
March 2019 Volume 22, Number 1

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

A Quick Look at QUIC 2

Missing Checksums 13

Fragments 21

Thank You 24

Letters to the Editor 26

Supporters and Sponsors 27

F r o m T h e E d i t o r

The Transmission Control Protocol (TCP) is a core component of the
Internet Protocol Suite. TCP has proven robust and flexible in the
face of changing network infrastructures, but may not be the most
efficient way to retrieve the many components of today’s complex
web pages. The Quick UDP Internet Connection (QUIC) protocol is
an alternative to TCP for web traffic. QUIC was initially developed
and deployed by Google and is now being standardized in the Internet
Engineering Task Force (IETF). In our first article, Geoff Huston
examines the motivations for QUIC and describes the protocol and
its implementation.

According to Wikipedia: “A checksum is a small-sized datum derived
from a block of digital data for the purpose of detecting errors that
may have been introduced during its transmission or storage. It is
usually applied to an installation file after it is received from the
download server. By themselves, checksums are often used to verify
data integrity but are not relied upon to verify data authenticity.”
In preparation for the “rolling” of the root Key Signing Key of the
Domain Name System (DNS), tests were developed to create so-called
key-tags. This key-tag generation process “...became an adventure in
itself that included beautiful discrete math, flawed functions, carefully
crafted primes, multiple cryptographic libraries, and some brilliant
people,” according to Roy Arends, author of our second article, “The
Quest for the Missing Checksums.” IPJ doesn’t normally delve into
complex mathematics, but in this case the interplay of various soft-
ware libraries and methods provides some valuable lessons for anyone
involved in code generation and testing.

We would like to remind you that this journal depends on the gen-
erous support of numerous individuals and organizations. If you
would like to help support IPJ, please contact us for further details.
Comments, suggestions, book reviews, and articles are always wel-
come. Send your messages to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

The Internet Protocol Journal
2

A Quick Look at QUIC
by Geoff Huston, APNIC

Q uick UDP Internet Connection (QUIC) is a network proto-
col initially developed and deployed by Google, and is now
being standardized in the Internet Engineering Task Force
 (IETF). In this article we’ll take a quick tour of QUIC, look-

ing at the goals that influenced its design, and the implications QUIC
might have on the overall architecture of the Internet Protocol Stack.

QUIC is not exactly a recent protocol, as the concept appears to have
been developed by Google in 2012, and initial public releases of this
protocol were included in Chromium version 29, released in August
2013. QUIC is one of many transport-layer network protocols that
attempt to refine the basic operation of the Transmission Control
Protocol (TCP).

Why are we even thinking about refining TCP?

TCP is now used in billions of devices and is perhaps the most widely
adopted network transport protocol that we’ve witnessed so far.
If this protocol weren’t fit for our use, then we would have moved
on and adopted some other protocol or protocols instead. Part of
the reason for the broad adoption of TCP is its incredible flexibility.
The protocol can support a diverse variety of uses, from micro-
exchanges to gigabyte data movement, transmission speeds that vary
from hundreds of bits per second to tens and possibly hundreds of
gigabits per second. TCP is the workhorse of the Internet. But even
so, there is room for refinement. TCP is used in many different ways,
and its design represents a set of trade-offs that attempt to be a rea-
sonable fit for many purposes but not necessarily an ideal fit for any
particular one.

One of the aspects of the original design of the Internet Protocol Suite
was that of elegant brevity and simplicity. The specification of TCP[1]
is not a single profile of behavior that has been cast into a fixed form
that was chiseled into the granite slab of a rigid standard. TCP is
malleable in many important ways. Numerous efforts over the years
have shown that it is possible to stay within the standard definition
of TCP, in that all the packets in a session use the standard TCP
header fields in mostly conventional ways, but also to create TCP
implementations that behave radically differently from each other.
Critically, the TCP standard does not strictly define how the sender
can control the amount of data in flight across the network. There is
a convention to adopt an approach of slowly increasing the amount
of data in flight while there are no visible errors in the data transfer
(as shown by the stream of received acknowledgement [ACK] pack-
ets) and quickly responding to signals of network congestion (packet
drop, as shown by duplicate acknowledgements) by rapidly decreas-
ing the sending rate.

The Internet Protocol Journal
3

Variants of TCP use different controls to manage this “slow increase”
and “rapid drop” behavior[2] and may also use different signals to
control this data flow. These signals include measurements of end-
to-end delay, or inter-packet jitter (such as the recently published
Bottleneck Bandwidth and Round-trip Propagation Time (BBR)
protocol[3]). All of these variants still manage to fit with the broad
parameters of what is conventionally called TCP.

It is also useful to understand that most variants of TCP need to
be implemented only on the data sender (the “server” in a client/
server environment). The common assumption of all TCP imple-
mentations is that clients will send a TCP ACK packet on successful
receipt of both in-sequence and out-of-sequence data. It is left to the
server’s TCP engine to determine how the received ACK stream will
be applied to its internal model of network capability and how it will
modify its subsequent sending rate accordingly. The implication is
that deployment of new variants of TCP flow control is essentially
based on deployment within service-delivery platforms and does not
necessarily imply changing the TCP implementations in all the bil-
lions of clients. This feature also contributes to the flexibility of TCP.

But despite its considerable flexibility, TCP has its problems,
particularly with web-based services. These days most web pages are
not simple monolithic objects. They typically contain many separate
components, including images, scripts, customized frames, and
others. Each of these is a separate web “object,” and if you are using
a browser that is equipped with the original implementation of the
HyperText Transfer Protocol (HTTP) each object will be loaded in
a new TCP session, even if the objects are served from the same IP
address. The overheads of setting up both a new TCP session and
a new Transport Layer Security (TLS)[4] session for each distinct
web object within a compound web resource can become quite
significant, and the temptation to reuse an already established TLS
session is close to overwhelming. But this approach of multiplexing
a number of data streams within a single TCP session also has issues.
Multiplexing multiple logical data flows across a single session can
generate unwanted interdependencies between the flow processors
and generate Head of Line Blocking situations. It appears that while
it makes some logical sense to share a single end-to-end security
association and a rate-controlled data-flow state across a network
across multiple logical data flows, TCP represents a rather poor
way of achieving this outcome. The conclusion is that if we want to
improve the efficiency of such compound transactions by introducing
parallel behaviors into the protocol, we need to look beyond TCP.

Why not just start afresh and define a new transport protocol that
addresses these shortcomings of TCP? The answer is simple: Network
Address Translators (NATs)!

