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F r o m  T h e  E d i t o r

The Transmission Control Protocol (TCP) is a core component of the 
Internet Protocol Suite. TCP has proven robust and flexible in the 
face of changing network infrastructures, but may not be the most 
efficient way to retrieve the many components of today’s complex 
web pages. The Quick UDP Internet Connection (QUIC) protocol is 
an alternative to TCP for web traffic. QUIC was initially developed 
and deployed by Google and is now being standardized in the Internet 
Engineering Task Force (IETF). In our first article, Geoff Huston 
examines the motivations for QUIC and describes the protocol and 
its implementation.

According to Wikipedia: “A checksum is a small-sized datum derived 
from a block of digital data for the purpose of detecting errors that 
may have been introduced during its transmission or storage. It is 
usually applied to an installation file after it is received from the 
download server. By themselves, checksums are often used to verify 
data integrity but are not relied upon to verify data authenticity.” 
In preparation for the “rolling” of the root Key Signing Key of the 
Domain Name System (DNS), tests were developed to create so-called 
key-tags. This key-tag generation process “...became an adventure in 
itself that included beautiful discrete math, flawed functions, carefully 
crafted primes, multiple cryptographic libraries, and some brilliant 
people,” according to Roy Arends, author of our second article, “The 
Quest for the Missing Checksums.” IPJ doesn’t normally delve into 
complex mathematics, but in this case the interplay of various soft-
ware libraries and methods provides some valuable lessons for anyone 
involved in code generation and testing.

We would like to remind you that this journal depends on the gen-
erous support of numerous individuals and organizations. If you 
would like to help support IPJ, please contact us for further details. 
Comments, suggestions, book reviews, and articles are always wel-
come. Send your messages to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher 
ole@protocoljournal.org
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A Quick Look at QUIC
by Geoff Huston, APNIC

Q uick UDP Internet Connection (QUIC) is a network proto-
col initially developed and deployed by Google, and is now 
being standardized in the Internet Engineering Task Force
 (IETF). In this article we’ll take a quick tour of QUIC, look-

ing at the goals that influenced its design, and the implications QUIC 
might have on the overall architecture of the Internet Protocol Stack.

QUIC is not exactly a recent protocol, as the concept appears to have 
been developed by Google in 2012, and initial public releases of this 
protocol were included in Chromium version 29, released in August 
2013. QUIC is one of many transport-layer network protocols that 
attempt to refine the basic operation of the Transmission Control 
Protocol (TCP).

Why are we even thinking about refining TCP? 

TCP is now used in billions of devices and is perhaps the most widely 
adopted network transport protocol that we’ve witnessed so far.  
If this protocol weren’t fit for our use, then we would have moved 
on and adopted some other protocol or protocols instead. Part of  
the reason for the broad adoption of TCP is its incredible flexibility. 
The protocol can support a diverse variety of uses, from micro-
exchanges to gigabyte data movement, transmission speeds that vary 
from hundreds of bits per second to tens and possibly hundreds of 
gigabits per second. TCP is the workhorse of the Internet. But even 
so, there is room for refinement. TCP is used in many different ways, 
and its design represents a set of trade-offs that attempt to be a rea-
sonable fit for many purposes but not necessarily an ideal fit for any 
particular one.

One of the aspects of the original design of the Internet Protocol Suite 
was that of elegant brevity and simplicity. The specification of TCP[1] 
is not a single profile of behavior that has been cast into a fixed form 
that was chiseled into the granite slab of a rigid standard. TCP is 
malleable in many important ways. Numerous efforts over the years 
have shown that it is possible to stay within the standard definition 
of TCP, in that all the packets in a session use the standard TCP 
header fields in mostly conventional ways, but also to create TCP 
implementations that behave radically differently from each other. 
Critically, the TCP standard does not strictly define how the sender 
can control the amount of data in flight across the network. There is 
a convention to adopt an approach of slowly increasing the amount 
of data in flight while there are no visible errors in the data transfer 
(as shown by the stream of received acknowledgement [ACK] pack-
ets) and quickly responding to signals of network congestion (packet 
drop, as shown by duplicate acknowledgements) by rapidly decreas-
ing the sending rate. 
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Variants of TCP use different controls to manage this “slow increase” 
and “rapid drop” behavior[2] and may also use different signals to 
control this data flow. These signals include measurements of end-
to-end delay, or inter-packet jitter (such as the recently published 
Bottleneck Bandwidth and Round-trip Propagation Time (BBR) 
protocol[3]). All of these variants still manage to fit with the broad 
parameters of what is conventionally called TCP.

It is also useful to understand that most variants of TCP need to 
be implemented only on the data sender (the “server” in a client/
server environment). The common assumption of all TCP imple-
mentations is that clients will send a TCP ACK packet on successful 
receipt of both in-sequence and out-of-sequence data. It is left to the 
server’s TCP engine to determine how the received ACK stream will 
be applied to its internal model of network capability and how it will 
modify its subsequent sending rate accordingly. The implication is 
that deployment of new variants of TCP flow control is essentially 
based on deployment within service-delivery platforms and does not 
necessarily imply changing the TCP implementations in all the bil-
lions of clients. This feature also contributes to the flexibility of TCP.

