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F r o m  T h e  E d i t o r

We live in a complex and increasingly interconnected world. With this 
complexity comes a desire by network engineers to design systems 
that can cope with increasing demands while still offering predictable 
performance, manageability, and maintainability. In our first article, 
Russ White discusses ways to analyze network designs from a com-
plexity point of view.

The Internet Protocol (IP) was designed to operate over a variety 
of underlying network technologies, such as Ethernet, X.25, FDDI, 
Frame Relay, WiFi, and even mobile telephone networks. Applications 
that use IP must deal with the fact that datagrams may be split 
into fragments as they travel across the network with subsequent  
reassembly at the receiving end. Previous articles in this journal have 
discussed fragmentation, largely in the context of IPv4. This time 
Geoff Huston describes fragmentation in IPv6 and the particular  
challenges that arise with this protocol in conjunction with applica-
tions such as the Domain Name System (DNS).

We usually provide a section of announcements entitled “Fragments,” 
but this time it has been replaced by a selection of Letters to the 
Editor—all in response to articles in our November 2017 issue. We 
are very happy to receive feedback on any aspect of this journal, and 
we would also point you to our website, which contains additional 
articles and material as well as all of our back issues in PDF format.

As mentioned in previous issues, if you have a print subscription to 
this journal, you will find an expiration date printed on the back 
cover. For the last couple of years, we have “auto-renewed” your 
subscription, but now we ask you to log in to our subscription  
system and perform this simple task yourself. The subscription portal  
is here: https://www.ipjsubscription.org/ This process will  
ensure that we have your current contact information as well as  
delivery preference (print edition or download). For any questions, 
contact us by e-mail at: ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher 
ole@protocoljournal.org
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Considerations in Network Complexity
by Russ White

C omputer networks are complex—and getting more complex 
by the day. At one time, knowing the Internet Protocol (IP) 
was enough; today there are underlays, overlays, virtualized 

services, service chains, and a host of other technologies engineers 
need to plan around and for. With complexity on the rise, maybe it’s 
time to ask some fundamental questions, such as—what does com-
plexity mean? Can complexity be solved? How can engineers manage 
complexity?

Why So Complex?
While the most obvious place to begin might be with a definition 
of complexity, it’s actually more useful to consider why complexity 
is required in a more general sense. To put it more succinctly, is it 
possible to “solve” complexity? Why not just design networks and 
protocols that are simpler? Why does every attempt to make any-
thing simpler in the networking world end up apparently making 
things more complex in the long run? For instance, tunneling on top 
of (or through) IP reduces the complexity of the control plane and 
makes the network simpler overall. Why is it, then, that tunneled 
overlays end up containing so much complexity?

This question has two answers: The first is that human nature being 
what it is, engineers will always invent 10 different ways to solve 
the same problem. This reality is especially true in the virtual world, 
where new solutions are (relatively) easy to deploy, it’s (relatively) 
easy to find a problem with the last set of proposed solutions, and it’s 
(relatively) easy to move some bits around to create a new solution 
that is “better than the old one.” The virtual space, in other words, is 
partially so messy because it’s so easy to build something new there.

• Abstract the complexity away, to build a black box around each 
part of the system, so each piece and the interactions among these 
pieces are more immediately understandable.

• Toss the complexity over the cubicle wall—to move the problem 
out of the networking realm into the realm of applications, or cod-
ing, or a protocol. As RFC 1925[1] says, “It is easier to move a 
problem around (for example, by moving the problem to a differ-
ent part of the overall network architecture) than it is to solve it.”

• Add another layer on top, to treat all the complexity as a black 
box by putting another protocol or tunnel on top of what’s already 
there. Returning to RFC 1925, “It is always possible to add another 
level of indirection.”

• Become overwhelmed with the complexity, label what exists as 
“legacy,” and chase some new shiny thing that will solve all the 
problems in what is perceived as a much less complex way.



The Internet Protocol Journal
3

• Ignore the problem and hope it will go away. Argue for an excep-
tion “just this once,” to meet a particular business goal, or fix 
some problem, within a very tight schedule, with the promise that 
the complexity issue will be dealt with “later,” is a good example.

The second answer, however, lies in a more fundamental problem: 
complexity is necessary to deal with the uncertainty involved in prob-
lems that are difficult to solve (Figure 1).

Figure 1: Complexity, Effectiveness, 
and Robustness
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Adding complexity, then, allows a network to handle future require-
ments and unexpected events more easily, as well as providing more 
services over a smaller set of base functions. If this condition is the 
case, why not simply build a single protocol running on a single net-
work that can handle all the requirements potentially thrown at it, 
and can handle any sequence of events you can imagine? A single net-
work running a single protocol would certainly reduce the number 
of moving parts network engineers need to deal with, making all our 
lives simpler, right? 

Maybe not. At some point, any complex system becomes brittle—
robust yet fragile is one phrase you can use to describe this condition. 
A system is robust yet fragile when it is able to react resiliently to 
an expected set of circumstances, but an unexpected set of circum-
stances will cause it to fail. As an example from the real world—knife 
blades are required to have a somewhat unique combination of char-
acteristics. They must be hard enough to hold an edge and cut, and 
yet flexible enough to bend slightly in use, returning to their original 
shape without any evidence of damage, and they must not shatter 
when dropped. It has taken years of research and experience to find 
the right metal to make a knife blade, and there are still long and 
deeply technical discussions about which material is right for specific 
properties, under what conditions, etc.

Complexity is necessary, then: it cannot be “solved.”
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Defining Complexity
Given complexity is necessary, engineers are going to need to learn 
to manage it in some way, by finding or building a model or frame-
work. The best place to begin to build such a model is with the most 
fundamental question: what does complexity mean in terms of net-
works? Can you put a network on a scale and have the needle point 
to “complex?” Is there a mathematical model into which you can 
plug the configurations and topology of a set of network devices that 
will, in turn, produce a “complexity index?” How do the concepts of 
scale, resilience, brittleness, and elegance relate to complexity? The 
best place to begin in building a model is with an example.

Control-Plane State versus Stretch
What is network stretch? In the simplest terms possible, it is the dif-
ference between the shortest path in a network and the path traffic 
between two points actually takes. Figure 2 illustrates this concept.