The Internet Protocol Journal
4

NATs and Transport Protocols
The original design of IP allowed for a clear separation between the
network element that allowed the network to accept an IP packet and
forward it onto its intended destination (the “Internet” part of the
IP protocol suite) and the end-to-end transport protocol that enabled
two applications to communication via some form of “session.”
The transport protocol field in the IPv4 packet header and the Next
header field of the IPv6 packet header uses an 8-bit field to identify
the end-to-end protocol. This design assumed that the network had
no need to “understand” what end-to-end protocol was being used
within a packet. Ideally an IP packet switch will not differentiate in
its treatment of packets depending on the inner end-to-end protocol.

Some 140 protocols are listed in the IP protocol field registry[5]. TCP
and the User Datagram Protocol (UDP) are just two of these proto-
cols (protocol values 6 and 17, respectively). In theory at any rate,
there is room for a least 100 more. However, in the public Internet
the story is somewhat different. TCP and UDP are widely accepted
protocols, and the Internet Control Message Protocol (ICMP)
(protocol 2) is generally accepted, but little else. How did this situa-
tion happen?

NATs changed the assumption about network devices not look-
ing inside the packet (to be precise, port-translating NATs changed
that assumption). NATs are network devices that look inside the IP
packet and re-write the port addresses used by TCP and UDP[6]. What
if an IP packet contains an end-to-end transport protocol identifier
value that is neither TCP nor UDP? Most NATs will simply drop
the packet, on the basis of a security paradigm that “what you don’t
recognize is likely to be harmful.” The pragmatic result is that NATs
have limited the choice of transport protocols of an application in
the public Internet to just two: TCP and UDP.

If the aim is to deploy a new transport protocol—but not confuse
active network elements that are expecting to see a conventional TCP
or UDP header—then how can we achieve this goal?

This question was the challenge of the QUIC developers.

QUIC over UDP
The solution that QUIC chose was a UDP-based approach. UDP is
a minimal framing protocol that allows an application to access the
basic datagram services that IP offers. Apart from the source and
destination port numbers, the UDP header adds a length header and
a checksum that covers the UDP header and UDP payload. It is essen-
tially an abstraction of the underlying datagram IP model with just
enough additional information to allow an IP protocol stack to direct
an incoming packet to an application that has bound itself to a nomi-
nated UDP port address. If TCP is an overlay across the underlying IP
datagram service, then it’s a small step to think about layering TCP
as a payload within a UDP packet.

QUIC continued

The Internet Protocol Journal
5

Using our standard Internet model, QUIC is—strictly speaking—a
datagram transport application. An application that uses the QUIC
protocol sends and receives packets using UDP port 443.

Technically, this change is very small to an IP packet, adding just 8
bytes to the IP packet by placing a UDP header between the IP and
TCP packet headers (Figure 1). The implications of this change are far
more significant than these 8 bytes would suggest. However, before
we consider these implications, let’s look at some QUIC services.

Figure 1: The QUIC Protocol
Architecture

HTTP/2
Multistream

TLS
Encrypted Payload

TCP
Congestion Control

Reliable Data Stream

HTTP/2

QUIC
Multistream
Encryption

Congestion Control
Reliable Data Stream

UDP

IP

QUIC and the Connection ID
If the choice of UDP as the visible end-to-end protocol for QUIC was
a choice dictated by the inflexibility of the base of deployed NAT
devices in the public Internet and their collective inability to accom-
modate new protocols, the way that NATs handle UDP packets has
further implications for QUIC.

NATs maintain a translation table. In the most general model, a
NAT takes the 5-tuple of incoming packets, using the destination
and source IP addresses, the destination and source port addresses,
and the protocol field, and performs a lookup into the table to find
the associated translated fields. The address headers of the packet
are rewritten to these new values, checksums are recomputed, and
the packet is passed onward. Certain NAT implementations may use
variants of this model. For example, some NATs use only the source
IP address and port address on outbound packets as the lookup key,
and the corresponding destination IP address and port address in
incoming packets.

Typically, the NAT generates a new translation table entry when a
triggering packet is passed from the inside to the outside and sub-
sequently removes the table entry when the NAT assumes that the
translation is no longer needed. For TCP sessions it is possible to
maintain this translation table quite accurately.

The Internet Protocol Journal
6

New translation-table entries are created in response to outbound
TCP SYN connection establishment packets and removed either
when the NAT sees the TCP FIN exchange or in response to a TCP
RST packet or when the session is idle for an extended period.

UDP packets do not have these clear packet exchanges to start and
stop sessions, so NATs need to make some assumptions. Most NATs
create a new translation table entry when they see an outbound UDP
packet that has not matched any existing translation table. The entry
is then maintained for some period of time (as determined by the
NAT) and is then removed if there are no further packets that match
the session signature. Even when there are further matching UDP
packets, the NAT may use an overall UDP session timer and remove
the NAT entry after some predetermined time interval.

For QUIC and NATs, this situation is a potential problem. The QUIC
session is established between a QUIC server on UDP port 443 and
the NAT-generated source address and port. However, at some point
in the session lifetime the NAT may drop the translation-table entry,
and the next outbound client packet will generate a new translation-
table entry that may use a different source address and port. How
can the QUIC server recognize that this next-received packet, with
its new source address and source port number, is actually part of an
existing QUIC session?

QUIC uses the concept of Connection Identifiers (Connection IDs).
Each endpoint generates connection IDs that will allow received
packets with that connection ID to be routed to the process that is
using that connection ID. During QUIC version negotiation these
connection IDs are exchanged, and thereafter each sent QUIC packet
includes the current connection ID of the remote party.

This form of semantic distinction between the identity of a connec-
tion to an endpoint and the current IP address and port number that
QUIC uses is similar to the Host Identity Protocol (HIP)[7]. This pro-
tocol also uses a constant endpoint identifier that allows a session to
survive changes in the endpoint IP addresses and ports.

QUIC Streams
TCP provides the abstraction of a reliable order byte stream to appli-
cations. QUIC provides a similar abstraction to the application,
termed within QUIC as streams. The essential difference here is that
TCP implements a single behavior, while a single QUIC session can
support multiple streams profiles.

Bidirectional streams place the client and server transactions into a
matched context, as is required for the conventional request/response
transactions of HTTP/1. A client would be expected to open a bidi-
rectional stream with a server and then issue a request in a stream
which would generate a matching response from the server. It is pos-
sible for a server to initiate a bidirectional push stream to a client,
which contains a response without an initial request.

