric along two paths, the
delay along two paths, or some other metric, but the important point
is to measure it consistently across every possible path to allow for
accurate comparison between paths.

Network Complexity continued

The Internet Protocol Journal
5

It’s sometimes difficult to differentiate between the physical topol-
ogy and the logical topology. In this case, was the [A,B] link metric
increased because the link is actually a slower link? If so, whether this
is an example of stretch or an example of simply bringing the logical
topology in line with the physical topology is debatable.

In line with this observation, it’s much easier to define policy in terms
of stretch than almost any other way. Policy is any configuration that
increases the stretch of a network. Using Policy-Based Routing or
Traffic Engineering to push traffic off the shortest physical path and
onto a longer logical path to reduce congestion on specific links, for
instance, is a policy—it increases stretch.

Increasing stretch is not always a bad thing. Understanding the con-
cept of stretch simply helps us understand various other concepts,
and put a framework around complexity tradeoffs. The shortest
path, physically speaking, isn’t always the best path.

Stretch, in this illustration, is very simple—it affects every desti-
nation, and every packet flowing through the network. In the real
world, things aren’t so simple. Stretch is actually per source/destina-
tion pair, making it very difficult to measure on a networkwide basis.

With all of this information in mind, let’s look at two specific exam-
ples of the tradeoff between stretch and optimization.

Aggregation versus Stretch
Aggregation is a technique used to reduce not only the amount of
information carried in the control plane, but also the rate of state
change in the control plane. Aggregation is built into IP (both IPv4
and IPv6)—even a single subnet contains multiple host addresses.
By connecting a single broadcast segment to a set of hosts, the IP
routing protocol doesn’t need to manage Layer 2 reachability, nor
individual host addresses. Aggregation within the control plane can
also cause stretch, as Figure 3 shows.

Figure 3: Aggregation and Stretch
A

D

2001:db8:0:1::/64 2001:db8:0:2::/64

E

B C

The Internet Protocol Journal
6

Two different situations illustrate increasing stretch through route
aggregation:

1. Assume the [A,B] link has a cost of 2, and all the other links in
this network have a cost of 1. If Routers B and C both aggregate
to 2001:db8::/61, then the path through [A,C] would be
preferred for everything within the aggregate. Traffic destined to
2001:db8:0:1::/64 will pass along the path [A,C,E,D] to reach
its destination, even though the shortest (physical) path is [A,B,D].
The stretch for 2001:db8:0:2::/64 isn’t changed, but the stretch
for 2001:db8:0:1::/64 is increased by 1.

2. Assume all the links in the network have a cost of 1. If Routers B and
C both aggregate to 2001:db8::/61, then Router A will somehow
load share traffic toward the two subnets behind Routers D and
E across the two equal-cost paths it has available. Given perfect
load sharing, 50% of the traffic destined to 2001:db8:0:1::/64
will flow along [A,C,E,D], with a stretch of 1, and 50% of the
traffic destined to 2001:db8:0:2::/64 will flow along [A,B,D,E],
with a stretch of 1.

Implementing aggregation removes specific reachability information
about the two /64 prefixes behind Routers D and E from the state of
Router A. Implementation aggregation also disconnects the state of
the individual /64’s behind Routers D and E from the state at Router
A. Aggregation, then, decreases complexity from the perspective of
Router A by reducing the amount and speed of state in the routing
table of Router A.

Increasing stretch increases the overall use of the network without
any actual increase in the amount of traffic being carried through
the network. In the example given in Figure 2, traffic that would
normally take a two-hop path is directed along a three-hop path,
meaning one more link and router are involved in forwarding and
switching the packets in the flow(s) across the network. In purely
mathematical terms, increasing stretch decreases the overall effi-
ciency of the network by increasing the number of devices and links
used to forward any particular flow.

Finally, to implement aggregation Routers B and C must be config-
ured to summarize the two longer prefixes into a single shorter one.
This additional configuration introduces an additional bit of inter-
action between the human operator (or at least the configuration
system) and the control plane. This situation can be described as an
increase in surface in the network.

Defining Complexity: A Model
These three components—state, optimization, and surface—are com-
mon in virtually every network or protocol design decision. They can
be seen as a set of tradeoffs, as illustrated in Figure 4.

Network Complexity continued

The Internet Protocol Journal
7

Figure 4: The Plane of the Possible

Plane of the PossibleO
pt

im
iz

at
io

n

Surface

Realm of the Impossible

State

Increasing optimization always moves towards more state or more
interaction surfaces. Decreasing state always moves towards less
optimization or more interaction surfaces. Decreasing interaction
surfaces always moves towards less optimization or more state.
These rules aren’t ironclad, of course; they are contingent on the
specific network, protocols, and requirements, but they are gener-
ally true often enough to make this model useful for understanding
tradeoffs in complexity.

Interaction Surfaces
While state and optimization are fairly intuitive, it’s worthwhile to
spend just a moment more on interaction surfaces. The concept of
interaction surfaces is difficult to grasp primarily because it covers
such a wide array of ideas. Perhaps an example would be helpful;
assume a function that:

• Accepts two numbers as input

• Adds them

• Multiplies the resulting sum by 100

• Returns the result

This single function can be considered a subsystem in some larger sys-
tem. Now assume you break this single function into two functions,
one of which does the addition, and the other of which does the mul-
tiplication. You’ve created two simpler functions (each one does only
one thing), but you’ve created an interaction surface between the two
functions—you’ve created two interacting subsystems within the sys-
tem where there used to be only one. This example is really simple, I
know, but consider a few more that might help.

The Internet Protocol Journal
8

The routing information carried in Open Shortest Path First (OSPF)
is split into external routes being carried in Border Gateway Protocol
(BGP) and internal routes being carried in OSPF. You’ve gone from
one system with more state to two systems with less state, but you’ve
created an interaction surface between the two protocols—they must
now work together to build a complete forwarding table.

A single set of hosts with different access policies is split onto multiple
virtual topologies on the same physical network. You’ve simplified
the amount of state in filtering, but you’ve created an interaction
surface between the two virtual topologies and between the two
topologies and the control plane. In addition, you’ve exposed new
shared risk groups where a single physical failure can cause multiple
logical ones. Hence you’ve traded state in one control plane for inter-
action surfaces between multiple control planes.

Even two routers communicating within a single control plane can be
considered an interaction surface. This breadth of definition is what
makes it so very difficult to define what an interaction surface is.

Interaction surfaces aren’t a bad thing; they help engineers and
designers divide and conquer in any given problem space, from mod-
eling to implementation. At the same time, interaction surfaces are all
too easy to introduce without thought.

Managing Complexity through the Wasp Waist
There is a simple model that is ubiquitous throughout the natural
world, and is widely mimicked in the engineering world. While engi-
neers don’t often consciously apply this model, it’s actually used all
the time. What is this model?

Figure 5 illustrates the hourglass model in the context of the four-
layer Department of Defense (DoD) model that gave rise to the
Internet Protocol Suite.

Figure 5: The DoD Model and the
“Wasp Waist”

HTML, SMTP, SNMP, FTP, TELNET, etc.