But despite its considerable flexibility, TCP has its problems, 
particularly with web-based services. These days most web pages are 
not simple monolithic objects. They typically contain many separate 
components, including images, scripts, customized frames, and  
others. Each of these is a separate web “object,” and if you are using 
a browser that is equipped with the original implementation of the 
HyperText Transfer Protocol (HTTP) each object will be loaded in 
a new TCP session, even if the objects are served from the same IP 
address. The overheads of setting up both a new TCP session and 
a new Transport Layer Security (TLS)[4] session for each distinct 
web object within a compound web resource can become quite 
significant, and the temptation to reuse an already established TLS 
session is close to overwhelming. But this approach of multiplexing 
a number of data streams within a single TCP session also has issues. 
Multiplexing multiple logical data flows across a single session can 
generate unwanted interdependencies between the flow processors 
and generate Head of Line Blocking situations. It appears that while 
it makes some logical sense to share a single end-to-end security 
association and a rate-controlled data-flow state across a network 
across multiple logical data flows, TCP represents a rather poor 
way of achieving this outcome. The conclusion is that if we want to 
improve the efficiency of such compound transactions by introducing 
parallel behaviors into the protocol, we need to look beyond TCP.

Why not just start afresh and define a new transport protocol that 
addresses these shortcomings of TCP? The answer is simple: Network 
Address Translators (NATs)!
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NATs and Transport Protocols
The original design of IP allowed for a clear separation between the 
network element that allowed the network to accept an IP packet and 
forward it onto its intended destination (the “Internet” part of the 
IP protocol suite) and the end-to-end transport protocol that enabled 
two applications to communication via some form of “session.” 
The transport protocol field in the IPv4 packet header and the Next 
header field of the IPv6 packet header uses an 8-bit field to identify 
the end-to-end protocol. This design assumed that the network had 
no need to “understand” what end-to-end protocol was being used 
within a packet. Ideally an IP packet switch will not differentiate in 
its treatment of packets depending on the inner end-to-end protocol.

Some 140 protocols are listed in the IP protocol field registry[5]. TCP 
and the User Datagram Protocol (UDP) are just two of these proto-
cols (protocol values 6 and 17, respectively). In theory at any rate, 
there is room for a least 100 more. However, in the public Internet  
the story is somewhat different. TCP and UDP are widely accepted 
protocols, and the Internet Control Message Protocol (ICMP)  
(protocol 2) is generally accepted, but little else. How did this situa-
tion happen?

NATs changed the assumption about network devices not look-
ing inside the packet (to be precise, port-translating NATs changed 
that assumption). NATs are network devices that look inside the IP  
packet and re-write the port addresses used by TCP and UDP[6]. What 
if an IP packet contains an end-to-end transport protocol identifier 
value that is neither TCP nor UDP? Most NATs will simply drop 
the packet, on the basis of a security paradigm that “what you don’t 
recognize is likely to be harmful.” The pragmatic result is that NATs 
have limited the choice of transport protocols of an application in  
the public Internet to just two: TCP and UDP. 

If the aim is to deploy a new transport protocol—but not confuse 
active network elements that are expecting to see a conventional TCP 
or UDP header—then how can we achieve this goal?

This question was the challenge of the QUIC developers. 

QUIC over UDP
The solution that QUIC chose was a UDP-based approach. UDP is 
a minimal framing protocol that allows an application to access the 
basic datagram services that IP offers. Apart from the source and 
destination port numbers, the UDP header adds a length header and 
a checksum that covers the UDP header and UDP payload. It is essen-
tially an abstraction of the underlying datagram IP model with just 
enough additional information to allow an IP protocol stack to direct 
an incoming packet to an application that has bound itself to a nomi-
nated UDP port address. If TCP is an overlay across the underlying IP 
datagram service, then it’s a small step to think about layering TCP 
as a payload within a UDP packet.

QUIC continued
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Using our standard Internet model, QUIC is—strictly speaking—a 
datagram transport application. An application that uses the QUIC 
protocol sends and receives packets using UDP port 443. 

Technically, this change is very small to an IP packet, adding just 8 
bytes to the IP packet by placing a UDP header between the IP and 
TCP packet headers (Figure 1). The implications of this change are far 
more significant than these 8 bytes would suggest. However, before 
we consider these implications, let’s look at some QUIC services.

Figure 1: The QUIC Protocol 
Architecture
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QUIC and the Connection ID
If the choice of UDP as the visible end-to-end protocol for QUIC was 
a choice dictated by the inflexibility of the base of deployed NAT 
devices in the public Internet and their collective inability to accom-
modate new protocols, the way that NATs handle UDP packets has 
further implications for QUIC.

NATs maintain a translation table. In the most general model, a 
NAT takes the 5-tuple of incoming packets, using the destination 
and source IP addresses, the destination and source port addresses, 
and the protocol field, and performs a lookup into the table to find 
the associated translated fields. The address headers of the packet 
are rewritten to these new values, checksums are recomputed, and 
the packet is passed onward. Certain NAT implementations may use 
variants of this model. For example, some NATs use only the source 
IP address and port address on outbound packets as the lookup key, 
and the corresponding destination IP address and port address in 
incoming packets. 

Typically, the NAT generates a new translation table entry when a 
triggering packet is passed from the inside to the outside and sub-
sequently removes the table entry when the NAT assumes that the 
translation is no longer needed. For TCP sessions it is possible to 
maintain this translation table quite accurately. 
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New translation-table entries are created in response to outbound 
TCP SYN connection establishment packets and removed either 
when the NAT sees the TCP FIN exchange or in response to a TCP 
RST packet or when the session is idle for an extended period.