QUIC continued

The Internet Protocol Journal
7

Control information is supported using unidirectional control
streams, where one side can pass a message to the other as soon as
they are able. An underlying unidirectional stream interface, used to
support control streams, is also exposed to the application.

Not only can QUIC support many different stream profiles, it can
also support different stream profiles within a single end-to-end
QUIC session. This concept is not a novel one, of course, and the
HTTP/2 protocol is a good example of an application-level protocol
adding multiplexing and stream framing in order to carry multiple
data flows across a single transport data stream. However, a single
TCP transport stream as used by HTTP/2 may encounter Head of
Line Blocking where all overlay data streams fate-share across a sin-
gle TCP session. If one of the streams stalls, all overlay data streams
could be affected and could stall as well.

QUIC allows for a slightly different form of multiplexing where each
overlay data stream can use its own end-to-end flow state, and a
pause in one overlay stream does not imply that any other simultane-
ous stream is affected.

Part of the reason to multiplex multiple data flows between the same
two endpoints in HTTP/2 was to reduce the overhead of setting up a
TLS security association for each TCP session. This overhead can be
quite significant when the individual streams are each sending a small
object, and it’s possible to encounter a situation where the TCP and
TLS handshake component of a compound web object fetch domi-
nates both the total download time and the data volume.

QUIC pushes the security association to the end-to-end state that is
implemented as a UDP data flow, so that streams can be started in
a very lightweight manner because they essentially reuse the estab-
lished secure session state.

QUIC Encryption
As is probably clear from the references to TLS already, QUIC uses
end-to-end encryption. This encryption is performed on the UDP
payload, so once the TLS handshake is complete very little of the
subsequent QUIC packet exchange is in the clear (Figure 2).

Figure 2: Comparison of TCP and TLS with QUIC

Src Port Dest Port SEQ ACK Flags Window Options

TCP

Src Port Dest Port

UDP

Flags Connection ID

QUIC

Packet No Frame ACK Window Options Payload

Encrypted

Payload

Encrypted

The Internet Protocol Journal
8

What is exposed in QUIC are the public flags. This initial part of a
QUIC packet consists of the connection ID, which allows the receiver
to associate the packet with an endpoint without decrypting the
entire packet. The QUIC version is also part of the public flag set,
which is used in the initial QUIC session establishment and can be
omitted thereafter.

The remainder of the QUIC packet includes private flags and the
payload. They are encrypted and are not directly visible to an
eavesdropper. This private section includes the packet sequence
number. This field is used to detect duplicate and missing packets.
It also includes all the flow-control parameters, including window
advertisements.

This encryption is one of the critical differences between TCP and
QUIC. With TCP the control parts of the protocol are in the clear, so
that a network element would be able to inspect the port addresses
(and infer the application type), as well as the flow state of the con-
nection. Connection of a sequence of such TCP packets, even if only
looking at the packets flowing in one direction within the connection,
would allow the network element to infer the round-trip time and the
data-transmission rate. And, like a NAT, manipulation of the receive
window in the ACK stream would allow a network element to apply
a throttle to a connection and reduce the transfer rate in a manner
that would be invisible to both endpoints. Placing all of this control
information inside the encrypted part of the QUIC packet ensures
that no network element has direct visibility to this information, and
no network element can manipulate the connection flow.

One could take the view that QUIC enforces a perspective that was
assumed in the 1980s: that the end-to-end transport protocol is not
shared with the network. All the network “sees” are stateless data-
grams, and the endpoints can safely assume that the information
contained in the end-to-end transport control fields is carried over
the network in a manner that protects it from third-party inspection
and alteration.

QUIC and IP Fragmentation
The short answer is “no!” QUIC packets cannot be fragmented[7, 8].
The way this feature is achieved is by having the QUIC HELLO packet
be padded out to the maximal packet size, and not completing the
initial HELLO exchange if the maximally sized packet is fragmented.

For IPv4 the maximum QUIC packet size is 1,350 bytes. Adding 8
bytes for the UDP header, 20 bytes for IPv4, and 14 bytes for the
Ethernet frame means that a QUIC packet on Ethernet totals 1,392
packets. There is no particular rationale for this choice of 1,350 other
than the results of empirical testing on the public Internet.

For IPv6 the QUIC maximum packet size is reduced by 20 bytes to
1,330. The resultant Ethernet packet is still 1,392 bytes because of
the larger IPv6 IP packet header.

QUIC continued

The Internet Protocol Journal
9

What happens if the network path has a smaller Maximum
Transmission Unit (MTU) than this value? The answer is in the next
section.

QUIC and TCP
QUIC is not intended as a replacement for TCP. Indeed, QUIC relies
on the continued availability of TCP.

Whenever QUIC encounters a fatal error—such as fragmentation
of the QUIC HELLO packet—the intended response from QUIC is
to shut down the connection. Since QUIC itself lies in the applica-
tion space, not the kernel space, the client-side application can be
directly informed of this closure of the QUIC connection and it can
re-open a connection to the server using a conventional TCP trans-
port protocol.

The implication is that QUIC does not necessarily have to have a
robust response for all forms of behavior, and when QUIC encoun-
ters a state where it has no clear definition of the desired behavior, it
is always an option to signal a QUIC failure to the application. The
failure need not be fatal to the application, because such a signal can
trigger the application to repeat the transaction using a conventional
TCP session.

I can QUIC, do you?
Unlike all other TCP services that use a dedicated TCP port address
to distinguish themselves from all other services, QUIC does not
advertise itself in such a manner. That reality leaves numerous ways
in which a server could potentially advertise itself as being accessible
over QUIC.

One such possible path is the use of Domain Name System (DNS)
Service Records (SRV)[9]. The SRV record can indicate the connection
point for a named service using the name of the transport protocol
and the protocol-specific service address. This usage may be an option
for the future, but no such DNS service record has been defined for
QUIC.

Instead, in keeping with the overall QUIC approach of loading up
most of the service functionality into the application itself, a server
that supports QUIC can signal its capability within HTTP itself.
The way it signals is defined in an Internet standard for “Alternative
Services”[10], which is a means to list alternative ways to access the
same resources.

For example, the Google homepage, www.google.com, includes the
HTTP header:

 alt-svc: quic=":443"; ma=2592000; v="44,43,39"

The Internet Protocol Journal
10

This entry indicates that the same material is accessible using QUIC
over port 443. The “ma” field is the time to keep this information on
the local client, which in this case is 30 days, and the “v” field indi-
cates that the server will negotiate QUIC versions 39, 43, and 44.