Figure 2: A Small Network to 
Illustrate State and Stretch

A C

B

D E

Assuming the cost of each link in this network is the same, the shortest 
physical path between Routers A and C will also be the shortest logi-
cal path: [A,B,C]. What happens, however, if we change the metric 
on the [A,B] link to 3? The shortest physical path is still [A,B,C], but 
the shortest logical path is now [A,D,E,C]. The differential between 
the shortest physical path and the shortest logical path is the distance 
a packet being forwarded between Routers A and C must travel—in 
this case, the stretch can be calculated as (4 [A,D,E,C])−(3 [A,B,C]), 
for a stretch of 1.

How Is Stretch Measured?
In terms of hop count, is stretch measured by the summary of the met-
rics, the delay through the network, or some other way? It depends 
on what is most important in any given situation, but the most com-
mon way is by comparing hop counts through the network, and this 
method is used in the examples here for simplicity. In some cases, it 
might be more important to consider the metric along two paths, the 
delay along two paths, or some other metric, but the important point 
is to measure it consistently across every possible path to allow for 
accurate comparison between paths.

Network Complexity continued
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It’s sometimes difficult to differentiate between the physical topol-
ogy and the logical topology. In this case, was the [A,B] link metric 
increased because the link is actually a slower link? If so, whether this 
is an example of stretch or an example of simply bringing the logical 
topology in line with the physical topology is debatable.

In line with this observation, it’s much easier to define policy in terms 
of stretch than almost any other way. Policy is any configuration that 
increases the stretch of a network. Using Policy-Based Routing or 
Traffic Engineering to push traffic off the shortest physical path and 
onto a longer logical path to reduce congestion on specific links, for 
instance, is a policy—it increases stretch.

Increasing stretch is not always a bad thing. Understanding the con-
cept of stretch simply helps us understand various other concepts, 
and put a framework around complexity tradeoffs. The shortest 
path, physically speaking, isn’t always the best path.

Stretch, in this illustration, is very simple—it affects every desti-
nation, and every packet flowing through the network. In the real 
world, things aren’t so simple. Stretch is actually per source/destina-
tion pair, making it very difficult to measure on a networkwide basis.

With all of this information in mind, let’s look at two specific exam-
ples of the tradeoff between stretch and optimization.

Aggregation versus Stretch
Aggregation is a technique used to reduce not only the amount of  
information carried in the control plane, but also the rate of state  
change in the control plane. Aggregation is built into IP (both IPv4 
and IPv6)—even a single subnet contains multiple host addresses. 
By connecting a single broadcast segment to a set of hosts, the IP 
routing protocol doesn’t need to manage Layer 2 reachability, nor 
individual host addresses. Aggregation within the control plane can 
also cause stretch, as Figure 3 shows.

Figure 3: Aggregation and Stretch
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Two different situations illustrate increasing stretch through route 
aggregation:

1. Assume the [A,B] link has a cost of 2, and all the other links in 
this network have a cost of 1. If Routers B and C both aggregate 
to 2001:db8::/61, then the path through [A,C] would be 
preferred for everything within the aggregate. Traffic destined to 
2001:db8:0:1::/64 will pass along the path [A,C,E,D] to reach 
its destination, even though the shortest (physical) path is [A,B,D]. 
The stretch for 2001:db8:0:2::/64 isn’t changed, but the stretch 
for 2001:db8:0:1::/64 is increased by 1.

2. Assume all the links in the network have a cost of 1. If Routers B and 
C both aggregate to 2001:db8::/61, then Router A will somehow 
load share traffic toward the two subnets behind Routers D and 
E across the two equal-cost paths it has available. Given perfect 
load sharing, 50% of the traffic destined to 2001:db8:0:1::/64 
will flow along [A,C,E,D], with a stretch of 1, and 50% of the 
traffic destined to 2001:db8:0:2::/64 will flow along [A,B,D,E], 
with a stretch of 1.

Implementing aggregation removes specific reachability information 
about the two /64 prefixes behind Routers D and E from the state of 
Router A. Implementation aggregation also disconnects the state of 
the individual /64’s behind Routers D and E from the state at Router 
A. Aggregation, then, decreases complexity from the perspective of 
Router A by reducing the amount and speed of state in the routing 
table of Router A.

Increasing stretch increases the overall use of the network without 
any actual increase in the amount of traffic being carried through 
the network. In the example given in Figure 2, traffic that would 
normally take a two-hop path is directed along a three-hop path, 
meaning one more link and router are involved in forwarding and 
switching the packets in the flow(s) across the network. In purely 
mathematical terms, increasing stretch decreases the overall effi-
ciency of the network by increasing the number of devices and links 
used to forward any particular flow.

Finally, to implement aggregation Routers B and C must be config-
ured to summarize the two longer prefixes into a single shorter one. 
This additional configuration introduces an additional bit of inter-
action between the human operator (or at least the configuration 
system) and the control plane. This situation can be described as an 
increase in surface in the network. 

Defining Complexity: A Model
These three components—state, optimization, and surface—are com-
mon in virtually every network or protocol design decision. They can 
be seen as a set of tradeoffs, as illustrated in Figure 4.

Network Complexity continued
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Figure 4: The Plane of the Possible
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Increasing optimization always moves towards more state or more 
interaction surfaces. Decreasing state always moves towards less 
optimization or more interaction surfaces. Decreasing interaction 
surfaces always moves towards less optimization or more state. 
These rules aren’t ironclad, of course; they are contingent on the  
specific network, protocols, and requirements, but they are gener-
ally true often enough to make this model useful for understanding  
tradeoffs in complexity. 

Interaction Surfaces
While state and optimization are fairly intuitive, it’s worthwhile to 
spend just a moment more on interaction surfaces. The concept of 
interaction surfaces is difficult to grasp primarily because it covers 
such a wide array of ideas. Perhaps an example would be helpful; 
assume a function that:

• Accepts two numbers as input

• Adds them

• Multiplies the resulting sum by 100

• Returns the result

This single function can be considered a subsystem in some larger sys-
tem. Now assume you break this single function into two functions, 
one of which does the addition, and the other of which does the mul-
tiplication. You’ve created two simpler functions (each one does only 
one thing), but you’ve created an interaction surface between the two 
functions—you’ve created two interacting subsystems within the sys-
tem where there used to be only one. This example is really simple, I 
know, but consider a few more that might help.
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The routing information carried in Open Shortest Path First (OSPF) 
is split into external routes being carried in Border Gateway Protocol 
(BGP) and internal routes being carried in OSPF. You’ve gone from 
one system with more state to two systems with less state, but you’ve 
created an interaction surface between the two protocols—they must 
now work together to build a complete forwarding table.