UDP packets do not have these clear packet exchanges to start and 
stop sessions, so NATs need to make some assumptions. Most NATs 
create a new translation table entry when they see an outbound UDP 
packet that has not matched any existing translation table. The entry 
is then maintained for some period of time (as determined by the 
NAT) and is then removed if there are no further packets that match 
the session signature. Even when there are further matching UDP 
packets, the NAT may use an overall UDP session timer and remove 
the NAT entry after some predetermined time interval.

For QUIC and NATs, this situation is a potential problem. The QUIC 
session is established between a QUIC server on UDP port 443 and 
the NAT-generated source address and port. However, at some point 
in the session lifetime the NAT may drop the translation-table entry, 
and the next outbound client packet will generate a new translation-
table entry that may use a different source address and port. How 
can the QUIC server recognize that this next-received packet, with 
its new source address and source port number, is actually part of an 
existing QUIC session?

QUIC uses the concept of Connection Identifiers (Connection IDs). 
Each endpoint generates connection IDs that will allow received 
packets with that connection ID to be routed to the process that is 
using that connection ID. During QUIC version negotiation these 
connection IDs are exchanged, and thereafter each sent QUIC packet 
includes the current connection ID of the remote party. 

This form of semantic distinction between the identity of a connec-
tion to an endpoint and the current IP address and port number that 
QUIC uses is similar to the Host Identity Protocol (HIP)[7]. This pro-
tocol also uses a constant endpoint identifier that allows a session to 
survive changes in the endpoint IP addresses and ports.

QUIC Streams
TCP provides the abstraction of a reliable order byte stream to appli-
cations. QUIC provides a similar abstraction to the application, 
termed within QUIC as streams. The essential difference here is that 
TCP implements a single behavior, while a single QUIC session can 
support multiple streams profiles. 

Bidirectional streams place the client and server transactions into a 
matched context, as is required for the conventional request/response 
transactions of HTTP/1. A client would be expected to open a bidi-
rectional stream with a server and then issue a request in a stream 
which would generate a matching response from the server. It is pos-
sible for a server to initiate a bidirectional push stream to a client, 
which contains a response without an initial request. 

QUIC continued
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Control information is supported using unidirectional control 
streams, where one side can pass a message to the other as soon as 
they are able. An underlying unidirectional stream interface, used to 
support control streams, is also exposed to the application.

Not only can QUIC support many different stream profiles, it can 
also support different stream profiles within a single end-to-end 
QUIC session. This concept is not a novel one, of course, and the 
HTTP/2 protocol is a good example of an application-level protocol 
adding multiplexing and stream framing in order to carry multiple 
data flows across a single transport data stream. However, a single 
TCP transport stream as used by HTTP/2 may encounter Head of 
Line Blocking where all overlay data streams fate-share across a sin-
gle TCP session. If one of the streams stalls, all overlay data streams 
could be affected and could stall as well. 

QUIC allows for a slightly different form of multiplexing where each 
overlay data stream can use its own end-to-end flow state, and a 
pause in one overlay stream does not imply that any other simultane-
ous stream is affected.

Part of the reason to multiplex multiple data flows between the same 
two endpoints in HTTP/2 was to reduce the overhead of setting up a 
TLS security association for each TCP session. This overhead can be 
quite significant when the individual streams are each sending a small 
object, and it’s possible to encounter a situation where the TCP and 
TLS handshake component of a compound web object fetch domi-
nates both the total download time and the data volume. 

QUIC pushes the security association to the end-to-end state that is 
implemented as a UDP data flow, so that streams can be started in 
a very lightweight manner because they essentially reuse the estab-
lished secure session state.

QUIC Encryption
As is probably clear from the references to TLS already, QUIC uses 
end-to-end encryption. This encryption is performed on the UDP 
payload, so once the TLS handshake is complete very little of the 
subsequent QUIC packet exchange is in the clear (Figure 2). 

Figure 2: Comparison of TCP and TLS with QUIC
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What is exposed in QUIC are the public flags. This initial part of a 
QUIC packet consists of the connection ID, which allows the receiver 
to associate the packet with an endpoint without decrypting the 
entire packet. The QUIC version is also part of the public flag set, 
which is used in the initial QUIC session establishment and can be 
omitted thereafter. 

The remainder of the QUIC packet includes private flags and the 
payload. They are encrypted and are not directly visible to an 
eavesdropper. This private section includes the packet sequence 
number. This field is used to detect duplicate and missing packets. 
It also includes all the flow-control parameters, including window 
advertisements.

This encryption is one of the critical differences between TCP and 
QUIC. With TCP the control parts of the protocol are in the clear, so 
that a network element would be able to inspect the port addresses 
(and infer the application type), as well as the flow state of the con-
nection. Connection of a sequence of such TCP packets, even if only 
looking at the packets flowing in one direction within the connection, 
would allow the network element to infer the round-trip time and the 
data-transmission rate. And, like a NAT, manipulation of the receive 
window in the ACK stream would allow a network element to apply 
a throttle to a connection and reduce the transfer rate in a manner 
that would be invisible to both endpoints. Placing all of this control 
information inside the encrypted part of the QUIC packet ensures 
that no network element has direct visibility to this information, and 
no network element can manipulate the connection flow. 