QUIC Lessons
QUIC is a rather forceful assertion that the Internet infrastructure is
now heavily ossified and more highly constrained than ever. There is
no room left for new transport protocols in today’s network. If what
you want to do can’t be achieved within TCP, then all that’s left is
UDP.

The IP approach to packet-size adaptation through fragmentation
was a powerful concept once upon a time. A sender did not need to be
aware of the constraints that may apply on a path. Any network-level
packet fragmentation and reassembly was invisible to the end-to-end
packet transfer. This invisibility is no longer wise. Senders need to
ensure that their packets can reach their intended destinations with-
out any additional requirement for fragmentation handling.

Mutual trust is over. Applications no longer trust other applications.
They don’t trust the platform that hosts them or the shared librar-
ies that implement essential functions. Applications no longer trust a
network to keep their secrets. More and more functions and services
are being pulled back into the application and are passed out from
an application as much as possible in packets that are cloaked in a
privacy shroud.

There is a tension between speed, security, and paranoia. An ideal
outcome is one that is faster, private, and secure. Where it is not
obvious and the inevitable trade-offs emerge, it seems that we have
some minimum security and privacy requirements that simply
must be achieved. But once we have achieved these minimum
requirements, we are then happy to trade off incremental improve-
ments in privacy and security for better session performance.

The traditional protocol-stack model was a convenient abstraction,
not a design rule. Applications do not necessarily need to bind to
transport-layer sockets provided by the underlying platform. Applica-
tions can implement their own end-to-end transport if necessary.

The infrastructure of the Internet might be heavily ossified, but
the application space is seeing a new set of possibilities open up.
Applications need not wait for the platform to include support for a
particular transport protocol or await the deployment of a support
library to support a particular name-resolution function. Applica-
tions can solve these issues for themselves directly. The gain in
flexibility and agility is considerable.

QUIC continued

The Internet Protocol Journal
11

There is a price to pay for this new-found agility, and that price is
broad interoperability. Browsers that support QUIC can open up
UDP connections to certain servers and run QUIC, but browsers can-
not assume—as they do with TCP—that QUIC is a universal and
interoperable lingua franca of the Internet. While QUIC is a fascinat-
ing adaptation with some very novel concepts, it is still an optional
adaptation. For those clients and servers that do not support QUIC,
or for network paths where UDP port 443 is not supported, the
common fallback is TCP. The expansion of the Internet is inevitably
accompanied by inertial bloat, and as we’ve seen with the extended
saga of IPv6 deployment, it is a formidable expectation to think
that the entire Internet will embrace a new technical innovation in
a timeframe of months, years, or possibly even decades! That does
not mean that we can’t think new thoughts, and that we can’t realize
these new ideas into new services on the Internet. We certainly can,
and QUIC is an eloquent demonstration of exactly how to craft inno-
vation into a rather stolid and resistant underlying space.

Further Reading
QUIC has excited considerable interest over the past couple of years,
and there are many posts to be found on the ’net. Here’s a small sam-
ple of this online material that you may find to be of interest:

• A useful consideration of positive and negative aspects of QUIC
are in Robin Marx’s post “QUIC and HTTP/3: Too big to fail?”
https://calendar.perfplanet.com/2018/quic-and-http-
3-too-big-to-fail/

• A slightly older (2014) but useful technical overview of QUIC can
be found in Shigeki Ohtsu’s presentation to the HTTP/2 Conference
Japan.
https://www.slideshare.net/shigeki_ohtsu/quic-overview

• A commentary on Cloudflare’s investigations with QUIC can be
found in a recent blog post: “The Road to QUIC”:
https://blog.cloudflare.com/the-road-to-quic/

• A discussion of QUIC work in the IETF by Mark Nottingham,
QUIC Working Group Co-Chair: “What’s Happening with
QUIC,”
https://www.ietf.org/blog/whats-happening-quic/?

References
 [1] Jon Postel, “Transmission Control Protocol,” RFC 793,

September 1981.

 [2] Geoff Huston, “Faster,” The ISP Column, June 2005.
 https://www.potaroo.net/ispcol/2005-06/faster.html

 [3] Neal Cardwell, Yuchuing Cheng, C. Stephen Gunn, Soheil
Hasses Yeganeh, and Van Jacobson, “BBR: congestion-based
congestion control,” Communications of the ACM, Vol. 60,
Issue 2, pp 58–66, February 2017.

The Internet Protocol Journal
12

 [4] Eric Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.34,” RFC 8446, August 2018.

 [5] IANA Protocol Numbers Registry.
 https://www.iana.org/assignments/protocol-numbers/

protocol-numbers.xhtml

 [6] Geoff Huston, “Anatomy: A Look Inside Network Address
Translators,” The Internet Protocol Journal, Volume 7, No. 3,
September 2004.

 [7] Geoff Huston, “Fragmentation,” The Internet Protocol Journal,
Volume 19, No. 2, June 2016.

 [8] Geoff Huston, “IPv6 and Packet Fragmentation,” The Internet
Protocol Journal, Volume 21, No. 1, April 2018.

 [9] Arnt Gulbrandsen, Paul Vixie, and Levon Esibov, “A DNS RR
for specifying the location of services (DNS SRV),” RFC 2782,
February 2000.

 [10] Mark Nottingham, Patrick McManus, and Julian Reschke,
“HTTP Alternative Services,” RFC 7838, April 2016.

GEOFF HUSTON, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books,
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. At
various times Geoff has worked as an Internet researcher, an ISP systems architect,
and a network operator. E-mail: gih@apnic.net

QUIC continued

The Internet Protocol Journal
13

The Quest for the Missing Checksums
by Roy Arends, ICANN

T he Domain Name System (DNS) is a hierarchical namespace
that provides a method to look up Internet identifiers such
as IP addresses using easy-to-remember domain names. This

hierarchy starts at the root,[0] where the actual namespace is dele-
gated to several registries. The data at the root is signed with cryp-
tographic keys, using Domain Name System Security Extensions
(DNSSEC)[1, 2, 3]. These cryptographic keys are replaced over time.

In an effort to change the top cryptographic key for the DNS, the
so-called root Key Signing Key[4], several testbeds were created to
emulate the process in a lab environment. In those testbeds, the
actual root DNS keys are not used since the testbed operators do
not have control of the private keys; rather keys of the same size
using the same cryptographic algorithms and functions are gener-
ated. Apart from the fact that the key material is different, this emu-
lated root zone cannot be distinguished from the real root zone.

This effort to generate certain cryptographic keys became an adven-
ture in itself that included beautiful discrete math, flawed functions,
carefully crafted primes, multiple cryptographic libraries, and some
brilliant people.