Ethernet, SONET, Token Ring, Microwave
Satellite, etc.

TCP, UDP

IP

Application

Physical

Transport

Network

Network Complexity continued

The Internet Protocol Journal
9

At the bottom layer, the physical transport system, there is a wide
array of protocols, from Ethernet to Satellite. At the top layer, where
information is marshaled and presented to applications, there is a
wide array of protocols, from Hypertext Transfer Protocol (HTTP)
to TELNET (and thousands of others besides). A funny thing hap-
pens when you move towards the middle of the stack, however: the
number of protocols decreases, creating an hourglass. Why does this
work to control complexity?

Going back through the three components of complexity—state,
optimization, and surface—exposes the relationship between the
hourglass and complexity.

• State is divided by the hourglass into two distinct types of state:
information about the network, and information about the data
being transported across the network. While the upper layers are
concerned with marshaling and presenting information in a usable
way, the lower layers are concerned with discovering what connec-
tivity exists and what the properties of that connectivity actually
are. The lower layers don’t need to know how to format a File
Transfer Protocol (FTP) frame, and the upper layers don’t need
to know how to carry a packet over Ethernet—state is reduced at
both ends of the model.

• Optimization is traded off by allowing one layer to reach into
another layer, and by hiding the state of the network from the
applications. For instance, the Transmission Control Protocol,
(TCP) doesn’t really know the state of the network other than
what it can gather from local information. TCP could potentially
be much more efficient in its use of network resources, but only at
the cost of a layer violation, which opens up interaction surfaces
that are difficult to control.

• Surfaces are controlled by reducing the number of interaction
points between the various components to precisely one—IP. This
single interaction point can be well defined through a standards
process, with changes in the one interaction point closely regulated
to prevent massive rapid changes that will reflect up and down the
protocol stack.

The layering of a stacked network model is, then, a direct attempt
to control the complexity of the various interacting components of
a network.

Managing Complexity as an Engineer
Managing complexity in design in a general sense is just one appli-
cation of the state/optimization/surface model. Another use is in
learning how to understand complex systems quickly—a skill every
engineer could use in everyday life. Here this three-sided model is
used as part of a process, or a way of thinking about systems.

The Internet Protocol Journal
10

There are three steps in this model, or rather three questions:

• Why is this being done this way?

• What is being accomplished?

• What is this like?

Why acts as an abstractor, focusing on the problem at hand by
excluding others. This question uncovers the purpose, or the goal,
of the system. Asking why also connects the system to the business
driver. As an example: “Why does OSPF elect a designated router?”
might be a perfectly valid question in some settings, but not necessar-
ily while you’re troubleshooting slow network convergence. Asking
why can focus energy and uncover motives that drive configuration,
policy, and other choices.

What is the question engineers normally engage with first, but they
often do so with little structure. The three-pronged complexity model
provides a solid model with which to find the right questions to ask.
Figure 6 illustrates this method.

Figure 6: A Structure for Asking What

What optimization?

How is it optimized?

Solves well?

Doesn’t solve well?

What systems?

What depth?

What state?

What interface?

What state?

How much?

Where from?

How fast?

State

Surface

Opt
im

iza
tio

n

By focusing on questions about each of the three prongs of the com-
plexity model, you can quickly uncover the tradeoffs made in system
design—even if those tradeoffs weren’t made intentionally.

Network Complexity continued

The Internet Protocol Journal
11

Finally, what is this like helps relate the problem space, the potential
solutions, and even potential problems with potential solutions to the
system being considered. Assume a new working group is formed to
solve a particular problem in the routing space. The working group
quickly decides on using Dijkstra’s Shortest Path First (SPF) algo-
rithm to find the solution to one particular problem the protocol is
set out to solve.

Asking what is this like should immediately uncover the relation-
ship of new solution to existing link-state protocols, such as OSPF.
From there, given experience with OSPF, the engineer knows what
sort of convergence characteristics the newly proposed solution is
likely to have, and where to look for potential problems. As link-
state protocols are subject to microloops in some situations, so the
newly proposed solution is likely to be subject to microloops. As
link-state protocols can suffer from overwhelming amounts of state
during large-scale convergence events, so the new solution might suf-
fer from the same sort of problem.

Concluding Thoughts
You can’t run, and you can’t hide from complexity; there’s no point
in even trying. You’re going to encounter it; ignoring it doesn’t make
the problem go away, it just allows the problem to fester under some
“rug” in some corner of your network. The complexity problems
you create today will return as bigger, more complex problems in
just a few years. To quote someone who’s spent years looking at
complexity:

“Trying to make a network proof against predictable problems tends
to make it fragile in dealing with unpredictable problems (through an
ossification effect as you mentioned). Giving the same network the
strongest possible ability to defend itself against unpredictable prob-
lems, it necessarily follows, means that it MUST NOT be too terribly
robust against predictable problems—not being too robust against
predictable problems is necessary to avoid the ossification issue, but
not necessarily sufficient to provide for a robust ability to handle
unpredictable network problems.”

 —Tony Przygienda

That call at 2 a.m. might not be pleasant, but solving it the wrong way
might cause a much worse call at 2 a.m. sometime later. Hardening
the network against all failures eventually means to make it fail spec-
tacularly when a failure that you didn’t predict occurs—there’s just
no way around this reality.

When dealing with engineering problems, then, a little humility
around what can, and cannot, be solved is in order. Don’t ignore
complexity, but don’t think you can solve it, either. Instead, remem-
ber to treat every situation as a set of tradeoffs—and if you don’t see
the tradeoffs, you’re not looking hard enough.

The Internet Protocol Journal
12

References
 [1] Ross Callon, “The Twelve Networking Truths,” RFC 1925,

April 1996.

 [2] Russ White and Shawn Zandi, “Cloudy-Eyed: Complexity
and Reality with Software-Defined Networks,” The Internet
Protocol Journal, Volume 19, No. 3, September 2016.

 [3] Russ White and Jeff Tantsura, Navigating Network Complexity:
Next-Generation Routing with SDN, Service Virtualization, and
Service Chaining, Addison-Wesley Professional, 2015, ISBN-13:
978-0133989359.

 [4] Russ White and Ethan Banks, Computer Networking Problems
and Solutions: An Innovative Approach to Building Resilient,
Modern Networks, Addison-Wesley Professional, 2018, ISBN-
13: 978-1587145049.