One could take the view that QUIC enforces a perspective that was 
assumed in the 1980s: that the end-to-end transport protocol is not 
shared with the network. All the network “sees” are stateless data-
grams, and the endpoints can safely assume that the information 
contained in the end-to-end transport control fields is carried over 
the network in a manner that protects it from third-party inspection 
and alteration.

QUIC and IP Fragmentation
The short answer is “no!” QUIC packets cannot be fragmented[7, 8]. 
The way this feature is achieved is by having the QUIC HELLO packet 
be padded out to the maximal packet size, and not completing the 
initial HELLO exchange if the maximally sized packet is fragmented.

For IPv4 the maximum QUIC packet size is 1,350 bytes. Adding 8 
bytes for the UDP header, 20 bytes for IPv4, and 14 bytes for the 
Ethernet frame means that a QUIC packet on Ethernet totals 1,392 
packets. There is no particular rationale for this choice of 1,350 other 
than the results of empirical testing on the public Internet. 

For IPv6 the QUIC maximum packet size is reduced by 20 bytes to 
1,330. The resultant Ethernet packet is still 1,392 bytes because of 
the larger IPv6 IP packet header.

QUIC continued
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What happens if the network path has a smaller Maximum 
Transmission Unit (MTU) than this value? The answer is in the next 
section.

QUIC and TCP
QUIC is not intended as a replacement for TCP. Indeed, QUIC relies 
on the continued availability of TCP. 

Whenever QUIC encounters a fatal error—such as fragmentation 
of the QUIC HELLO packet—the intended response from QUIC is 
to shut down the connection. Since QUIC itself lies in the applica-
tion space, not the kernel space, the client-side application can be 
directly informed of this closure of the QUIC connection and it can 
re-open a connection to the server using a conventional TCP trans-
port protocol.

The implication is that QUIC does not necessarily have to have a 
robust response for all forms of behavior, and when QUIC encoun-
ters a state where it has no clear definition of the desired behavior, it 
is always an option to signal a QUIC failure to the application. The 
failure need not be fatal to the application, because such a signal can 
trigger the application to repeat the transaction using a conventional 
TCP session.

I can QUIC, do you?
Unlike all other TCP services that use a dedicated TCP port address 
to distinguish themselves from all other services, QUIC does not 
advertise itself in such a manner. That reality leaves numerous ways 
in which a server could potentially advertise itself as being accessible 
over QUIC.

One such possible path is the use of Domain Name System (DNS) 
Service Records (SRV)[9]. The SRV record can indicate the connection 
point for a named service using the name of the transport protocol 
and the protocol-specific service address. This usage may be an option 
for the future, but no such DNS service record has been defined for 
QUIC.

Instead, in keeping with the overall QUIC approach of loading up 
most of the service functionality into the application itself, a server 
that supports QUIC can signal its capability within HTTP itself. 
The way it signals is defined in an Internet standard for “Alternative 
Services”[10], which is a means to list alternative ways to access the 
same resources. 

For example, the Google homepage, www.google.com, includes the 
HTTP header:

    alt-svc: quic=":443"; ma=2592000; v="44,43,39"
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This entry indicates that the same material is accessible using QUIC 
over port 443. The “ma” field is the time to keep this information on 
the local client, which in this case is 30 days, and the “v” field indi-
cates that the server will negotiate QUIC versions 39, 43, and 44.

QUIC Lessons
QUIC is a rather forceful assertion that the Internet infrastructure is 
now heavily ossified and more highly constrained than ever. There is 
no room left for new transport protocols in today’s network. If what 
you want to do can’t be achieved within TCP, then all that’s left is 
UDP.

The IP approach to packet-size adaptation through fragmentation 
was a powerful concept once upon a time. A sender did not need to be 
aware of the constraints that may apply on a path. Any network-level 
packet fragmentation and reassembly was invisible to the end-to-end 
packet transfer. This invisibility is no longer wise. Senders need to 
ensure that their packets can reach their intended destinations with-
out any additional requirement for fragmentation handling.

Mutual trust is over. Applications no longer trust other applications. 
They don’t trust the platform that hosts them or the shared librar-
ies that implement essential functions. Applications no longer trust a 
network to keep their secrets. More and more functions and services 
are being pulled back into the application and are passed out from 
an application as much as possible in packets that are cloaked in a 
privacy shroud.

There is a tension between speed, security, and paranoia. An ideal 
outcome is one that is faster, private, and secure. Where it is not  
obvious and the inevitable trade-offs emerge, it seems that we have 
some minimum security and privacy requirements that simply  
must be achieved. But once we have achieved these minimum  
requirements, we are then happy to trade off incremental improve-
ments in privacy and security for better session performance.

The traditional protocol-stack model was a convenient abstraction, 
not a design rule. Applications do not necessarily need to bind to 
transport-layer sockets provided by the underlying platform. Applica- 
tions can implement their own end-to-end transport if necessary.

The infrastructure of the Internet might be heavily ossified, but 
the application space is seeing a new set of possibilities open up. 
Applications need not wait for the platform to include support for a 
particular transport protocol or await the deployment of a support 
library to support a particular name-resolution function. Applica-
tions can solve these issues for themselves directly. The gain in 
flexibility and agility is considerable. 