The result of this effort shows that using an ancient checksum func-
tion to identify cryptographic keys is not optimal.

The problem
DNSSEC protects the DNS. To be precise, it protects validating
resolvers’ caches. DNSSEC uses cryptographic keys to validate sig-
natures, and these signatures contain a key-tag that helps to identify
which key to use. This key-tag is merely a hint; it doesn’t have to
be collision-free, and the function to generate it is similar to an IP
header checksum (the difference between the two functions is that
the key-tag function does not include a final end-around carry).

Technically, a key-tag is a 16-bit unsigned value. For our testbed, to
clearly identify which keys were introduced in what year, the idea
was to generate some vanity key-tags with the year in them; that is,
“2010” for a key that was introduced in 2010, and “2015” for a key
introduced in 2015. One way to generate those key-tags is to simply
generate all possible key-tags in order to pick the desired ones. This
process can be done by repeatedly generating a single key. Since the
key-tag is based on the contents of the key, and since the contents of
the key contain a lot of random bits, it was assumed that the resulting
key-tag would be as random as the key.

The Internet Protocol Journal
14

After the process to generate keys ran long enough, the expectation was
to have 65,536 keys—one for each tag. Surprisingly, it was possible
to generate only 16,387 keys with unique tags, even after generat-
ing millions of keys. Specifically, the key-tags “2010” and “2015”
were not included. It turns out that key-tag “2015” was excluded for
a different reason than why key-tag “2010” was excluded!

Is it the software?
In order to track down this non-intuitive result, suspicion first fell on
the software used to generate the keys. The BIND software package
from Internet Systems Consortium, Inc. (ISC) has a command-line
tool named dnssec-keygen. The convention it uses is to embed the
key-tag in the filename. When a new key is generated, dnssec-keygen
checks to determine if a key with a certain tag already exists to avoid
overwriting it.

The Flags field in a DNSSEC key influences the value of the key-tag.
For instance, if a key is revoked in the future, the “REVOKE” flag is
set and that changes the value of the key-tag. To make sure that a new
key-tag doesn’t collide with any existing key, dnssec-keygen checks if
a new key-tag (and its revoked equivalent) matches an existing key-
tag (and its revoked equivalent as well). Initially, it was thought that
this key-tag collision check was the culprit.

Since those vanity key-tags were still desired, and since revoked
equivalents of keys with the 2010 and 2015 key-tag would not col-
lide with any existing key-tags, it was decided to try to work around
this specific check.

One way to avoid this check is to simply use another tool. The LDNS
library from NLNetLabs comes with a set of examples. One of these
examples is a utility named ldns-keygen, which produces DNSSEC
keys and does not have the key-tag collision check to protect against
accidentally overwriting an existing key. However, after generating
millions of keys again, it too generated about 16,384 keys.

The two software tools used have no authors in common, but
they do share a cryptographic library: OpenSSL. Both pieces of
software independently had the limitation of producing only a sub-
set of all possible key-tags. Both used a well-known, widely used
cryptographic library. At this discovery the worrying started. If it is
the library, and the tags are not distributed evenly, is the quality of
the entropy in question? Does the library have any bugs?

To make sure this anomaly was not user error, different versions of
OpenSSL were tested. Additionally, different entropy sources were
used, and lastly, different key sizes were tried. Still, the same number
of key-tags was generated.

Missing Checksums continued

The Internet Protocol Journal
15

Is it the library?
The folks on DNS-OARC’s operations list came to the rescue. Peter
van Dijk from PowerDNS used the PowerDNS management tool:
pdnsutil add-zone-key, and was able to generate 32,769 unique key-
tags. More key-tags than before, but still only about 50% of all
possibilities. The tools in PowerDNS, BIND, and LDNS do not share
any code or any authors. All three tools were written “from scratch.”
Additionally, PowerDNS does not use OpenSSL at all; rather it uses
mbedTLS, a different cryptographic library. That means a problem
related solely to the cryptographic libraries or the tools can be ruled
out. There was still the observation that pdnsutil was able to produce
twice as many key-tags as the other tools, but we’ll get to that later.

Is it the checksum algorithm?
The next step was testing the key-tag function in RFC 4034[5]. The
key-tag function is very similar to the radix-minus-one complement
function for the Internet Header Checksum—a radix-minus-one
complement function. Note that it is not exactly the same, but the
minor difference could not fundamentally reduce the possible num-
ber of key-tags.

To test this possibility, a loop was created that fed random numbers
into the key-tag algorithm. When using 2,048-bit random numbers
as the input (instead of cryptographic keys), all possible key-tags
could be produced in a short amount of time. This experiment ruled
out that the limiting part was the key-tag algorithm itself. However,
we’ll come back to that later as well.

Is it purely a math problem?
Meanwhile, Florian Maury and Jérôme Plût from ANSSI took a good
look at the problem and discovered it was none of the possibilities
mentioned previously. It turns out that an interesting combination
of the properties of the Internet Header Checksum and RSA moduli
rules out certain results.

The input to the Internet Header Checksum function is treated
as blocks of 16 bits and the output is a 16-bit checksum. Radix-
minus-one complement methods are as old as accounting itself. The
nine’s complement method (where the radix is base 10) was used in
Pascal’s calculator. The method of complements is a technique used
to subtract one number from another using only addition of positive
numbers. We’re not using the complements part here, only the part
where we add, with carry, a bunch of bits.

A description of the Internet Header Checksum function follows:
Add the 16-bit values with end-around carry; that is, if adding two
16-bit values results in a carry, then add that carry bit to the result
of the addition.

The Internet Protocol Journal
16

Following is the end-around-carry part of the checksum function:

 ($sum AND 65535) + ($sum >> 16)

What Jérôme Plût observed is that this expression can be reduced to:

 $sum mod 65535

Since modular arithmetic has the addition property, we can also
deduce:

 ($Value1 + $Value2) mod 65535

 or:

 ($value1 mod 65535) + ($value2 mod 65535)

Calculating a key-tag
As said earlier, the Internet Header Checksum is very similar to the
key-tag function. The input for this key-tag algorithm is the RDATA
part of a DNSKEY record:

AlgorithmProtocol

32 Bits

Flags

Public Key

For all keys generated in this exercise, all the fields remain the same,
except for the modulus in the Public Key field.

For a Key Signing Key, the value of the Flags field is 257, and the
Protocol field always has the value of 3. The Algorithm field has the
value 8 (RSASHA256)[7]. With those parameters, the Public Key field
consists of an Exponent and a Modulus. For this exercise, the expo-
nent has value 65537 and is preceded with an Exponent Length field
(value 3).