RUSS WHITE began working with computers in the mid-1980s, and computer
networks in 1990. He has experience in designing, deploying, breaking, and trouble-
shooting large-scale networks, and is a strong communicator from the white board
to the board room. Across that time, he has co-authored more than 40 software pat-
ents, participated in the development of several Internet standards, helped develop
the Cisco Certified Design Expert (CCDE) and the Cisco Certified Architect (CCAr)
programs, and worked in Internet governance with the Internet Society. Russ has a
background covering a broad spectrum of topics, including radio frequency engi-
neering and graphic design, and is an active student of philosophy and culture. Russ
is a co-host at the Network Collective, serves on the Routing Area Directorate at the
IETF, co-chairs the BABEL working group, serves on the Technical Services Council
as a maintainer on the open source FR Routing project, and serves on the Linux
Foundation (Networking) board. His most recent works are Computer Networking
Problems and Solutions, The Art of Network Architecture, Navigating Network
Complexity, and the Intermediate System-to-Intermediate System LiveLesson.
He holds a Master of Science in Information Technology (MSIT) from Capella
University, and a Master of Arts in Christian Ministries (MACM) from Shepherds
Theological Seminary and is currently working on a PhD at Southeastern Baptist
Theological Seminary. E-mail: russ@riw.us

Network Complexity continued

The Internet Protocol Journal
13

IPv6 and Packet Fragmentation
by Geoff Huston, APNIC

V ersion 6 of the Internet Protocol (IPv6) introduced very few
changes to its Version 4 predecessor (IPv4). The major change
was of course the expansion of the size of the IP source and

destination address fields in the IP packet header from 32 bits to 128
bits. Some other changes, however, apparently were intended to sub-
tly alter IP behaviour. One of them was the change in treatment of IP
packet fragmentation.

It appears that rather than effecting a slight improvement from
IPv4, the manner of fragmentation handling in IPv6 appears to be
significantly more difficult. In light of these problems, it is perhaps
unsurprising that calls have been made from time to time to dispense
completely with packet fragmentation in IPv6[1], as the current situa-
tion with IPv6 appears to be worse than both no fragmentation and
the IPv4-style of fragmentation.

Packet Fragmentation
One of the more difficult design exercises in packet-switched net-
work architectures is the design of packet fragmentation.

In time-switched networks, developed to support a common bearer
model for telephony, each “unit” of information passed through the
network occurred within a fixed timeframe (an analogue voice stream
was digitized into 8,000 sample points per second, so the basic time
unit for switching these digital samples was 1/8,000 of a second),
which resulted in fixed-size packets, all clocked off a common time
base.

Packet-switched data networks could dispense with a constant com-
mon time base, in turn allowing individual data packets to be sized
according to the needs of the application as well as the needs and
limitations of the network substrate.

For example, smaller packets have a higher packet header–to–packet
payload ratio and are consequently less efficient in data carriage
and impose a higher processing load as a function of effective data
throughput. On the other hand, within a packet-switching system
the smaller packet can be dispatched faster, reducing head-of-line
blocking in the internal queues within a packet switch and poten-
tially reducing network-imposed jitter as a result. This reduction can
make it easier to use the network for real-time applications such as
voice or video. Larger packets allow larger data payloads, in turn
allowing greater carriage efficiency. Larger payloads per packet
also allows a higher internal switch capacity when measured in terms
of data throughput, in turn facilitating higher carriage capacity and
higher-speed network systems.

The Internet Protocol Journal
14

Various network designs adopted various parameters for packet
size. The original Ethernet specification, invented in the early 1970s,
adopted a variable packet size, with supported packet sizes of between
64 and 1,500 octets. Fiber Distributed Data Interface (FDDI), a fibre
ring local network, used a variable packet size of up to 4,478 octets.
Frame Relay used a variable packet size of between 46 and 4,470
octets. The choice of variable-size packets allows applications to
refine their behaviour. Jitter and delay-sensitive applications, such
as digitised voice, may prefer to use a stream of smaller packets in
an attempt to minimise jitter, while reliable bulk data transfer may
choose a larger packet size to increase the carriage efficiency. The
nature of the medium may also have a bearing on this choice. If there
is a high Bit Error Rate (BER) probability, then reducing the packet
size minimises the impact of sporadic errors within the data stream,
possibly increasing throughput in such environments.

In designing a network protocol that is intended to operate over a
wide variety of substrate networking media and support as wide a
variety of applications as possible, the designers of IP could not rely
on a single packet size for all transmissions. Instead, the designers of
IPv4 provided a packet length field in the packet header. This field
was a 16-bit octet count, allowing for an IP packet to be anywhere
from the minimum size of 20 octets (corresponding to an IP header
without any payload) to a maximum of 65,535 octets.

Obviously not all packets can fit into all underlying media. If the
packet is too small for the minimum payload size, then it can be
readily padded. But if it’s too big for the maximum packet size of the
media, then the problem is a little more challenging. IPv4 solved this
problem using “forward fragmentation.” The basic approach is that
any IPv4 router that is unable to forward an IPv4 packet into the next
hop because the packet is too large for the next-hop network may
split the packet into a set of smaller “fragments,” copying the origi-
nal IP header fields into each of these fragments, and then forwarding
each of these fragments instead. The fragments continue along the
network path as autonomous IP packets, and the destination host is
responsible for re-assembling them back into the original IP packet
and pass the result, namely the packet as it was originally sent, back
up to the local instance of the end-to-end transport protocol.

It is a clever approach, as it hides the entire network-level fragmenta-
tion issue from the upper-level protocols, including the Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). The
transport protocols and the upper-level application protocols can,
in theory, treat the underlying network as capable of supporting any
IP packet size, and the IP layer performs the necessary adaptation to
allow the IP packet to traverse any media layer. However, even with
this intended transparency of operation, this approach has managed
to earn a very poor reputation.

IPv6 Fragmentation continued

The Internet Protocol Journal
15

Packet fragmentation was seen as being a source of performance inef-
ficiency, a security vulnerability, and it even posed a cap on maximal
delay-bandwidth product on data flows across networks. IP fragmen-
tation was considered harmful[2,3].

The IPv6 designers removed the fragmentation controls from the
common IPv4 packet header and placed them into an 8-octet IPv6
Extension Header. This additional packet header, placed between the
IPv6 packet header and the end-to-end transport packet header, was
present only in fragmented packets (whereas the IPv4 fragmentation
control fields are present in all IPv4 packet headers). Secondly, IPv6
did not permit fragmentation to be performed when the packet was
in transit within the network: all fragmentation was to be performed
by the packet source prior to transmission. This stipulation, too, has
resulted in an uncomfortable compromise, where an unforeseen need
for fragmentation relies on Internet Control Message Protocol for
IPv6 (ICMPv6) signalling from the interior of the network back to
the original packet source and retransmission.

In the case of TCP, a small amount of layer violation goes a long way.
If the sending host is permitted to pass an IPv6 Packet Too Big (PTB)
ICMPv6 diagnostic message up to the TCP session that generated
the original packet, then it’s possible for the TCP driver to adjust its
sending Maximum Segment Size (MSS) to the new, smaller value and
carry on. In this case, no fragmentation is required.

UDP is different. In UDP a functional response to path message size
issues inevitably relies on interaction with the upper-level application
protocol.

It appears that when we consider fragmentation in IPv6 we have to
consider the treatment of IPv6 Extension Headers and UDP. And that
story is not a robust one[4].

The DNS and IPv6 Packet Fragmentation
The Domain Name System (DNS) is the major user of UDP. As a
consequence of the increasing use of Domain Name System Security
Extensions (DNSSEC) as a security mechanism, coupled with the
increasing use of IPv6 as the IP protocol transition gathers momen-
tum, it is time to look once more at the interaction of larger DNS
payloads over IPv6.