QUIC continued
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There is a price to pay for this new-found agility, and that price is 
broad interoperability. Browsers that support QUIC can open up 
UDP connections to certain servers and run QUIC, but browsers can-
not assume—as they do with TCP—that QUIC is a universal and 
interoperable lingua franca of the Internet. While QUIC is a fascinat-
ing adaptation with some very novel concepts, it is still an optional 
adaptation. For those clients and servers that do not support QUIC, 
or for network paths where UDP port 443 is not supported, the 
common fallback is TCP. The expansion of the Internet is inevitably 
accompanied by inertial bloat, and as we’ve seen with the extended 
saga of IPv6 deployment, it is a formidable expectation to think 
that the entire Internet will embrace a new technical innovation in 
a timeframe of months, years, or possibly even decades! That does 
not mean that we can’t think new thoughts, and that we can’t realize 
these new ideas into new services on the Internet. We certainly can, 
and QUIC is an eloquent demonstration of exactly how to craft inno-
vation into a rather stolid and resistant underlying space. 

Further Reading
QUIC has excited considerable interest over the past couple of years, 
and there are many posts to be found on the ’net. Here’s a small sam-
ple of this online material that you may find to be of interest:

• A useful consideration of positive and negative aspects of QUIC 
are in Robin Marx’s post “QUIC and HTTP/3: Too big to fail?”
https://calendar.perfplanet.com/2018/quic-and-http- 
3-too-big-to-fail/

• A slightly older (2014) but useful technical overview of QUIC can 
be found in Shigeki Ohtsu’s presentation to the HTTP/2 Conference 
Japan. 
https://www.slideshare.net/shigeki_ohtsu/quic-overview

• A commentary on Cloudflare’s investigations with QUIC can be 
found in a recent blog post: “The Road to QUIC”: 
https://blog.cloudflare.com/the-road-to-quic/

• A discussion of QUIC work in the IETF by Mark Nottingham, 
QUIC Working Group Co-Chair: “What’s Happening with  
QUIC,” 
https://www.ietf.org/blog/whats-happening-quic/?
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The Quest for the Missing Checksums
by Roy Arends, ICANN

T he Domain Name System (DNS) is a hierarchical namespace 
that provides a method to look up Internet identifiers such 
as IP addresses using easy-to-remember domain names. This 

hierarchy starts at the root,[0] where the actual namespace is dele- 
gated to several registries. The data at the root is signed with cryp-
tographic keys, using Domain Name System Security Extensions 
(DNSSEC)[1, 2, 3]. These cryptographic keys are replaced over time.

In an effort to change the top cryptographic key for the DNS, the 
so-called root Key Signing Key[4], several testbeds were created to 
emulate the process in a lab environment. In those testbeds, the 
actual root DNS keys are not used since the testbed operators do  
not have control of the private keys; rather keys of the same size 
using the same cryptographic algorithms and functions are gener- 
ated. Apart from the fact that the key material is different, this emu-
lated root zone cannot be distinguished from the real root zone. 

This effort to generate certain cryptographic keys became an adven-
ture in itself that included beautiful discrete math, flawed functions, 
carefully crafted primes, multiple cryptographic libraries, and some 
brilliant people.

The result of this effort shows that using an ancient checksum func-
tion to identify cryptographic keys is not optimal.

The problem
DNSSEC protects the DNS. To be precise, it protects validating 
resolvers’ caches. DNSSEC uses cryptographic keys to validate sig-
natures, and these signatures contain a key-tag that helps to identify 
which key to use. This key-tag is merely a hint; it doesn’t have to 
be collision-free, and the function to generate it is similar to an IP 
header checksum (the difference between the two functions is that 
the key-tag function does not include a final end-around carry).

Technically, a key-tag is a 16-bit unsigned value. For our testbed, to 
clearly identify which keys were introduced in what year, the idea 
was to generate some vanity key-tags with the year in them; that is, 
“2010” for a key that was introduced in 2010, and “2015” for a key 
introduced in 2015. One way to generate those key-tags is to simply 
generate all possible key-tags in order to pick the desired ones. This 
process can be done by repeatedly generating a single key. Since the 
key-tag is based on the contents of the key, and since the contents of 
the key contain a lot of random bits, it was assumed that the resulting 
key-tag would be as random as the key.
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After the process to generate keys ran long enough, the expectation was 
to have 65,536 keys—one for each tag. Surprisingly, it was possible 
to generate only 16,387 keys with unique tags, even after generat-
ing millions of keys. Specifically, the key-tags “2010” and “2015”  
were not included. It turns out that key-tag “2015” was excluded for 
a different reason than why key-tag “2010” was excluded! 

Is it the software?
In order to track down this non-intuitive result, suspicion first fell on 
the software used to generate the keys. The BIND software package 
from Internet Systems Consortium, Inc. (ISC) has a command-line 
tool named dnssec-keygen. The convention it uses is to embed the 
key-tag in the filename. When a new key is generated, dnssec-keygen 
checks to determine if a key with a certain tag already exists to avoid 
overwriting it. 

The Flags field in a DNSSEC key influences the value of the key-tag. 
For instance, if a key is revoked in the future, the “REVOKE” flag is 
set and that changes the value of the key-tag. To make sure that a new 
key-tag doesn’t collide with any existing key, dnssec-keygen checks if 
a new key-tag (and its revoked equivalent) matches an existing key-
tag (and its revoked equivalent as well). Initially, it was thought that 
this key-tag collision check was the culprit. 

Since those vanity key-tags were still desired, and since revoked 
equivalents of keys with the 2010 and 2015 key-tag would not col-
lide with any existing key-tags, it was decided to try to work around 
this specific check.