The constant part of this input can now simply be added up as a
series of 16-bit unsigned values:

 $value1 = Flags + Protocol*256 + Algorithm + ExpLen*256 + Exponent

 $value1 = 257 + 3*256 + 8 + 3*256 + 65537

 $value1 = 67338

Missing Checksums continued

The Internet Protocol Journal
17

Using the deduction from before:

 keytag = (value1 mod 65535) + (value2 mod 65535)

 keytag = (67338 mod 65535) + (value2 mod 65535)

 keytag = 1803 + (value2 mod 65535)

The part of the checksum that is not constant is the RSA-modulus.
The RSA-modulus is a composite number with two very large prime
factors. In the previous equation, value2 is the RSA-modulus. The
last substitution becomes:

 keytag = 1803 + (RSA-modulus mod 65535)

Since the value 1803 is constant, it has no influence on the number
of possible key-tags, hence the solution to the reduced set of possible
key-tags may be found in the RSA-modulus modulo 65535 part of
the equation.

Number theory
What Jérôme Plût observed is that the value 65535 is a composite
number with four prime factors: 3, 5, 17, and 257. Since the RSA-
modulus and 65535 do not share any factors, the RSA-modulus can’t
be congruent with 0 modulo 65535.

Therefore, the modulus is not congruent with 0 modulo 3, 0 modulo
5, 0 modulo 17, or 0 modulo 257.

All other congruence values are possible, so the set of possible values
is simply a combination of the possible values:

 2 * 4 * 16 * 256 = 32768.

We can now check if we indeed can’t have 2010 as a value:

Before, we noted that:

 keytag = 1803 + (RSA-modulus mod 65535)

We can now substitute the key-tag with our desired value:

 2010 = 1803 + (RSA-modulus mod 65535)
 2010 - 1803 = RSA-modulus mod 65535
 207 = RSA-modulus mod 65535

However, 207 is congruent with 0 modulo 3, meaning that in order
for 207 to be possible, the RSA-modulus must have 3 as a factor. We
know this is not the case, so 2010 (that is, 207 + 1803) can’t be a
key-tag.

The Internet Protocol Journal
18

The remainder of the problem
Remember that the first exercise led to 16,387 key-tags, not 32,768 as
predicted before, or 32,769 as found by Peter van Dijk. Additionally,
32,769 is not 32,768 (and 16,387 is not 16,384, half of the 32,768
space).

32,769 is not 32,768
The key-tag function is similar to the Internet Header Checksum, but
not the same. The crucial difference is the last end-around carry.

The last part of the key-tag function is defined in RFC 4034, and
reads as follows:

 ac += (ac >> 16) & 0xFFFF;
 return ac & 0xFFFF;

The first line adds the carry bits to the accumulator. As a result,
the accumulator might be a value larger than fits in a 16-bit value.
Instead of again adding the carry bits to the value, it ignores those.

Ignoring the carry bits can, in some cases, result in an off by one
value, compared to the Internet Header Checksum. With the Internet
Header Checksum, only 32,768 values are possible, as we’ve seen in
the previous section. Since the key-tag function might be off by one,
a few more key-tag values are possible.

16,387 is not 32,769
Why was Peter able to produce about twice as many key-tags?
Assuming that the values could have been 16,384 and 32,768 (as
explained before), the only remaining difference is the library used.

OpenSSL generates primes that are congruent with 2 modulo 3. The
resulting modulus is thus always congruent with 1 modulo 3, since:

 (2 modulo 3) * (2 modulo 3) =
 4 modulo 3 =
 1 modulo 3

This formula reduces the possible key-tag space from 2 * 4 * 16 * 256
to 1 * 4 * 16 * 256, which is 16384.

This reduction is the reason why it was not possible to generate a
key-tag with the value 2015. Using the same reduction as before, we
can now substitute key-tag with 2015:

 2015 = 1803 + (RSA-modulus mod 65535)
 2015 - 1803 = RSA-modulus mod 65535
 212 = RSA-modulus mod 65535

However, 212 is congruent with 2 modulo 3. We now know that
RSA moduli from OpenSSL are always congruent with 1 modulo 3,
so key-tag 2015 is simply not possible when using OpenSSL.

Missing Checksums continued

The Internet Protocol Journal
19

The library that Peter is using, mbedTLS, does generate primes that
are congruent with 1 modulo 3.

Conclusion
The limited key-tag space does not present a security issue. The key-
tag is merely a hint and it is well known that different cryptographic
keys may lead to the same key-tag. However, the decision to use a
checksum as an identifier is poor at best. A checksum is designed to
check if an error exists in data, and not, in general, designed to be
an identifier. Additionally, using a function that is nearly identical to
the well-known Internet Header Checksum seems to be an error in
the design stage.

Acknowledgements
I cannot begin to thank adequately those who helped me to under-
stand and explain the various compounding issues that resulted in
the absence of 75% of all possible key-tags. Florian Maury and
Jérôme Plût from ANSSI explained the core issue with the Internet
Header Checksum over RSA moduli. Without them, I would still be
searching in the dark. Peter van Dijk and Bert Hubert of PowerDNS
consumed uncountable electrons and brainwaves to reproduce my
findings with different tools and libraries. Google’s Ben Laurie held
my hand while I was drowning in modular arithmetic and brought
me ashore. Finally, it was ICANN’s David Conrad who made my
broken English and various grammar faux pas readable.

References and Further Reading
 [0] Geoff Huston, “The Root of the Domain Name System,” The

Internet Protocol Journal, Volume 20, No. 2, June 2017.

 [1] Miek Gieben, “DNSSEC: The Protocol, Deployment, and a Bit
of Development,” The Internet Protocol Journal, Volume 7,
No. 2, June 2004.

 [2] Donald E. Eastlake 3rd, “Domain Name System Security
Extensions,” RFC 2535, March 1999.

 [3] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy
Arends, “DNS Security Introduction and Requirements,”
RFC 4033, March 2005.

 [4] George Michaelson, Patrick Wallström, Roy Arends, and Geoff
Huston, “Rolling Over DNS Keys,” The Internet Protocol
Journal, Volume 13, No. 1, March 2010.

 [5] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy
Arends, “Resource Records for the DNS Security Extensions,”
RFC 4034, March 2005.

 [6] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and
Roy Arends, “Protocol Modifications for the DNS Security
Extensions,” RFC 4035, March 2005.