A single set of hosts with different access policies is split onto multiple 
virtual topologies on the same physical network. You’ve simplified 
the amount of state in filtering, but you’ve created an interaction 
surface between the two virtual topologies and between the two 
topologies and the control plane. In addition, you’ve exposed new 
shared risk groups where a single physical failure can cause multiple 
logical ones. Hence you’ve traded state in one control plane for inter-
action surfaces between multiple control planes.

Even two routers communicating within a single control plane can be 
considered an interaction surface. This breadth of definition is what 
makes it so very difficult to define what an interaction surface is.

Interaction surfaces aren’t a bad thing; they help engineers and 
designers divide and conquer in any given problem space, from mod-
eling to implementation. At the same time, interaction surfaces are all 
too easy to introduce without thought.

Managing Complexity through the Wasp Waist
There is a simple model that is ubiquitous throughout the natural 
world, and is widely mimicked in the engineering world. While engi-
neers don’t often consciously apply this model, it’s actually used all 
the time. What is this model? 

Figure 5 illustrates the hourglass model in the context of the four-
layer Department of Defense (DoD) model that gave rise to the 
Internet Protocol Suite.

Figure 5: The DoD Model and the 
“Wasp Waist”

HTML, SMTP, SNMP, FTP, TELNET, etc.

Ethernet, SONET, Token Ring, Microwave
Satellite, etc.

TCP, UDP

IP

Application

Physical

Transport

Network

Network Complexity continued
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At the bottom layer, the physical transport system, there is a wide 
array of protocols, from Ethernet to Satellite. At the top layer, where 
information is marshaled and presented to applications, there is a 
wide array of protocols, from Hypertext Transfer Protocol (HTTP) 
to TELNET (and thousands of others besides). A funny thing hap-
pens when you move towards the middle of the stack, however: the 
number of protocols decreases, creating an hourglass. Why does this 
work to control complexity? 

Going back through the three components of complexity—state, 
optimization, and surface—exposes the relationship between the 
hourglass and complexity. 

• State is divided by the hourglass into two distinct types of state: 
information about the network, and information about the data 
being transported across the network. While the upper layers are 
concerned with marshaling and presenting information in a usable 
way, the lower layers are concerned with discovering what connec-
tivity exists and what the properties of that connectivity actually 
are. The lower layers don’t need to know how to format a File 
Transfer Protocol (FTP) frame, and the upper layers don’t need 
to know how to carry a packet over Ethernet—state is reduced at 
both ends of the model.

• Optimization is traded off by allowing one layer to reach into 
another layer, and by hiding the state of the network from the 
applications. For instance, the Transmission Control Protocol, 
(TCP) doesn’t really know the state of the network other than 
what it can gather from local information. TCP could potentially 
be much more efficient in its use of network resources, but only at 
the cost of a layer violation, which opens up interaction surfaces 
that are difficult to control.

• Surfaces are controlled by reducing the number of interaction 
points between the various components to precisely one—IP. This 
single interaction point can be well defined through a standards 
process, with changes in the one interaction point closely regulated 
to prevent massive rapid changes that will reflect up and down the 
protocol stack.

The layering of a stacked network model is, then, a direct attempt 
to control the complexity of the various interacting components of 
a network.

Managing Complexity as an Engineer
Managing complexity in design in a general sense is just one appli-
cation of the state/optimization/surface model. Another use is in 
learning how to understand complex systems quickly—a skill every 
engineer could use in everyday life. Here this three-sided model is 
used as part of a process, or a way of thinking about systems. 
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There are three steps in this model, or rather three questions:

• Why is this being done this way?

• What is being accomplished?

• What is this like?

Why acts as an abstractor, focusing on the problem at hand by 
excluding others. This question uncovers the purpose, or the goal, 
of the system. Asking why also connects the system to the business 
driver. As an example: “Why does OSPF elect a designated router?” 
might be a perfectly valid question in some settings, but not necessar-
ily while you’re troubleshooting slow network convergence. Asking 
why can focus energy and uncover motives that drive configuration, 
policy, and other choices.

What is the question engineers normally engage with first, but they 
often do so with little structure. The three-pronged complexity model 
provides a solid model with which to find the right questions to ask. 
Figure 6 illustrates this method.

Figure 6: A Structure for Asking What
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By focusing on questions about each of the three prongs of the com-
plexity model, you can quickly uncover the tradeoffs made in system 
design—even if those tradeoffs weren’t made intentionally. 

Network Complexity continued
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Finally, what is this like helps relate the problem space, the potential 
solutions, and even potential problems with potential solutions to the 
system being considered. Assume a new working group is formed to 
solve a particular problem in the routing space. The working group 
quickly decides on using Dijkstra’s Shortest Path First (SPF) algo-
rithm to find the solution to one particular problem the protocol is 
set out to solve.

Asking what is this like should immediately uncover the relation-
ship of new solution to existing link-state protocols, such as OSPF. 
From there, given experience with OSPF, the engineer knows what 
sort of convergence characteristics the newly proposed solution is 
likely to have, and where to look for potential problems. As link-
state protocols are subject to microloops in some situations, so the 
newly proposed solution is likely to be subject to microloops. As 
link-state protocols can suffer from overwhelming amounts of state 
during large-scale convergence events, so the new solution might suf-
fer from the same sort of problem.

Concluding Thoughts
You can’t run, and you can’t hide from complexity; there’s no point 
in even trying. You’re going to encounter it; ignoring it doesn’t make 
the problem go away, it just allows the problem to fester under some 
“rug” in some corner of your network. The complexity problems 
you create today will return as bigger, more complex problems in 
just a few years. To quote someone who’s spent years looking at 
complexity:

“Trying to make a network proof against predictable problems tends 
to make it fragile in dealing with unpredictable problems (through an 
ossification effect as you mentioned). Giving the same network the 
strongest possible ability to defend itself against unpredictable prob-
lems, it necessarily follows, means that it MUST NOT be too terribly 
robust against predictable problems—not being too robust against 
predictable problems is necessary to avoid the ossification issue, but 
not necessarily sufficient to provide for a robust ability to handle 
unpredictable network problems.”

 —Tony Przygienda

That call at 2 a.m. might not be pleasant, but solving it the wrong way 
might cause a much worse call at 2 a.m. sometime later. Hardening 
the network against all failures eventually means to make it fail spec-
tacularly when a failure that you didn’t predict occurs—there’s just 
no way around this reality.