One way to avoid this check is to simply use another tool. The LDNS 
library from NLNetLabs comes with a set of examples. One of these 
examples is a utility named ldns-keygen, which produces DNSSEC 
keys and does not have the key-tag collision check to protect against 
accidentally overwriting an existing key. However, after generating 
millions of keys again, it too generated about 16,384 keys.

The two software tools used have no authors in common, but 
they do share a cryptographic library: OpenSSL. Both pieces of 
software independently had the limitation of producing only a sub-
set of all possible key-tags. Both used a well-known, widely used  
cryptographic library. At this discovery the worrying started. If it is 
the library, and the tags are not distributed evenly, is the quality of 
the entropy in question? Does the library have any bugs? 

To make sure this anomaly was not user error, different versions of 
OpenSSL were tested. Additionally, different entropy sources were 
used, and lastly, different key sizes were tried. Still, the same number 
of key-tags was generated. 

Missing Checksums continued
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Is it the library? 
The folks on DNS-OARC’s operations list came to the rescue. Peter 
van Dijk from PowerDNS used the PowerDNS management tool: 
pdnsutil add-zone-key, and was able to generate 32,769 unique key-
tags. More key-tags than before, but still only about 50% of all 
possibilities. The tools in PowerDNS, BIND, and LDNS do not share 
any code or any authors. All three tools were written “from scratch.” 
Additionally, PowerDNS does not use OpenSSL at all; rather it uses 
mbedTLS, a different cryptographic library. That means a problem 
related solely to the cryptographic libraries or the tools can be ruled 
out. There was still the observation that pdnsutil was able to produce 
twice as many key-tags as the other tools, but we’ll get to that later.

Is it the checksum algorithm?
The next step was testing the key-tag function in RFC 4034[5]. The 
key-tag function is very similar to the radix-minus-one complement 
function for the Internet Header Checksum—a radix-minus-one 
complement function. Note that it is not exactly the same, but the 
minor difference could not fundamentally reduce the possible num-
ber of key-tags. 

To test this possibility, a loop was created that fed random numbers 
into the key-tag algorithm. When using 2,048-bit random numbers 
as the input (instead of cryptographic keys), all possible key-tags 
could be produced in a short amount of time. This experiment ruled 
out that the limiting part was the key-tag algorithm itself. However, 
we’ll come back to that later as well.

Is it purely a math problem?
Meanwhile, Florian Maury and Jérôme Plût from ANSSI took a good 
look at the problem and discovered it was none of the possibilities 
mentioned previously. It turns out that an interesting combination 
of the properties of the Internet Header Checksum and RSA moduli 
rules out certain results.  

The input to the Internet Header Checksum function is treated 
as blocks of 16 bits and the output is a 16-bit checksum. Radix-
minus-one complement methods are as old as accounting itself. The 
nine’s complement method (where the radix is base 10) was used in 
Pascal’s calculator. The method of complements is a technique used 
to subtract one number from another using only addition of positive 
numbers. We’re not using the complements part here, only the part 
where we add, with carry, a bunch of bits.

A description of the Internet Header Checksum function follows: 
Add the 16-bit values with end-around carry; that is, if adding two 
16-bit values results in a carry, then add that carry bit to the result 
of the addition.
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Following is the end-around-carry part of the checksum function:

 ($sum AND 65535) + ($sum >> 16) 

What Jérôme Plût observed is that this expression can be reduced to:

 $sum mod 65535

Since modular arithmetic has the addition property, we can also 
deduce:

 ($Value1 + $Value2) mod 65535 

 or:

 ($value1 mod 65535) + ($value2 mod 65535)

Calculating a key-tag 
As said earlier, the Internet Header Checksum is very similar to the 
key-tag function. The input for this key-tag algorithm is the RDATA 
part of a DNSKEY record: 

AlgorithmProtocol

32 Bits

Flags

Public Key

For all keys generated in this exercise, all the fields remain the same, 
except for the modulus in the Public Key field.

For a Key Signing Key, the value of the Flags field is 257, and the 
Protocol field always has the value of 3. The Algorithm field has the 
value 8 (RSASHA256)[7]. With those parameters, the Public Key field 
consists of an Exponent and a Modulus. For this exercise, the expo-
nent has value 65537 and is preceded with an Exponent Length field 
(value 3).

The constant part of this input can now simply be added up as a 
series of 16-bit unsigned values: 

 $value1 = Flags + Protocol*256 + Algorithm + ExpLen*256 + Exponent 

 $value1 = 257 + 3*256 + 8 + 3*256 + 65537 

 $value1 = 67338

Missing Checksums continued
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Using the deduction from before:

 keytag = (value1 mod 65535) + (value2 mod 65535)

 keytag = (67338 mod 65535) + (value2 mod 65535) 

 keytag = 1803 + (value2 mod 65535)

The part of the checksum that is not constant is the RSA-modulus. 
The RSA-modulus is a composite number with two very large prime 
factors. In the previous equation, value2 is the RSA-modulus. The 
last substitution becomes:

 keytag = 1803 + (RSA-modulus mod 65535)

Since the value 1803 is constant, it has no influence on the number 
of possible key-tags, hence the solution to the reduced set of possible 
key-tags may be found in the RSA-modulus modulo 65535 part of 
the equation. 