To illustrate this situation, here are two DNS queries, both made by
a recursive resolver to an authoritative name server, both using UDP
over IPv6.

Query 1:

$ dig +bufsize=4096 +dnssec 000-4a4-000a-000a-
0000-b9ec853b-241-1498607999-2a72134a.ap2.
dotnxdomain.net. @8.8.8.8
139.162.21.135

(MSG SIZE rcvd: 1190)

The Internet Protocol Journal
16

Query 2:

$ dig +bufsize=4096 +dnssec 000-510-000a-000a-0000-
b9ec853b-241-1498607999-2a72134a.ap2.
dotnxdomain.net. @8.8.8.8
status: SERVFAIL

(MSG SIZE rcvd: 104)

What we see here are two almost identical DNS queries that have
been passed to Google’s Public DNS service to resolve.

In the first case, the DNS response is 1,190 octets long, and in the
second case the response is 1,346 octets long. The DNS server is an
IPv6-only server, and the underlying host of this name server is con-
figured with a local maximum packet size of 1,280 octets. Therefore,
in the first case the response being sent to the Google resolver is a
single, unfragmented IPv6 UDP packet, and in the second case the
response is broken into two fragmented IPv6 UDP packets. And it is
this single change that triggers the Google Public DNS Server to pro-
vide the intended answer in the first case, but to return a SERVFAIL
failure notice in response to the fragmented IPv6 response. When the
local Maximum Transmission Unit (MTU) on the server is lifted from
1,280 octets to 1,500 octets, the Google resolver returns the server
DNS response in both cases.

The only difference in these two responses is IPv6 fragmentation, but
there is perhaps more to it than that.

IP fragmentation in both IPv4 and IPv6 “raises the eyebrows” of
firewalls. Firewalls typically use the information provided in the
transport protocol header of the IP packet to decide whether to admit
or deny the packet. For example, you may see firewall rules admitting
packets using TCP ports 80 and 443 as a way of allowing web traf-
fic through the firewall filter. For this process to work, the inspected
packet needs to contain a TCP header and use the fields in the header
to match against the filter set. Fragmentation in IP duplicates the IP
portion of the packet header, but the inner IP payload, including the
transport protocol header, is not duplicated in every ensuing packet
fragment. Thus trailing fragments pose a conundrum to the firewall.
Either all trailing fragments are admitted, a situation that has its own
set of consequent risks, or all trailing fragments are discarded, a situ-
ation that also poses connection issues[5].

IPv6 adds a further factor to the picture. In IPv4 every IP packet, frag-
mented or not, contains IP fragmentation control fields. In IPv6 these
same fragmentation control fields are included in an IPv6 Extension
Header that is attached only to packets that are fragmented.

IPv6 Fragmentation continued

The Internet Protocol Journal
17

This 8-octet Extension Header is placed immediately after the IPv6
packet header in all fragmented packets, meaning that a fragmented
IPv6 packet does not contain the Upper Level Protocol Header start-
ing at octet offset 40 from the start of the IP packet header. But in
the first packet of this set of fragmented packets, the Upper Level
Protocol Header is chained off the fragmentation header, at byte off-
set 48, assuming that there is only a Fragmentation Extension Header
in the packet. The implications of this fact are quite significant.
Instead of always looking at a fixed point in a packet to determine its
upper-level protocol, the packet-handling device needs to unravel the
Extension Header chain, raising two rather tough questions. First,
how long is the device prepared to spend unravelling this chain? And
second, would the device be prepared to pass on a packet with an
Extension Header that it did not recognise?

In some cases, implementers of IPv6 equipment have found it simpler
to just drop all IPv6 packets that contain Extension Headers. Some
measurements of this behaviour are reported in RFC 7872[6]. This
document reports a 38% packet-drop rate when sending fragmented
IPv6 query packets to DNS Name servers. But the example provided
previously is in fact the opposite case to that reported in RFC 7872,
and the example illustrates a more conventional case. It’s not the
queries in the DNS that can readily grow to sizes that require packet
fragmentation, but the responses. The relevant question concerns
the anticipated probability of packet drop when sending fragmented
UDP IPv6 packets as responses to DNS queries. To rephrase the ques-
tion slightly, how do DNS recursive resolvers fare when the IPv6
response from the server is fragmented?

For a start, it appears from the example cited here that Google’s
Public DNS resolvers experienced some packet-drop problem when
they passed a fragmented IPv6 response (this problem was noted in
mid-2017, and Google has subsequently corrected it). But was this
problem limited to just one or two DNS resolvers, or do many other
DNS resolvers experience a similar packet-drop issue? How wide-
spread is this problem?

We used an experiment that tested resolver capabilities in handling
DNS responses that entailed the use of fragmented UDP IPv6 packets.
The experiment used a measurement script embedded in an online
ad to enlist a large number of endpoints to perform resolution of a
domain name[7]. For this measurement, we altered the DNS resolu-
tion system to fragment certain DNS responses.

The approach we took in this experiment was to use a user-level
packet-processing system that listens on UDP port 53 and passes all
incoming DNS queries to a back-end DNS server. When it receives
a response from this back-end server it generates a sequence of IPv6
packets that fragments the DNS payload and uses a raw device socket
to pass these packets directly to the device interface.

The Internet Protocol Journal
18

We are relying on the observation that IPv6 packet fragmentation
occurs at the IP level in the protocol stack, so the IPv6 driver at the
remote end will reassemble the fragments and pass the UDP payload
to the DNS application, and if the resolver receives the payload pack-
ets , there will be no trace that the IPv6 packets were fragmented.

The results of this experiment follow:

• 10,851,323 experiments used IPv6 queries for the name server
address.

• 6,786,967 experiments queried for the terminal DNS name.

• Fragmented response: 6,786,967/10,851,323 = 62.54% = 37.45%
drop.

Some 37% of client endpoints used IPv6-capable DNS resolvers that
were incapable of receiving a fragmented IPv6 response.

TCP and IPv6 Packet Fragmentation
The use of IPv6 Extension Headers implies that any transport pro-
tocol-sensitive functions within network equipment must follow the
Extension Header chain of the packet header. This process takes a
variable number of cycles for the device. It also requires that the
device should recognise all the Extension Headers encountered on the
header chain as passing through Extension Headers that the device
either does not understand or is not prepared to check to determine
whether or not it is a security risk. It’s easier to drop all packets with
Extension Headers! And that is what a lot of deployed equipment
evidently does.

To measure the extent to which equipment drops fragmented IPv6
packets in TCP, we used a front-end unit to a web server and con-
figured this front end to perform packet fragmentation on outbound
packets as required. All TCP packets passed across the unit from the
back end towards the Internet that contain a TCP payload larger
than 15 octets are fragmented (Figure 1).

Figure 1: Experiment Configuration

End Host Web
Server

IPv6 NAT
Front End

Packet
Fragmenter

Internet

IPv6 Fragmentation continued

The Internet Protocol Journal
19

The subsequent data-analysis phase can detect if the end host has
received and successfully reassembled the set of fragments by looking
at a log of packets. If an incoming TCP Acknowledgement (ACK) has
a sequence number that encompasses the sending sequence number
of outbound fragments within the same TCP session, that is evidence
that the remote end has successfully reassembled the fragmented
packet.