When dealing with engineering problems, then, a little humility 
around what can, and cannot, be solved is in order. Don’t ignore 
complexity, but don’t think you can solve it, either. Instead, remem-
ber to treat every situation as a set of tradeoffs—and if you don’t see 
the tradeoffs, you’re not looking hard enough.
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IPv6 and Packet Fragmentation
by Geoff Huston, APNIC

V ersion 6 of the Internet Protocol (IPv6) introduced very few 
changes to its Version 4 predecessor (IPv4). The major change 
was of course the expansion of the size of the IP source and 

destination address fields in the IP packet header from 32 bits to 128 
bits. Some other changes, however, apparently were intended to sub-
tly alter IP behaviour. One of them was the change in treatment of IP 
packet fragmentation. 

It appears that rather than effecting a slight improvement from 
IPv4, the manner of fragmentation handling in IPv6 appears to be 
significantly more difficult. In light of these problems, it is perhaps 
unsurprising that calls have been made from time to time to dispense 
completely with packet fragmentation in IPv6[1], as the current situa-
tion with IPv6 appears to be worse than both no fragmentation and 
the IPv4-style of fragmentation.

Packet Fragmentation
One of the more difficult design exercises in packet-switched net-
work architectures is the design of packet fragmentation. 

In time-switched networks, developed to support a common bearer 
model for telephony, each “unit” of information passed through the 
network occurred within a fixed timeframe (an analogue voice stream 
was digitized into 8,000 sample points per second, so the basic time 
unit for switching these digital samples was 1/8,000 of a second), 
which resulted in fixed-size packets, all clocked off a common time 
base. 

Packet-switched data networks could dispense with a constant com-
mon time base, in turn allowing individual data packets to be sized 
according to the needs of the application as well as the needs and 
limitations of the network substrate. 

For example, smaller packets have a higher packet header–to–packet 
payload ratio and are consequently less efficient in data carriage 
and impose a higher processing load as a function of effective data 
throughput. On the other hand, within a packet-switching system 
the smaller packet can be dispatched faster, reducing head-of-line  
blocking in the internal queues within a packet switch and poten-
tially reducing network-imposed jitter as a result. This reduction can 
make it easier to use the network for real-time applications such as 
voice or video. Larger packets allow larger data payloads, in turn 
allowing greater carriage efficiency. Larger payloads per packet  
also allows a higher internal switch capacity when measured in terms 
of data throughput, in turn facilitating higher carriage capacity and 
higher-speed network systems. 
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Various network designs adopted various parameters for packet 
size. The original Ethernet specification, invented in the early 1970s, 
adopted a variable packet size, with supported packet sizes of between 
64 and 1,500 octets. Fiber Distributed Data Interface (FDDI), a fibre 
ring local network, used a variable packet size of up to 4,478 octets. 
Frame Relay used a variable packet size of between 46 and 4,470 
octets. The choice of variable-size packets allows applications to 
refine their behaviour. Jitter and delay-sensitive applications, such 
as digitised voice, may prefer to use a stream of smaller packets in 
an attempt to minimise jitter, while reliable bulk data transfer may 
choose a larger packet size to increase the carriage efficiency. The 
nature of the medium may also have a bearing on this choice. If there 
is a high Bit Error Rate (BER) probability, then reducing the packet 
size minimises the impact of sporadic errors within the data stream, 
possibly increasing throughput in such environments.

In designing a network protocol that is intended to operate over a 
wide variety of substrate networking media and support as wide a 
variety of applications as possible, the designers of IP could not rely 
on a single packet size for all transmissions. Instead, the designers of 
IPv4 provided a packet length field in the packet header. This field 
was a 16-bit octet count, allowing for an IP packet to be anywhere 
from the minimum size of 20 octets (corresponding to an IP header 
without any payload) to a maximum of 65,535 octets. 

Obviously not all packets can fit into all underlying media. If the 
packet is too small for the minimum payload size, then it can be 
readily padded. But if it’s too big for the maximum packet size of the 
media, then the problem is a little more challenging. IPv4 solved this 
problem using “forward fragmentation.” The basic approach is that 
any IPv4 router that is unable to forward an IPv4 packet into the next 
hop because the packet is too large for the next-hop network may 
split the packet into a set of smaller “fragments,” copying the origi-
nal IP header fields into each of these fragments, and then forwarding 
each of these fragments instead. The fragments continue along the 
network path as autonomous IP packets, and the destination host is 
responsible for re-assembling them back into the original IP packet 
and pass the result, namely the packet as it was originally sent, back 
up to the local instance of the end-to-end transport protocol. 

It is a clever approach, as it hides the entire network-level fragmenta-
tion issue from the upper-level protocols, including the Transmission 
Control Protocol (TCP) and User Datagram Protocol (UDP). The 
transport protocols and the upper-level application protocols can, 
in theory, treat the underlying network as capable of supporting any 
IP packet size, and the IP layer performs the necessary adaptation to 
allow the IP packet to traverse any media layer. However, even with 
this intended transparency of operation, this approach has managed 
to earn a very poor reputation. 

IPv6 Fragmentation continued
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Packet fragmentation was seen as being a source of performance inef-
ficiency, a security vulnerability, and it even posed a cap on maximal 
delay-bandwidth product on data flows across networks. IP fragmen-
tation was considered harmful[2,3].

The IPv6 designers removed the fragmentation controls from the 
common IPv4 packet header and placed them into an 8-octet IPv6 
Extension Header. This additional packet header, placed between the 
IPv6 packet header and the end-to-end transport packet header, was 
present only in fragmented packets (whereas the IPv4 fragmentation 
control fields are present in all IPv4 packet headers). Secondly, IPv6 
did not permit fragmentation to be performed when the packet was 
in transit within the network: all fragmentation was to be performed 
by the packet source prior to transmission. This stipulation, too, has 
resulted in an uncomfortable compromise, where an unforeseen need 
for fragmentation relies on Internet Control Message Protocol for 
IPv6 (ICMPv6) signalling from the interior of the network back to 
the original packet source and retransmission.

In the case of TCP, a small amount of layer violation goes a long way. 
If the sending host is permitted to pass an IPv6 Packet Too Big (PTB) 
ICMPv6 diagnostic message up to the TCP session that generated 
the original packet, then it’s possible for the TCP driver to adjust its 
sending Maximum Segment Size (MSS) to the new, smaller value and 
carry on. In this case, no fragmentation is required. 

UDP is different. In UDP a functional response to path message size 
issues inevitably relies on interaction with the upper-level application 
protocol.

It appears that when we consider fragmentation in IPv6 we have to 
consider the treatment of IPv6 Extension Headers and UDP. And that 
story is not a robust one[4].