Number theory
What Jérôme Plût observed is that the value 65535 is a composite 
number with four prime factors: 3, 5, 17, and 257. Since the RSA-
modulus and 65535 do not share any factors, the RSA-modulus can’t 
be congruent with 0 modulo 65535.

Therefore, the modulus is not congruent with 0 modulo 3, 0 modulo 
5, 0 modulo 17, or 0 modulo 257. 

All other congruence values are possible, so the set of possible values 
is simply a combination of the possible values: 

 2 * 4 * 16 * 256 = 32768.

We can now check if we indeed can’t have 2010 as a value:

Before, we noted that:

 keytag = 1803 + (RSA-modulus mod 65535)

We can now substitute the key-tag with our desired value: 

 2010 = 1803 + (RSA-modulus mod 65535)
 2010 - 1803 = RSA-modulus mod 65535
  207 = RSA-modulus mod 65535

However, 207 is congruent with 0 modulo 3, meaning that in order 
for 207 to be possible, the RSA-modulus must have 3 as a factor. We 
know this is not the case, so 2010 (that is, 207 + 1803) can’t be a 
key-tag.
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The remainder of the problem
Remember that the first exercise led to 16,387 key-tags, not 32,768 as 
predicted before, or 32,769 as found by Peter van Dijk. Additionally, 
32,769 is not 32,768 (and 16,387 is not 16,384, half of the 32,768 
space). 

32,769 is not 32,768
The key-tag function is similar to the Internet Header Checksum, but 
not the same. The crucial difference is the last end-around carry. 

The last part of the key-tag function is defined in RFC 4034, and 
reads as follows: 

 ac += (ac >> 16) & 0xFFFF;            
 return ac & 0xFFFF;

The first line adds the carry bits to the accumulator. As a result, 
the accumulator might be a value larger than fits in a 16-bit value. 
Instead of again adding the carry bits to the value, it ignores those.

Ignoring the carry bits can, in some cases, result in an off by one 
value, compared to the Internet Header Checksum. With the Internet 
Header Checksum, only 32,768 values are possible, as we’ve seen in 
the previous section. Since the key-tag function might be off by one, 
a few more key-tag values are possible. 

16,387 is not 32,769
Why was Peter able to produce about twice as many key-tags? 
Assuming that the values could have been 16,384 and 32,768 (as 
explained before), the only remaining difference is the library used. 

OpenSSL generates primes that are congruent with 2 modulo 3. The 
resulting modulus is thus always congruent with 1 modulo 3, since:

 (2 modulo 3) * (2 modulo 3) = 
 4 modulo 3 = 
 1 modulo 3

This formula reduces the possible key-tag space from 2 * 4 * 16 * 256 
to 1 * 4 * 16 * 256, which is 16384.

This reduction is the reason why it was not possible to generate a 
key-tag with the value 2015. Using the same reduction as before, we 
can now substitute key-tag with 2015: 

 2015 = 1803 + (RSA-modulus mod 65535)
 2015 - 1803 = RSA-modulus mod 65535
  212 = RSA-modulus mod 65535

However, 212 is congruent with 2 modulo 3. We now know that 
RSA moduli from OpenSSL are always congruent with 1 modulo 3, 
so key-tag 2015 is simply not possible when using OpenSSL.

Missing Checksums continued
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The library that Peter is using, mbedTLS, does generate primes that 
are congruent with 1 modulo 3.

Conclusion
The limited key-tag space does not present a security issue. The key-
tag is merely a hint and it is well known that different cryptographic 
keys may lead to the same key-tag. However, the decision to use a 
checksum as an identifier is poor at best. A checksum is designed to 
check if an error exists in data, and not, in general, designed to be 
an identifier. Additionally, using a function that is nearly identical to 
the well-known Internet Header Checksum seems to be an error in 
the design stage. 
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Fragments
New DNS Terminology RFC
A Request For Comments (RFC) updating Domain Name System 
(DNS) terminology was recently published[0], continuing a decades-
long IETF practice of publishing documents to help introduce 
interested readers to protocol topics by going through the most 
important terms. 

The list of topics with terminology documents includes general termi-
nology[1], Network Address Translators (NATs)[2], Diffserv[3], Internet 
connectivity[4], internationalization[5], and Internet of Things (IoT) 
networks[6]. Although these documents are not meant to be step-by-
step introductions to the topics, they help someone who already has 
some understanding go deeper into the topic, and often help clarify 
terms that are often misused in common writing. 

There are many dozens of RFCs defining the DNS, so the terminol-
ogy is often hard to find. Some common terms such as “host name” 
are not defined in any RFCs; some are defined only by example; 
worse, some are defined differently in different RFCs. RFC 8499, 
“DNS Terminology,” was published as an update to an earlier work 
to address these issues.

This document is the result of long discussions in the Domain Name 
System Operations (DNSOPS) Working Group[7], where dozens of 
DNS operators, software developers, and other experts brought up 
terms to be covered and argued over the current meaning of terms 
that are more than 30 years old. A common glossary is necessary to 
operate the DNS, and to continue to develop the DNS, so that people 
know what each other mean. The Working Group also hoped that 
the document would be useful to people who used the DNS tangen-
tially, such as developers of other protocols and non-technical people 
who interact with the DNS in their work.

RFC 8499 is an update to the first DNS terminology document,  
RFC 7719[8]. While the first document was being written, the Working 
Group agreed that some definitions (such as for “domain name”) 
needed more work, and it was so difficult to get consensus on other 
terms that they were left out. The new document is much more com-
plete, and contains some common terms not covered in the earlier 
document, such as “recursive query,” “lame delegation,” and “split 
DNS.”