The Internet Protocol Journal
20

 [7] Wes Hardaker, “Use of SHA-256 in DNSSEC Delegation Signer
(DS) Resource Records (RRs),” RFC 4509, May 2006.

 [8] Olaf Kolkman and Miek Gieben, “DNSSEC Operational
Practices, Version 2,” RFC 6781, December 2012.

 [9] Samuel Weiler and David Blacka, “Clarifications and Imple-
mentation Notes for DNS Security (DNSSEC),” RFC 6840,
February 2013.

 [10] OpenSSL: https://www.openssl.org/

 [11] BIND: https://www.isc.org/downloads/bind/

 [12] PowerDNS: https://www.powerdns.com/

 [13] LDNS: https://www.nlnetlabs.nl/projects/ldns/about/

 [14] Paul Hoffman, Andrew Sullivan, and Kazunori Fujiwara, “DNS
Terminology,” RFC 8499, January 2019.

 [15] L’Agence nationale de la sécurité des systèmes d’information
(ANSSI): https://www.ssi.gouv.fr/

 [16] DNS Operations, Analysis, and Research Center (DNS-OARC):
 https://www.dns-oarc.net/

 [17] Michael StJohns, “Automated Updates of DNS Security
(DNSSEC) Trust Anchors,” RFC 5011, September 2007.

 [18] Duane Wessels, Paul Hoffman, and Warren Kumari, “Signaling
Trust Anchor Knowledge in DNS Security Extensions
(DNSSEC),” RFC 8145, April 2017.

ROY ARENDS serves as a Principal Research Scientist at The Internet Corporation
for Assigned Names and Numbers (ICANN). Roy is responsible for successfully
delivering research projects; undertaking research design, data collection, and analy-
sis; and producing insightful, stimulating reports that expand knowledge related to
the system of unique identifiers on the Internet. E-mail: roy.arends@icann.org

Missing Checksums continued

The Internet Protocol Journal
21

Fragments
New DNS Terminology RFC
A Request For Comments (RFC) updating Domain Name System
(DNS) terminology was recently published[0], continuing a decades-
long IETF practice of publishing documents to help introduce
interested readers to protocol topics by going through the most
important terms.

The list of topics with terminology documents includes general termi-
nology[1], Network Address Translators (NATs)[2], Diffserv[3], Internet
connectivity[4], internationalization[5], and Internet of Things (IoT)
networks[6]. Although these documents are not meant to be step-by-
step introductions to the topics, they help someone who already has
some understanding go deeper into the topic, and often help clarify
terms that are often misused in common writing.

There are many dozens of RFCs defining the DNS, so the terminol-
ogy is often hard to find. Some common terms such as “host name”
are not defined in any RFCs; some are defined only by example;
worse, some are defined differently in different RFCs. RFC 8499,
“DNS Terminology,” was published as an update to an earlier work
to address these issues.

This document is the result of long discussions in the Domain Name
System Operations (DNSOPS) Working Group[7], where dozens of
DNS operators, software developers, and other experts brought up
terms to be covered and argued over the current meaning of terms
that are more than 30 years old. A common glossary is necessary to
operate the DNS, and to continue to develop the DNS, so that people
know what each other mean. The Working Group also hoped that
the document would be useful to people who used the DNS tangen-
tially, such as developers of other protocols and non-technical people
who interact with the DNS in their work.

RFC 8499 is an update to the first DNS terminology document,
RFC 7719[8]. While the first document was being written, the Working
Group agreed that some definitions (such as for “domain name”)
needed more work, and it was so difficult to get consensus on other
terms that they were left out. The new document is much more com-
plete, and contains some common terms not covered in the earlier
document, such as “recursive query,” “lame delegation,” and “split
DNS.”

Another significant addition to the document is the first definition
of a standards-track document of “the global DNS” and “private
DNS.” Many people think they know what “the DNS” is but may
not have a specific definition for it; these new terms helps get every-
one using the same definitions. Overall, nearly 40 terms that are not
defined in other RFCs are defined in this document.

The Internet Protocol Journal
22

Of course, the DNS will continue to evolve, and new terminology
may appear. RFC 8499 is stable, but it might be revised a few years
down the road to add these new terms.

 [0] Paul Hoffman, Andrew Sullivan, and Kazunori Fujiwara, “DNS
Terminology,” RFC 8499, January 2019.

 [1] Gary Scott Malkin, “Internet Users’ Glossary,” RFC 1983,
August 1996.

 [2] Matt Holdrege and Pyda Srisuresh, “IP Network Address Trans-
lator (NAT) Terminology and Considerations,” RFC 2663,
August 1999.

 [3] Dan Grossman, “New Terminology and Clarifications for
Diffserv,” RFC 3260, April 2002.

 [4] John C Klensin, “Terminology for Describing Internet Connec-
tivity,” RFC 4084, May 2005.

 [5] Paul Hoffman and John C Klensin, “Terminology Used in
Internationalization in the IETF,” RFC 6365, September 2011.

 [6] Carsten Bormann, Ari Keranen, and Mehmet Ersue,
“Terminology for Constrained-Node Networks,” RFC 7228,
May 2014.

 [7] DNSOPS Working Group:
 https://datatracker.ietf.org/wg/dnsop/charter/

 [8] Kazunori Fujiwara, Paul Hoffman, and Andrew Sullivan, “DNS
Terminology,” RFC 7719, December 2015.

(Source: https://www.ietf.org/blog/)

DNS-OARC
The DNS Operations, Analysis, and Research Center (DNS-OARC)
brings together key operators, implementers, and researchers on a
trusted platform so they can coordinate responses to attacks and
other concerns, share information and learn together. DNS-OARC
has five key functions:

Information Sharing: DNS-OARC provides a trusted, shared plat-
form to allow the DNS operations community to share information
and data. Stringent confidentiality requirements and secure com-
munications mean that proprietary information can be shared on a
bilateral basis.

Fragments continued

The Internet Protocol Journal
23

Operational Characterization: As Internet traffic levels continue to
grow, the demand on root and other key name servers will outgrow
the current infrastructure: this year’s DDoS attack traffic levels will
become next year’s steady state load. DNS-OARC measures the per-
formance and load of key name servers and publish statistics on both
traffic load and traffic type (including error types).

Workshops: DNS-OARC organizes semi-annual workshops where
members and the public are invited to give presentations on timely
topics relevant to DNS both operations and research.

Analysis: Leading researchers and developers provide long-term
analysis of DNS performance and post-mortems of attacks so that
institutional learning occurs. A well-provisioned system allows mem-
bers to upload traces and logs, and to perform their own analysis.