The DNS and IPv6 Packet Fragmentation
The Domain Name System (DNS) is the major user of UDP. As a 
consequence of the increasing use of Domain Name System Security 
Extensions (DNSSEC) as a security mechanism, coupled with the 
increasing use of IPv6 as the IP protocol transition gathers momen-
tum, it is time to look once more at the interaction of larger DNS 
payloads over IPv6.

To illustrate this situation, here are two DNS queries, both made by 
a recursive resolver to an authoritative name server, both using UDP 
over IPv6.

Query 1:

$ dig +bufsize=4096 +dnssec 000-4a4-000a-000a-
0000-b9ec853b-241-1498607999-2a72134a.ap2.
dotnxdomain.net. @8.8.8.8
139.162.21.135

(MSG SIZE rcvd: 1190)
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Query 2:

$ dig +bufsize=4096 +dnssec 000-510-000a-000a-0000-
b9ec853b-241-1498607999-2a72134a.ap2.
dotnxdomain.net. @8.8.8.8
status: SERVFAIL

(MSG SIZE rcvd: 104)

What we see here are two almost identical DNS queries that have 
been passed to Google’s Public DNS service to resolve. 

In the first case, the DNS response is 1,190 octets long, and in the 
second case the response is 1,346 octets long. The DNS server is an 
IPv6-only server, and the underlying host of this name server is con-
figured with a local maximum packet size of 1,280 octets. Therefore, 
in the first case the response being sent to the Google resolver is a 
single, unfragmented IPv6 UDP packet, and in the second case the 
response is broken into two fragmented IPv6 UDP packets. And it is 
this single change that triggers the Google Public DNS Server to pro-
vide the intended answer in the first case, but to return a SERVFAIL 
failure notice in response to the fragmented IPv6 response. When the 
local Maximum Transmission Unit (MTU) on the server is lifted from 
1,280 octets to 1,500 octets, the Google resolver returns the server 
DNS response in both cases. 

The only difference in these two responses is IPv6 fragmentation, but 
there is perhaps more to it than that. 

IP fragmentation in both IPv4 and IPv6 “raises the eyebrows” of 
firewalls. Firewalls typically use the information provided in the 
transport protocol header of the IP packet to decide whether to admit 
or deny the packet. For example, you may see firewall rules admitting 
packets using TCP ports 80 and 443 as a way of allowing web traf-
fic through the firewall filter. For this process to work, the inspected 
packet needs to contain a TCP header and use the fields in the header 
to match against the filter set. Fragmentation in IP duplicates the IP 
portion of the packet header, but the inner IP payload, including the 
transport protocol header, is not duplicated in every ensuing packet 
fragment. Thus trailing fragments pose a conundrum to the firewall. 
Either all trailing fragments are admitted, a situation that has its own 
set of consequent risks, or all trailing fragments are discarded, a situ-
ation that also poses connection issues[5].

IPv6 adds a further factor to the picture. In IPv4 every IP packet, frag-
mented or not, contains IP fragmentation control fields. In IPv6 these 
same fragmentation control fields are included in an IPv6 Extension 
Header that is attached only to packets that are fragmented. 

IPv6 Fragmentation continued
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This 8-octet Extension Header is placed immediately after the IPv6 
packet header in all fragmented packets, meaning that a fragmented 
IPv6 packet does not contain the Upper Level Protocol Header start-
ing at octet offset 40 from the start of the IP packet header. But in 
the first packet of this set of fragmented packets, the Upper Level 
Protocol Header is chained off the fragmentation header, at byte off-
set 48, assuming that there is only a Fragmentation Extension Header 
in the packet. The implications of this fact are quite significant. 
Instead of always looking at a fixed point in a packet to determine its 
upper-level protocol, the packet-handling device needs to unravel the 
Extension Header chain, raising two rather tough questions. First, 
how long is the device prepared to spend unravelling this chain? And 
second, would the device be prepared to pass on a packet with an 
Extension Header that it did not recognise? 

In some cases, implementers of IPv6 equipment have found it simpler 
to just drop all IPv6 packets that contain Extension Headers. Some 
measurements of this behaviour are reported in RFC 7872[6]. This 
document reports a 38% packet-drop rate when sending fragmented 
IPv6 query packets to DNS Name servers. But the example provided 
previously is in fact the opposite case to that reported in RFC 7872, 
and the example illustrates a more conventional case. It’s not the 
queries in the DNS that can readily grow to sizes that require packet 
fragmentation, but the responses. The relevant question concerns 
the anticipated probability of packet drop when sending fragmented 
UDP IPv6 packets as responses to DNS queries. To rephrase the ques-
tion slightly, how do DNS recursive resolvers fare when the IPv6 
response from the server is fragmented?

For a start, it appears from the example cited here that Google’s 
Public DNS resolvers experienced some packet-drop problem when 
they passed a fragmented IPv6 response (this problem was noted in 
mid-2017, and Google has subsequently corrected it). But was this 
problem limited to just one or two DNS resolvers, or do many other 
DNS resolvers experience a similar packet-drop issue? How wide-
spread is this problem?

We used an experiment that tested resolver capabilities in handling 
DNS responses that entailed the use of fragmented UDP IPv6 packets. 
The experiment used a measurement script embedded in an online 
ad to enlist a large number of endpoints to perform resolution of a 
domain name[7]. For this measurement, we altered the DNS resolu-
tion system to fragment certain DNS responses. 

The approach we took in this experiment was to use a user-level 
packet-processing system that listens on UDP port 53 and passes all 
incoming DNS queries to a back-end DNS server. When it receives 
a response from this back-end server it generates a sequence of IPv6 
packets that fragments the DNS payload and uses a raw device socket 
to pass these packets directly to the device interface. 
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We are relying on the observation that IPv6 packet fragmentation 
occurs at the IP level in the protocol stack, so the IPv6 driver at the 
remote end will reassemble the fragments and pass the UDP payload 
to the DNS application, and if the resolver receives the payload pack-
ets , there will be no trace that the IPv6 packets were fragmented. 

The results of this experiment follow:

• 10,851,323 experiments used IPv6 queries for the name server 
address.

• 6,786,967 experiments queried for the terminal DNS name.

• Fragmented response: 6,786,967/10,851,323 = 62.54% = 37.45% 
drop.

Some 37% of client endpoints used IPv6-capable DNS resolvers that 
were incapable of receiving a fragmented IPv6 response.