Another significant addition to the document is the first definition 
of a standards-track document of “the global DNS” and “private 
DNS.” Many people think they know what “the DNS” is but may 
not have a specific definition for it; these new terms helps get every-
one using the same definitions. Overall, nearly 40 terms that are not 
defined in other RFCs are defined in this document. 
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Of course, the DNS will continue to evolve, and new terminology 
may appear. RFC 8499 is stable, but it might be revised a few years 
down the road to add these new terms.
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DNS-OARC
The DNS Operations, Analysis, and Research Center (DNS-OARC) 
brings together key operators, implementers, and researchers on a 
trusted platform so they can coordinate responses to attacks and 
other concerns, share information and learn together. DNS-OARC 
has five key functions:

Information Sharing: DNS-OARC provides a trusted, shared plat-
form to allow the DNS operations community to share information 
and data. Stringent confidentiality requirements and secure com-
munications mean that proprietary information can be shared on a 
bilateral basis.
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Operational Characterization: As Internet traffic levels continue to 
grow, the demand on root and other key name servers will outgrow 
the current infrastructure: this year’s DDoS attack traffic levels will 
become next year’s steady state load. DNS-OARC measures the per-
formance and load of key name servers and publish statistics on both 
traffic load and traffic type (including error types). 

Workshops: DNS-OARC organizes semi-annual workshops where 
members and the public are invited to give presentations on timely 
topics relevant to DNS both operations and research.

Analysis: Leading researchers and developers provide long-term 
analysis of DNS performance and post-mortems of attacks so that 
institutional learning occurs. A well-provisioned system allows mem-
bers to upload traces and logs, and to perform their own analysis.

Tools and Services: As vulnerabilities and DNS problems come to 
light, DNS-OARC develops publicly available tools and services to 
assist with highlighting, diagnosing, and remedying such problems.

DNS-OARC participants fall into one or more of the following  
categories:

• Operators of root, TLD, or large commercial name servers who 
consume DNS technology and produce DNS services.

• Implementers who produce DNS technology including software, 
appliances, and network elements such as load balancing hardware

• Researchers whose work has a strong DNS emphasis and who 
need access to trace and log data about the global DNS under both 
“normal” and “abnormal” conditions.

• Security Providers whose companies offer products and services 
that utilize DNS information to improve the security of their 
customers.

For more information, visit: https://www.dns-oarc.net/
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Letters to the Editor 

Ole,

Geoff Huston’s most recent article on the last 10 years of the Internet 
is absolutely brilliant (IPJ Volume 21, No. 2, August 2018). As one 
of the early implementers of our dear Internet, I am of course amazed 
at its evolution these past decades, and Geoff has more than “kept 
up”! His ability to summarize quickly and accurately is without peer. 
Thank you all.

—Dan Lynch 
dan@lynch.com

Geoff,

Thank you very much for your article “Another 10 Years” in The 
Internet Protocol Journal. I enjoyed your perspective and your writ-
ing style very much. You have a great skill at explaining a great 
amount of information.

I subscribed to the early ConneXions—The Interoperability Report 
and later IPJ. I’ve been glad to see your articles over the many years.

Sincerely,
—Richard Berke 

Richard_Berke@troweprice.com

The author responds:

I really appreciate your kind words, and I am glad you liked the 
article.

—Geoff Huston 
gih@apnic.net

Letters may be edited for clarity. We’d love to hear from you. Send us 
your feedback via e-mail to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

Check your Subscription Details!
If you have a print subscription to this journal, you will find an expi-
ration date printed on the back cover. For the last couple of years, we 
have “auto-renewed” your subscription, but now we ask you to log in 
to our subscription system and perform this simple task yourself. The 
subscription portal is here: https://www.ipjsubscription.org/ 
This process will ensure that we have your current contact informa-
tion as well as delivery preference (print edition or download). For 
any questions, contact us by e-mail at: ipj@protocoljournal.org



The Internet Protocol Journal
27

Supporters and Sponsors

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsors Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

Your logo here!Your logo here!



The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist 
Google Inc, USA

David Conrad, Chief Technology Officer 
Internet Corporation for Assigned Names and Numbers

Dr. Steve Crocker, CEO and Co-Founder 
Shinkuro, Inc.

Dr. Jon Crowcroft, Marconi Professor of Communications Systems 
University of Cambridge, England

Geoff Huston, Chief Scientist 
Asia Pacific Network Information Centre, Australia

Dr. Cullen Jennings, Cisco Fellow 
Cisco Systems, Inc.

Olaf Kolkman, Chief Internet Technology Officer 
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor 
Faculty of Environmental and Information Studies, 
Keio University, Japan

Pindar Wong, Chairman and President 
Verifi Limited, Hong Kong

The Internet Protocol Journal is published 
quarterly and supported by the Internet 
Society and other organizations and indivi-
duals around the world dedicated to the 
design, growth, evolution, and operation 
of the global Internet and private networks 
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is 
a trademark of Cisco Systems, Inc. and/or 
its affiliates (“Cisco”), used under license. 
All other trademarks mentioned in this 
document or website are the property of 
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
NMS
535 Brennan Street
San Jose, CA 95131

ADDRESS SERVICE REQUESTED