How “Real” Is This Experiment?
Before looking at the results, it may be useful to ask whether this
experiment represents a “real” scenario that is commonly encoun-
tered on the Internet.

It’s certainly the case that in TCP over IPv6 we do not expect to see
packet fragmentation in the normal course of events.

A TCP sender should ensure that all outbound TCP segments fit
within the local interface MSS size, so in the absence of network
path MTU issues, a sender should not be fragmenting outbound TCP
packets before sending them.

What about the case where the path MTU is smaller than the local
interface MTU? When a packet encounters a network path next hop
where the packet is larger than the next-hop MTU, the IPv6 router
constructs an ICMPv6 PTB message, noting the size of the next hop,
and also including the original packet headers as the payload of this
ICMPv6 message. It sends this ICMPv6 diagnostic message back to
the original sender and discards the original packet.

When a sending host receives this ICMPv6 PTB message, it also has
the TCP packet header as part of the inner payload. This informa-
tion can be used to find the local TCP control entry for this session,
and the outbound MSS value of this TCP session can be updated
with the new value. In addition to the updated size information,
the TCP header in the ICMPv6 PTB message payload also contains
the sequence number of the lost packet. The sending TCP process
can interpret the ICMPv6 PTB message as an implicit Negative
Acknowledgement (NACK) of the lost data, and resend the discarded
data, using the updated MSS size. Again, no packet fragmentation is
required.

All this sounds like a blatant case of “layer violation” and we should
call in the Protocol Police. But before we do so, maybe we should
think about the hypothetical situation where the host did not pass
the ICMPv6 PTB message to the TCP control block. This situation is
analogous to the case where the ICMPv6 PTB message is not passed
to the host at all, where, for example, some unhelpful piece of net-
work filtering middleware is filtering out all ICMPv6 messages.

The Internet Protocol Journal
20

In this case, the sending TCP session has sent a TCP segment and is
waiting to receive an ACK. The receiver will not get this packet, so it
cannot ACK it. The sender might have a retransmission timer and it
might try to resend the offending large packet, but that too will get
lost, so it will never get the ACK.

This situation results in a wedged TCP state, or a Path MTU Black
Hole condition. Hiding ICMPv6 PTB messages from the TCP con-
troller, either because of local processing rules within the host or
because some network element has decided to drop them, is invari-
ably harmful.

In that sense, we have constructed a somewhat “unreal” experiment,
and we should not expect to see applications that critically depend on
the correct working of packet fragmentation in TCP experiencing the
same network conditions as those we’ve set up here.

On the other hand, fragmentation is an IP function, not a func-
tion performed by an end-to-end transport protocol. Therefore, the
question of whether a host can receive a fragmented UDP packet is
essentially the same question as whether a host can receive a frag-
mented TCP packet—at least from the perspective of the host itself.
In both cases the real question is whether the IPv6 process on the host
can receive fragmented IPv6 packets.

While the experiment itself uses conditions that are essentially an
artifice, the result, namely the extent to which IPv6 Extension Header
drop occurs when passing fragmented IPv6 packets towards end
hosts, is nevertheless a useful and informative result.

Results
Over a period in August 2017, this experiment presented fragmented
TCP packets to 1,702,949 unique IPv6 addresses. The results are
summarized in Table 1.

Table 1: Results of Fragmentation Test

Count % of Total

Sent Fragmented TCP Packets 1,675,898

Acknowledged Fragmented TCP Packets 1,324,834 79.03%

Failed to Acknowledge Fragmented TCP Packets 351,514 20.97%

Compared to the earlier DNS packet fragmentation result, namely
that some 37% of endpoints who used IPv6-capable DNS resolvers
used resolvers that were incapable of receiving IPv6 Fragmentation
Extension Headers, the overall failure rate observed here of some
21% looks somewhat better. However, “better” is a relative term, as
it is still the case that one-fifth of IPv6-capable endpoints are unable
to receive a fragmented IPv6 packet.

IPv6 Fragmentation continued

The Internet Protocol Journal
21

Having one-fifth of the end-user population incapable of receiving
fragmented large responses over IPv6 is indeed a serious problem.

Let’s look briefly at the IPv6-over-IPv4 auto-tunnelling techniques
Teredo and 6to4 (Table 2), as these two auto-tunnelled IPv6 bridging
technologies just don’t seem to want to die!

Table 2: Results of IPv6 Fragmentation Test for Teredo and 6to4 Prefixes

Teredo % 6to4 %

Sent Fragmented TCP Packets 53,780 24,384

Acknowledged Fragmented TCP Packets 263 0.5% 1,486 6.1%

Failed to Acknowledge Fragmented TCP Packets 53,517 98.5% 22,898 93.9%

Both of these auto-tunnelling services are atrocious in this respect!
Almost no Teredo endpoints can handle IPv6 fragmentation, and the
6to4 failure rate is not much better. Having no IPv6 at all is far bet-
ter than having such a terrible service, and I can think of few better
justifications for turning off the remaining Teredo and 6to4 gateways
than these figures! What is even more depressing is that these two
auto-tunnelling technologies represent one-quarter of the count of
unique /64 prefixes seen in this experiment.

There is a considerable level of variation in the extent to which net-
works support the delivery of IPv6 Fragmentation Extension Headers
to hosts. In some cases, it appears that the choice of customer prem-
ises equipment, or the configuration of IPv6 firewalls, may be a factor.
Where the failure rate is very high it would point to the drop point
being part of the behaviour of the provider network rather than the
behaviour of the customer premises equipment.

Conclusions
Whatever the reasons, the conclusion here is unavoidable: IPv6 frag-
mentation is just not a viable component of the IPv6 Internet.

We need to adjust our protocols to avoid fragmentation.

For TCP, this adjustment should not be a major issue. Of course, this
assertion relies on ICMPv6 PTB messages getting back to the sender’s
TCP process, but that is a major topic in its own right, so we won’t
delve deeper into this subject right now.

However, for UDP, this conclusion should be cause for some major
rethinking of the way the DNS works, as the combination of DNSSEC,
UDP, and IPv6 is really not going to work very well. It has implica-
tions for other UDP-based protocols as well, particularly where the
protocol can generate large payloads.

The Internet Protocol Journal
22

The Quick UDP Internet Connections (QUIC) protocol, which uses a
TCP-like control protocol embedded within a UDP encapsulation[8],
has taken the pragmatic position of using a maximum packet size
of 1,350 octets as a universal base and does not expect to encoun-
ter fragmentation issues given this somewhat conservative choice
of packet size. If the DNS over IPv6 used a similar upper limit of
UDP packet size and always sent back truncated responses for larger
answers, we could probably avoid many of the packet-loss problems
that we encounter today. Of course, the consequent larger use of TCP
has its own implications in terms of query processing capacity for
DNS resolvers and servers, so there are no free points here.