TCP and IPv6 Packet Fragmentation
The use of IPv6 Extension Headers implies that any transport pro-
tocol-sensitive functions within network equipment must follow the 
Extension Header chain of the packet header. This process takes a 
variable number of cycles for the device. It also requires that the 
device should recognise all the Extension Headers encountered on the 
header chain as passing through Extension Headers that the device 
either does not understand or is not prepared to check to determine 
whether or not it is a security risk. It’s easier to drop all packets with 
Extension Headers! And that is what a lot of deployed equipment  
evidently does.

To measure the extent to which equipment drops fragmented IPv6 
packets in TCP, we used a front-end unit to a web server and con-
figured this front end to perform packet fragmentation on outbound 
packets as required. All TCP packets passed across the unit from the 
back end towards the Internet that contain a TCP payload larger 
than 15 octets are fragmented (Figure 1).

Figure 1: Experiment Configuration
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The subsequent data-analysis phase can detect if the end host has 
received and successfully reassembled the set of fragments by looking 
at a log of packets. If an incoming TCP Acknowledgement (ACK) has 
a sequence number that encompasses the sending sequence number 
of outbound fragments within the same TCP session, that is evidence 
that the remote end has successfully reassembled the fragmented 
packet.

How “Real” Is This Experiment?
Before looking at the results, it may be useful to ask whether this 
experiment represents a “real” scenario that is commonly encoun-
tered on the Internet.

It’s certainly the case that in TCP over IPv6 we do not expect to see 
packet fragmentation in the normal course of events. 

A TCP sender should ensure that all outbound TCP segments fit 
within the local interface MSS size, so in the absence of network 
path MTU issues, a sender should not be fragmenting outbound TCP 
packets before sending them. 

What about the case where the path MTU is smaller than the local 
interface MTU? When a packet encounters a network path next hop 
where the packet is larger than the next-hop MTU, the IPv6 router 
constructs an ICMPv6 PTB message, noting the size of the next hop, 
and also including the original packet headers as the payload of this 
ICMPv6 message. It sends this ICMPv6 diagnostic message back to 
the original sender and discards the original packet.  

When a sending host receives this ICMPv6 PTB message, it also has 
the TCP packet header as part of the inner payload. This informa-
tion can be used to find the local TCP control entry for this session, 
and the outbound MSS value of this TCP session can be updated 
with the new value. In addition to the updated size information, 
the TCP header in the ICMPv6 PTB message payload also contains 
the sequence number of the lost packet. The sending TCP process 
can interpret the ICMPv6 PTB message as an implicit Negative 
Acknowledgement (NACK) of the lost data, and resend the discarded 
data, using the updated MSS size. Again, no packet fragmentation is 
required. 

All this sounds like a blatant case of “layer violation” and we should 
call in the Protocol Police. But before we do so, maybe we should 
think about the hypothetical situation where the host did not pass 
the ICMPv6 PTB message to the TCP control block. This situation is 
analogous to the case where the ICMPv6 PTB message is not passed 
to the host at all, where, for example, some unhelpful piece of net-
work filtering middleware is filtering out all ICMPv6 messages.
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In this case, the sending TCP session has sent a TCP segment and is 
waiting to receive an ACK. The receiver will not get this packet, so it 
cannot ACK it. The sender might have a retransmission timer and it 
might try to resend the offending large packet, but that too will get 
lost, so it will never get the ACK.

This situation results in a wedged TCP state, or a Path MTU Black 
Hole condition. Hiding ICMPv6 PTB messages from the TCP con-
troller, either because of local processing rules within the host or 
because some network element has decided to drop them, is invari-
ably harmful.

In that sense, we have constructed a somewhat “unreal” experiment, 
and we should not expect to see applications that critically depend on 
the correct working of packet fragmentation in TCP experiencing the 
same network conditions as those we’ve set up here.

On the other hand, fragmentation is an IP function, not a func-
tion performed by an end-to-end transport protocol. Therefore, the 
question of whether a host can receive a fragmented UDP packet is 
essentially the same question as whether a host can receive a frag-
mented TCP packet—at least from the perspective of the host itself. 
In both cases the real question is whether the IPv6 process on the host 
can receive fragmented IPv6 packets. 

While the experiment itself uses conditions that are essentially an 
artifice, the result, namely the extent to which IPv6 Extension Header 
drop occurs when passing fragmented IPv6 packets towards end 
hosts, is nevertheless a useful and informative result.

Results
Over a period in August 2017, this experiment presented fragmented 
TCP packets to 1,702,949 unique IPv6 addresses. The results are 
summarized in Table 1.

Table 1: Results of Fragmentation Test

Count % of Total

Sent Fragmented TCP Packets 1,675,898

Acknowledged Fragmented TCP Packets 1,324,834 79.03%

Failed to Acknowledge Fragmented TCP Packets 351,514 20.97%

Compared to the earlier DNS packet fragmentation result, namely 
that some 37% of endpoints who used IPv6-capable DNS resolvers 
used resolvers that were incapable of receiving IPv6 Fragmentation 
Extension Headers, the overall failure rate observed here of some 
21% looks somewhat better. However, “better” is a relative term, as 
it is still the case that one-fifth of IPv6-capable endpoints are unable 
to receive a fragmented IPv6 packet. 

IPv6 Fragmentation continued
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Having one-fifth of the end-user population incapable of receiving 
fragmented large responses over IPv6 is indeed a serious problem. 

Let’s look briefly at the IPv6-over-IPv4 auto-tunnelling techniques 
Teredo and 6to4 (Table 2), as these two auto-tunnelled IPv6 bridging 
technologies just don’t seem to want to die!

Table 2: Results of IPv6 Fragmentation Test for Teredo and 6to4 Prefixes

Teredo % 6to4 %

Sent Fragmented TCP Packets 53,780 24,384

Acknowledged Fragmented TCP Packets 263 0.5% 1,486 6.1%

Failed to Acknowledge Fragmented TCP Packets 53,517 98.5% 22,898 93.9%

Both of these auto-tunnelling services are atrocious in this respect! 
Almost no Teredo endpoints can handle IPv6 fragmentation, and the 
6to4 failure rate is not much better. Having no IPv6 at all is far bet-
ter than having such a terrible service, and I can think of few better 
justifications for turning off the remaining Teredo and 6to4 gateways 
than these figures! What is even more depressing is that these two 
auto-tunnelling technologies represent one-quarter of the count of 
unique /64 prefixes seen in this experiment.