However, one conclusion looks starkly clear to me from these results.
We can’t just assume that the DNS as we know it today will just work
in an all IPv6 future Internet. We must make some changes in some
parts of the protocol design to get around this current widespread
problem of IPv6 Extension Header packet loss in the DNS, assum-
ing that we want to have a DNS at all in this all-IPv6 future Internet.

References and Further Reading
 [0] J. Postel, “Internet Protocol,” RFC 791, September 1981.

 [1] Ron Bonica, Warren Kumari, Randy Bush, and Hagen Pfeifer,
“IPv6 Fragment Header Deprecated,” July 2013, Internet Draft,
Work in Progress, draft-bonica-6man-frag-deprecate-02.

 [2] Christopher A. Kent and Jeffrey C. Mogul, “Fragmentation
Considered Harmful,” Proceedings of Frontiers in Computer
Communications Technology, ACM SIGCOMM ’87, August
1987.

 [3] Matt Mathis, Ben Chandler, and John W. Heffner, “IPv4
Reassembly Errors at High Data Rates,” RFC 4963, July 2007.

 [4] Ron Bonica, Fred Baker, Geoff Huston, Robert Hinden, Ole
Troan, and Fernando Gont, “IP Fragmentation Considered
Fragile,” March 2018, Internet Draft, Work in Progress,

 draft-bonica-intarea-frag-fragile-01.

 [5] Joel Jaeggli, Lorenzo Colitti, Warren Kumari, Eric Vyncke,
Merike Kaeo, and Tom Taylor, “Why Operators Filter Fragments
and What It Implies,” December 2013, Internet Draft, Work in
Progress, draft-taylor-v6ops-fragdrop-02.

 [6] Fernando Gont, J. Linkova, and Tim Chown, “Observations
on the Dropping of Packets with IPv6 Extension Headers in the
Real World,” RFC 7872, June 2016.

IPv6 Fragmentation continued

The Internet Protocol Journal
23

 [7] Geoff Huston, Joao Damas, and George Michaelson, “How
we Measure IPv6,” Presentation to APNIC 44 Conference,
September 2017.

 [8] Jana Iyengar and Martin Thomson, “QUIC: A UDP-Based
Multiplexed and Secure Transport,” April 2018, Internet Draft,
Work in Progress, draft-ietf-quic-transport-11.

 [9] Pekka Savola, “MTU and Fragmentation Issues with In-the-
Network Tunneling,” RFC 4459, April 2006.

 [10] G. Ziemba, D. Reed, and P. Traina, “Security Considerations
for IP Fragment Filtering,” RFC 1858, October 1995.

 [11] Geoff Huston, “Fragmentation,” The Internet Protocol Journal,
Volume 19, No. 2, June 2016.

GEOFF HUSTON, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. He is
an active contributor to the Internet Engineering Task Force. At various times Geoff
has worked as an Internet researcher, an ISP systems architect, and a network opera-
tor. E-mail: gih@apnic.net

The Internet Protocol Journal
24

Letters to the Editor
Ole and William,

As a loyal IPJ reader for decades, I think you did a terrific job on your
blockchain piece in the November 2017 issue of IPJ. I don’t think I
have seen anything yet as comprehensive, understandable, and inter-
esting to read on this subject. Thanks for writing and publishing the
piece. There is far too much fluff and misinformation on blockchain
and cryptocurrencies, so it is nice to see a solid treatment that pro-
vides helpful information to further everyone’s understanding of this
important technology.

— David Strom, david@strom.com

The author responds:

David,

Thank you for the kind words. A lot of credit goes to the reviewers,
who did an awesome job of providing detailed feedback on the first
draft.

—Bill Stallings, ws@shore.net

Ole,

I just re-read Geoff Huston’s article on Network Address Translation
(NAT) in the November 2017 issue (Volume 20, No. 3), and needed
to applaud—possibly for the second time. Geoff is in a league of his
own—the clear thinking, the pragmatism, the ability to communicate
clearly and understandably—and not the least, the perspective on
history. How we got here and why. Enlightening. NAT changed the
Internet and continues to do so in ways I had never thought of until I
read the article. Understanding that the 2018 Internet is vastly differ-
ent in almost every possible way from the 1995 and 2005 Internet is
extremely important. Otherwise we continue to plan for an historic
model rather than the future. IPJ rocks!

—Helge Skrivervik, helge@mymayday.com

Ole,

As a data-networking engineer and architect of 20 years on the
front line of fortune 100 network projects, I would like to offer a
counter perspective from the recent article “In Defence of NATs”
(Volume 20, No. 3).

The networking world seems to be losing sight that NAT is a “crutch”
of sorts, a way of dealing with the primary problem in a lack of IPv4
address space.

The Internet Protocol Journal
25

By trying to justify NAT as a way to scale up IPv4 future potential
scalability by “stealing” port/socket bits for something other than
their originally intended purpose is nonsensical. One correction I
would like to make on the article is the claim that NAT provides
a firewall function. NAT and firewall functionality are mutually
exclusive mechanisms, even if they are most often found on the same
network device. NAT provides an obscured view of a host from else-
where via address/port translation but does not by itself provide
natural protection from the host on the other side of the translation
point. Firewall protection encompasses the scrutinizing and control-
ling of the traffic that is allowed to traverse the NAT point. Firewalls
provide this function with or without NAT, and NAT can function
with or without a firewall mechanism.

Slow adoption of IPv6 has nothing to do with any perceived brilliant
nature of NAT, and NAT does present real-world problems for sev-
eral types of very important software; Microsoft’s Active Directory
Replication and IBM’s Virtual Tape Library (VTL)/Virtual Tape
Server (VTS) are two examples off the top of my head. When travers-
ing a NAT point, many applications that share their host IP address in
the data field with other hosts require active “swapping” of this pay-
load-imbedded IP address or another compensating mechanism. The
communication would “break” the application’s intended commu-
nication model without the addition of a compensating mechanism.

The question in the article “should I deploy IPv6 now?” is the wrong
question. The Internet was first “born” in a practical sense at the
point it became commercially available to the world to use. In the
first 25 years it grew at an amazing rate, doubling its size several
times over in a very natural and organic way. It has been almost a
quarter century since IPv6 was released, and its resistance has been
significant for good reasons beyond the scope of this letter. IPv6 is
“The Emperor’s New Clothes,” otherwise IPv4 would have been
replaced by now if IPv6 had been a natural and organic progression
of IPv4, and there would be no need to “defend” NAT or speak up
against its forced ubiquitous overuse. Someone once told me that
IPv6 was here to stay. To my way of thinking it has not yet arrived
after almost a quarter century.

While IPv4 port/socket numbers can be seen as “borrowed address
bits” for NAT, I believe it is a distorted view of port/socket intended
use. Fields and protocols are defined and delineated for a reason.
If you wish to repurpose bits—for example, Type of Service (ToS)
to Differentiated Services Code Point (DSCP) use—then repurpose
them officially. Until then, fields and protocols should be respected as
originally intended and not subject to implied de-facto depreciation
by NAT’s liberal theft. Field definitions and structure have purpose.

The Internet Protocol Journal
26

The sirens’ song that I believe we collectively are starting to fall
for is that NAT is a “one-size-fits-all” solution for all forms of net-
work scalability in a ubiquitous way. This is not the real-world case.
Resource hosts need (in a practical sense) globally unique Layer 3
identifiers. Consider corporate mergers/acquisitions as well as dives-
titures leading to merging of a divested entity. Trying to merge two
significant company networks together that both use NAT RFC 1918
on the “inside” for resource hosts is overly complex in a way that
it would not have to be if a viable replacement for IPv4 had been
rolled out in a manner that world corporations could embrace com-
mercially. That protocol does not exist. While I agree with the notion
that the Internet cannot be “stateless,” this does not uniquely justify
NAT as “middleware.” End hosts ideally should be ultimate keepers
of their stateful connections; justifying NAT just for the sake of IPv4
continued life-support is nonsensical.

NAT has a proper use; middleware that uses NAT as a complementary
protocol along with others, such as “load balancing” [for example,
the Local Traffic Manager (LTM) product by F5] is justifiable, but
in this case application scalability and fault tolerance encompass
the direct purpose of this middleware, not compensating for world
IPv4 address depletion. Other forms of network middleware are per-
fectly justifiable, even if NAT did not need to exist; firewalls and
Intrusion Prevention Systems (IPS) are examples. We should appre-
ciate NAT for its role as a “tactical” compensating mechanism for
IPv4 address space depletion, not as a “strategic future-proofing”
scalability mechanism for IPv4. People with broken legs appreciate a
crutch, but would not appreciate needing to use a crutch for the rest
of their lives if their body decided not to heal itself because the body
viewed the crutch as “good enough.” NAT seen as a long-term way
of extending IPv4 scalability and, therefore, lifespan is just putting
lipstick on the IPv4 pig.

NAT is a mechanism to be used (like any other protocol) where it
makes sense to use it and no further. If IPv6 or some other more
sensible replacement for IPv4 were completely rolled out with IPv4
relegated to the history books, then the practical use of NAT in such
a future environment would be a single-digit fraction of its current
existence. That existence would be primarily in terms of resiliency
mechanisms such as load balancing, as previously mentioned, and
certain (client) mobility cases. One of the most memorable pieces of
wisdom I have ever heard about IT applies here very well: “There is
nothing more permanent than a temporary solution.” Let us not fall
victim to this easy psychological trap only because we seem to have
collectively painted ourselves into a corner of sorts.

—Leroy Harvey, leroy.harvey@hotmail.com

Letters continued

The Internet Protocol Journal
27

The author responds:

The purpose of any opinion piece is to provoke the reader into think-
ing about the issue, and perhaps looking at it from a set of different
perspectives. For more than two decades the Internet Engineering Task
Force (IETF) viewed NATs as a somewhat ugly hack, and from time
to time attempted to discourage its use in various ways. However, the
undeniable observation is that NATs keep today’s Internet running.
Perhaps there is more to NATs than a rather ugly short-term hack
that should disappear. What if they are here to stay? The opinion
piece was intended to look at NATs from a perspective that shared
little with the orthodox view of NATs, and provoke readers to think
about this unanticipated direction that the Internet has taken and
wonder where it may lead. I’m pleased to see that this provocation
has motivated one reader to provide a thoughtful response.

—Geoff Huston, APNIC
gih@apnic.net

Letters may be edited for clarity. We’d love to hear from you. Send us
your feedback via e-mail to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

Coming Soon: Our 20th Anniversary Issue

It is difficult to believe, but another decade has passed and in June we
will celebrate 20 years of The Internet Protocol Journal. Make sure
your subscription is up-to-date so you don’t miss this issue!

Ten years ago:

June 2008 Volume 11, Number 2

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

A Decade of
Internet Evolution 2

A Decade in the Life of
the Internet 7

Mobile WiMAX 19

Letters to the Editor 36

Fragments 39

F r o m T h e E d i t o r

Ten years ago we published the first issue of The Internet Protocol
Journal (IPJ). Since then, 41 issues and a total of 1,612 pages have
been produced. Today, IPJ has about 37,000 subscribers all around the
world. Although most of our readers prefer the paper edition, a grow-
ing number of subscribers are reading IPJ online or downloading the
PDF version. This shift in reading habits may be related to the changes
in technology over the last 10 years. Lower costs and higher-resolution
displays and printers, as well as improvements in Internet access tech-
nologies, have made the online “experience” a lot better than in 1998.

Publishing is by no means the only area that has seen dramatic changes
in the last decade. We asked Vint Cerf and Geoff Huston to reflect
on Internet developments in this period, and the resulting articles,
“A Decade of Internet Evolution” and “A Decade in the Life of the
Internet,” are included in this issue.

Let me take this opportunity to thank all those people who have made
IPJ possible. Our authors deserve a round of applause for carefully ex-
plaining both established and emerging technologies. They are assisted
by an equally insightful set of reviewers and advisors who provide feed-
back and suggestions on every aspect of our publications process. The
process itself relies heavily on two individuals: Bonnie Hupton, our
copy editor, and Diane Andrada, our designer. Thanks go also to our
printers and mailing and shipping providers. Last, but not least, our
readers provide encourage ment, suggestions, and feedback. This jour-
nal would not be what it is without them.

Because we are considering some Internet history in this issue, I would
like to announce a project that takes us even further back. Before joining
Cisco in 1998 I worked at the Interop Company, where I was respon-
sible for the monthly publication of ConneXions—The Interoperability
Report, published from 1987 through 1996. Unlike IPJ, ConneXions
was produced in the “old-fashioned way” using various pieces of text
and artwork assembled onto paste-up boards, and then photographed
for subsequent plate making and offset printing. Thus no PDF files were
produced at the time, but I am pleased to announce that The Charles
Babbage Institute at the University of Minnesota has scanned the com-
plete collection (117 issues) and it is now available at: http://www.
cbi.umn.edu/hostedpublications/Connexions/index.html

Our final article is a look at Mobile WiMAX. WiMAX is an emerging
technology that was originally designed as a fixed wireless broadband
technology, a “DSL replacement,” but has evolved to support mobility.