There is a considerable level of variation in the extent to which net-
works support the delivery of IPv6 Fragmentation Extension Headers 
to hosts. In some cases, it appears that the choice of customer prem-
ises equipment, or the configuration of IPv6 firewalls, may be a factor. 
Where the failure rate is very high it would point to the drop point 
being part of the behaviour of the provider network rather than the 
behaviour of the customer premises equipment.

Conclusions
Whatever the reasons, the conclusion here is unavoidable: IPv6 frag-
mentation is just not a viable component of the IPv6 Internet.

We need to adjust our protocols to avoid fragmentation.

For TCP, this adjustment should not be a major issue. Of course, this 
assertion relies on ICMPv6 PTB messages getting back to the sender’s 
TCP process, but that is a major topic in its own right, so we won’t 
delve deeper into this subject right now.

However, for UDP, this conclusion should be cause for some major 
rethinking of the way the DNS works, as the combination of DNSSEC, 
UDP, and IPv6 is really not going to work very well. It has implica-
tions for other UDP-based protocols as well, particularly where the 
protocol can generate large payloads.
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The Quick UDP Internet Connections (QUIC) protocol, which uses a 
TCP-like control protocol embedded within a UDP encapsulation[8], 
has taken the pragmatic position of using a maximum packet size 
of 1,350 octets as a universal base and does not expect to encoun-
ter fragmentation issues given this somewhat conservative choice 
of packet size. If the DNS over IPv6 used a similar upper limit of 
UDP packet size and always sent back truncated responses for larger 
answers, we could probably avoid many of the packet-loss problems 
that we encounter today. Of course, the consequent larger use of TCP 
has its own implications in terms of query processing capacity for 
DNS resolvers and servers, so there are no free points here.

However, one conclusion looks starkly clear to me from these results. 
We can’t just assume that the DNS as we know it today will just work 
in an all IPv6 future Internet. We must make some changes in some 
parts of the protocol design to get around this current widespread 
problem of IPv6 Extension Header packet loss in the DNS, assum-
ing that we want to have a DNS at all in this all-IPv6 future Internet.
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Letters to the Editor
Ole and William,

As a loyal IPJ reader for decades, I think you did a terrific job on your 
blockchain piece in the November 2017 issue of IPJ. I don’t think I 
have seen anything yet as comprehensive, understandable, and inter-
esting to read on this subject. Thanks for writing and publishing the 
piece. There is far too much fluff and misinformation on blockchain 
and cryptocurrencies, so it is nice to see a solid treatment that pro-
vides helpful information to further everyone’s understanding of this 
important technology.

— David Strom, david@strom.com

The author responds:

David,

Thank you for the kind words. A lot of credit goes to the reviewers, 
who did an awesome job of providing detailed feedback on the first 
draft.

—Bill Stallings, ws@shore.net

Ole,

I just re-read Geoff Huston’s article on Network Address Translation 
(NAT) in the November 2017 issue (Volume 20, No. 3), and needed 
to applaud—possibly for the second time. Geoff is in a league of his 
own—the clear thinking, the pragmatism, the ability to communicate 
clearly and understandably—and not the least, the perspective on 
history. How we got here and why. Enlightening. NAT changed the 
Internet and continues to do so in ways I had never thought of until I 
read the article. Understanding that the 2018 Internet is vastly differ-
ent in almost every possible way from the 1995 and 2005 Internet is 
extremely important. Otherwise we continue to plan for an historic 
model rather than the future. IPJ rocks!

—Helge Skrivervik, helge@mymayday.com

Ole,

As a data-networking engineer and architect of 20 years on the 
front line of fortune 100 network projects, I would like to offer a 
counter perspective from the recent article “In Defence of NATs”  
(Volume 20, No. 3).

The networking world seems to be losing sight that NAT is a “crutch” 
of sorts, a way of dealing with the primary problem in a lack of IPv4 
address space. 
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By trying to justify NAT as a way to scale up IPv4 future potential 
scalability by “stealing” port/socket bits for something other than 
their originally intended purpose is nonsensical. One correction I 
would like to make on the article is the claim that NAT provides 
a firewall function. NAT and firewall functionality are mutually 
exclusive mechanisms, even if they are most often found on the same 
network device. NAT provides an obscured view of a host from else-
where via address/port translation but does not by itself provide 
natural protection from the host on the other side of the translation 
point. Firewall protection encompasses the scrutinizing and control-
ling of the traffic that is allowed to traverse the NAT point. Firewalls 
provide this function with or without NAT, and NAT can function 
with or without a firewall mechanism.

Slow adoption of IPv6 has nothing to do with any perceived brilliant 
nature of NAT, and NAT does present real-world problems for sev-
eral types of very important software; Microsoft’s Active Directory 
Replication and IBM’s Virtual Tape Library (VTL)/Virtual Tape 
Server (VTS) are two examples off the top of my head. When travers-
ing a NAT point, many applications that share their host IP address in 
the data field with other hosts require active “swapping” of this pay-
load-imbedded IP address or another compensating mechanism. The 
communication would “break” the application’s intended commu-
nication model without the addition of a compensating mechanism.

The question in the article “should I deploy IPv6 now?” is the wrong 
question. The Internet was first “born” in a practical sense at the 
point it became commercially available to the world to use. In the 
first 25 years it grew at an amazing rate, doubling its size several 
times over in a very natural and organic way. It has been almost a 
quarter century since IPv6 was released, and its resistance has been 
significant for good reasons beyond the scope of this letter. IPv6 is 
“The Emperor’s New Clothes,” otherwise IPv4 would have been 
replaced by now if IPv6 had been a natural and organic progression 
of IPv4, and there would be no need to “defend” NAT or speak up 
against its forced ubiquitous overuse. Someone once told me that 
IPv6 was here to stay. To my way of thinking it has not yet arrived 
after almost a quarter century.

While IPv4 port/socket numbers can be seen as “borrowed address 
bits” for NAT, I believe it is a distorted view of port/socket intended 
use. Fields and protocols are defined and delineated for a reason. 
If you wish to repurpose bits—for example, Type of Service (ToS) 
to Differentiated Services Code Point (DSCP) use—then repurpose 
them officially. Until then, fields and protocols should be respected as 
originally intended and not subject to implied de-facto depreciation 
by NAT’s liberal theft. Field definitions and structure have purpose.
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The sirens’ song that I believe we collectively are starting to fall 
for is that NAT is a “one-size-fits-all” solution for all forms of net-
work scalability in a ubiquitous way. This is not the real-world case. 
Resource hosts need (in a practical sense) globally unique Layer 3 
identifiers. Consider corporate mergers/acquisitions as well as dives-
titures leading to merging of a divested entity. Trying to merge two 
significant company networks together that both use NAT RFC 1918 
on the “inside” for resource hosts is overly complex in a way that 
it would not have to be if a viable replacement for IPv4 had been 
rolled out in a manner that world corporations could embrace com-
mercially. That protocol does not exist. While I agree with the notion 
that the Internet cannot be “stateless,” this does not uniquely justify 
NAT as “middleware.” End hosts ideally should be ultimate keepers 
of their stateful connections; justifying NAT just for the sake of IPv4 
continued life-support is nonsensical.