— Ole J. Jacobsen, Editor and Publisher
ole@cisco.com

You can download IPJ
back issues and find

subscription information at:
www.cisco.com/ipj

The Internet Protocol Journal
28

Fabrizio Accatino
Scott Aitken

Antonio Cuñat Alario
Matteo D’Ambrosio

Jens Andersson
Danish Ansari
Tim Armstrong
Richard Artes
David Atkins
Jaime Badua
John Bigrow
Axel Boeger

Gerry Boudreaux
Kevin Breit

Ilia Bromberg
Christophe Brun

Gareth Bryan
Stefan Buckmann

Scott Burleigh
Jon Harald Bøvre
Olivier Cahagne

Tracy Camp
Fabio Caneparo

Roberto Canonico
John Cavanaugh

Lj Cemeras
Dave Chapman

Stefanos Charchalakis
Greg Chisholm

Brad Clark
Narelle Clark
Steve Corbató

Brian Courtney

Dave Crocker
Kevin Croes
John Curran

André Danthine
Morgan Davis
Freek Dijkstra
Geert Van Dijk

Richard Dodsworth
Ernesto Doelling
Eugene Doroniuk
Karlheinz Dölger

Andrew Dul
Holger Durer

Peter Robert Egli
George Ehlers

Peter Eisses
Torbjörn Eklöv
ERNW GmbH

ESdatCo
Steve Esquivel

Mikhail Evstiounin
Paul Ferguson
Kent Fichtner

Gary Ford
Christopher Forsyth

Craig Fox
Fausto Franceschini

Tomislav Futivic
Edward Gallagher

Andrew Gallo
Chris Gamboni

Xosé Bravo Garcia
Kevin Gee

Serge Van Ginderachter
Greg Goddard

Octavio Alfageme
Gorostiaga

Barry Greene
Martijn Groenleer
Geert Jan de Groot
Gulf Coast Shots

Sheryll de Guzman
James Hamilton
Stephen Hanna

Martin Hannigan
John Hardin
David Harper

Edward Hauser
David Hauweele
Headcrafts SRLS
Johan Helsingius
Robert Hinden
Alain Van Hoof
Edward Hotard

Bill Huber
Hagen Hultzsch
Mika Ilvesmaki
Karsten Iwen

Ashford Jaggernauth
David Jaffe
John Jarvis

Dennis Jennings
Edward Jennings

Aart Jochem
Richard Johnson

Jim Johnston

Jonatan Jonasson
Daniel Jones
Gary Jones
Amar Joshi

Merike Kaeo
Andrew Kaiser
David Kekar

Shan Ali Khan
Nabeel Khatri

Anthony Klopp
Henry Kluge
Andrew Koch

Carsten Koempe
Alexader Kogan

Antonin Kral
Mathias Körber

John Kristoff
Terje Krogdahl

Bobby Krupczak
Murray Kucherawy

Warren Kumari
Darrell Lack

Yan Landriault
Markus Langenmair

Fred Langham
Richard Lamb

Tracy LaQuey Parker
Simon Leinen
Robert Lewis
Sergio Loreti

Guillermo a Loyola
Hannes Lubich

Dan Lynch

Thank You!
Publication of IPJ is made possible by organizations and individuals around the world dedicated to
the design, growth, evolution, and operation of the global Internet and private networks built on the
Internet Protocol. The following individuals have provided support to IPJ. You can join them by visiting
http://tinyurl.com/IPJ-donate

The Internet Protocol Journal
29

Luca Ventura
Tom Vest

Dario Vitali
Randy Watts

Andrew Webster
Tim Weil
Jd Wegner

Rick Wesson
Peter Whimp

Jurrien Wijlhuizen
Pindar Wong

Bernd Zeimetz
廖 明沂.

Miroslav Madić
Alexis Madriz
Carl Malamud
Michael Malik
Yogesh Mangar

Bill Manning
Harold March

Vincent Marchand
David Martin

Timothy Martin
Gabriel Marroquin

Carles Mateu
Juan Jose Marin Martinez

Ioan Maxim
Miles McCredie

Brian McCullough
Joe McEachern
Jay McMaster

Carsten Melberg
Kevin Menezes

Bart Jan Menkveld
William Mills

Desiree Miloshevic
Thomas Mino

Mohammad Moghaddas
Charles Monson

Andrea Montefusco
Fernando Montenegro

Soenke Mumm
Tariq Mustafa
Stuart Nadin

Mazdak Rajabi Nasab
Krishna Natarajan
Darryl Newman

Marijana Novakovic
Ovidiu Obersterescu

Mike O’Connor
Mike O’Dell

Carlos Astor Araujo Palmeira

Alexis Panagopoulos
Gaurav Panwar

Manuel Uruena Pascual
Ricardo Patara
Dipesh Patel

Alex Parkinson
Craig Partridge

Dan Paynter
Leif-Eric Pedersen

Juan Pena
Chris Perkins
David Phelan
Derrell Piper
Rob Pirnie

Jorge Ivan Pincay Ponce
Blahoslav Popela

Tim Pozar
David Raistrick

Priyan R Rajeevan
Paul Rathbone

Bill Reid
Rodrigo Ribeiro
Justin Richards
Mark Risinger
Ron Rockrohr

Carlos Rodrigues
Lex Van Roon
William Ross

Boudhayan Roychowdhury
Carlos Rubio
Timo Ruiter
RustedMusic
Babak Saberi

George Sadowsky
Scott Sandefur
Sachin Sapkal

Arturas Satkovskis
Phil Scarr

Jeroen Van Ingen Schenau

Follow us on Twitter and Facebook @protocoljournal https://www.facebook.com/newipj

Carsten Scherb
Roger Schwartz

SeenThere
Scott Seifel
Yury Shefer

Yaron Sheffer
Tj Shumway

Jeffrey Sicuranza
Thorsten Sideboard
Andrew Simmons
Henry Sinnreich

Geoff Sisson
Helge Skrivervik

Darren Sleeth
Bob Smith

Mark Smith
Job Snijders

Asit Som
Ignacio Soto Campos

Peter Spekreijse
Thayumanavan Sridhar

Matthew Stenberg
Adrian Stevens
Clinton Stevens

John Streck
Viktor Sudakov
Edward-W. Suor
Vincent Surillo
Roman Tarasov
David Theese

Sandro Tumini
Phil Tweedie
Steve Ulrich

Unitek Engineering AG
John Urbanek

Martin Urwaleck
Betsy Vanderpool

Surendran Vangadasalam
Alejandro Vennera

The Internet Protocol Journal
30

Call for Papers

The Internet Protocol Journal (IPJ) is a quarterly technical publication
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about
all aspects of Internet technology. IPJ is not intended to promote any
specific products or services, but rather is intended to serve as an
informational and educational resource for engineering profession-
als involved in the design, development, and operation of public and
private internets and intranets. In addition to feature-length articles,
IPJ contains technical updates, book reviews, announcements, opin-
ion columns, and letters to the Editor. Topics include but are not
limited to:

• Access and infrastructure technologies such as: Wi-Fi, Gigabit
Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile
wireless.

• Transport and interconnection functions such as: switching, rout-
ing, tunneling, protocol transition, multicast, and performance.

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
troubleshooting, and mapping.

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed sys-
tems, cloud computing, and quality of service.

• Application and end-user issues such as: E-mail, Web authoring,
server technologies and systems, electronic commerce, and appli-
cation management.

• Legal, policy, regulatory and governance topics such as: copyright,
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

The Internet Protocol Journal
31

Supporters and Sponsors

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsor Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

Your logo here!

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

David Conrad, Chief Technology Officer
Internet Corporation for Assigned Names and Numbers

Dr. Steve Crocker, CEO and Co-Founder
Shinkuro, Inc.

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Dr. Cullen Jennings, Cisco Fellow
Cisco Systems, Inc.

Olaf Kolkman, Chief Internet Technology Officer
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor
Faculty of Environmental and Information Studies,
Keio University, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
NMS
535 Brennan Street
San Jose, CA 95131

ADDRESS SERVICE REQUESTED