NAT has a proper use; middleware that uses NAT as a complementary 
protocol along with others, such as “load balancing” [for example, 
the Local Traffic Manager (LTM) product by F5] is justifiable, but 
in this case application scalability and fault tolerance encompass 
the direct purpose of this middleware, not compensating for world 
IPv4 address depletion. Other forms of network middleware are per-
fectly justifiable, even if NAT did not need to exist; firewalls and 
Intrusion Prevention Systems (IPS) are examples. We should appre-
ciate NAT for its role as a “tactical” compensating mechanism for 
IPv4 address space depletion, not as a “strategic future-proofing” 
scalability mechanism for IPv4. People with broken legs appreciate a 
crutch, but would not appreciate needing to use a crutch for the rest 
of their lives if their body decided not to heal itself because the body 
viewed the crutch as “good enough.” NAT seen as a long-term way 
of extending IPv4 scalability and, therefore, lifespan is just putting 
lipstick on the IPv4 pig.

NAT is a mechanism to be used (like any other protocol) where it 
makes sense to use it and no further. If IPv6 or some other more 
sensible replacement for IPv4 were completely rolled out with IPv4 
relegated to the history books, then the practical use of NAT in such 
a future environment would be a single-digit fraction of its current 
existence. That existence would be primarily in terms of resiliency 
mechanisms such as load balancing, as previously mentioned, and 
certain (client) mobility cases. One of the most memorable pieces of 
wisdom I have ever heard about IT applies here very well: “There is 
nothing more permanent than a temporary solution.” Let us not fall 
victim to this easy psychological trap only because we seem to have 
collectively painted ourselves into a corner of sorts.

—Leroy Harvey, leroy.harvey@hotmail.com

Letters continued
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The author responds:

The purpose of any opinion piece is to provoke the reader into think-
ing about the issue, and perhaps looking at it from a set of different 
perspectives. For more than two decades the Internet Engineering Task 
Force (IETF) viewed NATs as a somewhat ugly hack, and from time 
to time attempted to discourage its use in various ways. However, the 
undeniable observation is that NATs keep today’s Internet running. 
Perhaps there is more to NATs than a rather ugly short-term hack 
that should disappear. What if they are here to stay? The opinion 
piece was intended to look at NATs from a perspective that shared 
little with the orthodox view of NATs, and provoke readers to think 
about this unanticipated direction that the Internet has taken and 
wonder where it may lead. I’m pleased to see that this provocation 
has motivated one reader to provide a thoughtful response.

—Geoff Huston, APNIC
gih@apnic.net

Letters may be edited for clarity. We’d love to hear from you. Send us 
your feedback via e-mail to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher 
ole@protocoljournal.org
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Ten years ago we published the first issue of The Internet Protocol 
Journal (IPJ). Since then, 41 issues and a total of 1,612 pages have 
been produced. Today, IPJ has about 37,000 subscribers all around the 
world. Although most of our readers prefer the paper edition, a grow-
ing number of subscribers are reading IPJ online or downloading the 
PDF version. This shift in reading habits may be related to the changes 
in technology over the last 10 years. Lower costs and higher-resolution 
displays and printers, as well as improvements in Internet access tech-
nologies, have made the online “experience” a lot better than in 1998. 

Publishing is by no means the only area that has seen dramatic changes 
in the last decade. We asked Vint Cerf and Geoff Huston to reflect 
on Internet developments in this period, and the resulting articles, 
“A Decade of Internet Evolution” and “A Decade in the Life of the 
Internet,” are included in this issue.

Let me take this opportunity to thank all those people who have made 
IPJ possible. Our authors deserve a round of applause for carefully ex-
plaining both established and emerging technologies. They are assisted 
by an equally insightful set of reviewers and advisors who provide feed-
back and suggestions on every aspect of our publications process. The 
process itself relies heavily on two individuals: Bonnie Hupton, our 
copy editor, and Diane Andrada, our designer. Thanks go also to our 
printers and mailing and shipping providers. Last, but not least, our 
readers provide encourage ment, suggestions, and feedback. This jour-
nal would not be what it is without them.

Because we are considering some Internet history in this issue, I would 
like to announce a project that takes us even further back. Before joining 
Cisco in 1998 I worked at the Interop Company, where I was respon-
sible for the monthly publication of ConneXions—The Interoperability 
Report, published from 1987 through 1996. Unlike IPJ, ConneXions 
was produced in the “old-fashioned way” using various pieces of text 
and artwork assembled onto paste-up boards, and then photographed 
for subsequent plate making and offset printing. Thus no PDF files were 
produced at the time, but I am pleased to announce that The Charles 
Babbage Institute at the University of Minnesota has scanned the com-
plete collection (117 issues) and it is now available at: http://www.
cbi.umn.edu/hostedpublications/Connexions/index.html

Our final article is a look at Mobile WiMAX. WiMAX is an emerging 
technology that was originally designed as a fixed wireless broadband 
technology, a “DSL replacement,” but has evolved to support mobility. 

— Ole J. Jacobsen, Editor and Publisher 
ole@cisco.com
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www.cisco.com/ipj
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containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about 
all aspects of Internet technology. IPJ is not intended to promote any 
specific products or services, but rather is intended to serve as an 
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als involved in the design, development, and operation of public and  
private internets and intranets. In addition to feature-length articles, 
IPJ contains technical updates, book reviews, announcements, opin-
ion columns, and letters to the Editor. Topics include but are not 
limited to:

• Access and infrastructure technologies such as: Wi-Fi, Gigabit 
Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile 
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• Transport and interconnection functions such as: switching, rout-
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cles. For further information regarding article submissions, please 
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at 
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons 
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either 
express or implied, including but not limited to the implied warranties of merchantability, 
fitness for a particular purpose, or non-infringement. This publication could contain technical 
inaccuracies or typographical errors. Later issues may modify or update information provided 
in this issue. Neither the publisher nor any contributor shall have any liability to any person 
for any loss or damage caused directly or indirectly by the information contained herein.
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