Tools and Services: As vulnerabilities and DNS problems come to
light, DNS-OARC develops publicly available tools and services to
assist with highlighting, diagnosing, and remedying such problems.

DNS-OARC participants fall into one or more of the following
categories:

• Operators of root, TLD, or large commercial name servers who
consume DNS technology and produce DNS services.

• Implementers who produce DNS technology including software,
appliances, and network elements such as load balancing hardware

• Researchers whose work has a strong DNS emphasis and who
need access to trace and log data about the global DNS under both
“normal” and “abnormal” conditions.

• Security Providers whose companies offer products and services
that utilize DNS information to improve the security of their
customers.

For more information, visit: https://www.dns-oarc.net/

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

The Internet Protocol Journal
24

Fabrizio Accatino
Michael Achola

Scott Aitken
Jacobus Akkerhuis

Antonio Cuñat Alario
Matteo D’Ambrosio

Jens Andersson
Danish Ansari
Tim Armstrong
Richard Artes
David Atkins
Jaime Badua

Hidde Beumer
Pier Paolo Biagi

John Bigrow
Axel Boeger
Keith Bogart

Mirko Bonadei
Roberto Bonalumi

Julie Bottorff
Photography

Gerry Boudreaux
L de Braal
Kevin Breit

Thomas Bridge
Ilia Bromberg
Václav Brožík

Christophe Brun
Gareth Bryan

Caner Budakoglu
Stefan Buckmann

Scott Burleigh
Jon Harald Bøvre
Olivier Cahagne
Antoine Camerlo

Tracy Camp
Ignacio Soto Campos

Fabio Caneparo
Roberto Canonico

David Cardwell
John Cavanaugh

Lj Cemeras

Dave Chapman
Stefanos Charchalakis

Greg Chisholm
David Chosrova
Marcin Cieslak

Brad Clark
Narelle Clark
Steve Corbató

Brian Courtney
Dave Crocker
Kevin Croes
John Curran

André Danthine
Morgan Davis

Jeff Day
Freek Dijkstra
Geert Van Dijk
David Dillow

Richard Dodsworth
Ernesto Doelling
Eugene Doroniuk
Karlheinz Dölger

Joshua Dreier
Lutz Drink
Andrew Dul
Holger Durer
Mark Eanes

Peter Robert Egli
George Ehlers

Peter Eisses
Torbjörn Eklöv
ERNW GmbH

ESdatCo
Steve Esquivel
Jay Etchings

Mikhail Evstiounin
Paul Ferguson
Kent Fichtner

The Flirble
Organisation

Gary Ford
Jean-Pierre Forcioli

Christopher Forsyth
Andrew Fox
Craig Fox

Fausto Franceschini
Tomislav Futivic

Edward Gallagher
Andrew Gallo
Chris Gamboni

Xosé Bravo Garcia
Kevin Gee

John Gilbert
Serge Van Ginderachter

Greg Goddard
Octavio Alfageme

Gorostiaga
Barry Greene

Martijn Groenleer
Geert Jan de Groot

Christopher Guemez
Gulf Coast Shots

Sheryll de Guzman
James Hamilton
Stephen Hanna

Martin Hannigan
John Hardin
David Harper

Edward Hauser
David Hauweele

Marilyn Hay
Headcrafts SRLS

Hidde van der Heide
Johan Helsingius
Robert Hinden

Asbjorn Hojmark
Alain Van Hoof
Edward Hotard

Bill Huber
Hagen Hultzsch

Kevin Iddles
Mika Ilvesmaki
Karsten Iwen
David Jaffe

Ashford Jaggernauth
Jozef Janitor
John Jarvis

Dennis Jennings
Edward Jennings

Aart Jochem
Richard Johnson

Jim Johnston
Jonatan Jonasson

Daniel Jones
Gary Jones
Jerry Jones
Amar Joshi

Merike Kaeo
Andrew Kaiser

Christos Karayiannis
David Kekar

Jithin Kesavan
Jubal Kessler

Shan Ali Khan
Nabeel Khatri

Anthony Klopp
Henry Kluge
Michael Kluk
Andrew Koch
Ia Kochiashvili

Carsten Koempe
Alexader Kogan

Antonin Kral
Mathias Körber

John Kristoff
Terje Krogdahl

Bobby Krupczak
Murray Kucherawy

Warren Kumari
Darrell Lack

Yan Landriault
Markus Langenmair

Fred Langham
Andrew Lamb
Richard Lamb

Tracy LaQuey Parker

Thank You!
Publication of IPJ is made possible by organizations and individuals around the world dedicated to
the design, growth, evolution, and operation of the global Internet and private networks built on the
Internet Protocol. The following individuals have provided support to IPJ. You can join them by visiting
http://tinyurl.com/IPJ-donate

The Internet Protocol Journal
25

Paul Stancik
Ralf Stempfer

Matthew Stenberg
Adrian Stevens
Clinton Stevens

John Streck
Viktor Sudakov
Edward-W. Suor
Vincent Surillo

T2Group
Roman Tarasov
David Theese

Douglas Thompson
Lorin J Thompson

Joseph Toste
Rey Tucker

Sandro Tumini
Angelo Turetta
Phil Tweedie
Steve Ulrich

Unitek Engineering
AG

John Urbanek
Martin Urwaleck
Betsy Vanderpool

Surendran
Vangadasalam
Buddy Venne

Alejandro Vennera
Luca Ventura

Tom Vest
Dario Vitali

Laurence Walker
Randy Watts

Andrew Webster
Tim Weil
Jd Wegner

Rick Wesson
Peter Whimp

Jurrien Wijlhuizen
Pindar Wong
Romeo Zwart
Bernd Zeimetz

廖 明沂.

Simon Leinen
Robert Lewis

Martin Lillepuu
Sergio Loreti

Guillermo a Loyola
Hannes Lubich

Dan Lynch
Miroslav Madić
Alexis Madriz
Carl Malamud
Michael Malik
Yogesh Mangar

Bill Manning
Harold March

Vincent Marchand
David Martin

Jim Martin
Timothy Martin

Gabriel Marroquin
Carles Mateu

Juan Jose Marin Martinez
Ioan Maxim
David Mazel

Miles McCredie
Brian McCullough

Joe McEachern
Jay McMaster

Mark Mc Nicholas
Carsten Melberg
Kevin Menezes

Bart Jan Menkveld
William Mills

David Millsom
Desiree Miloshevic

Joost van der Minnen
Thomas Mino

Wijnand Modderman
Mohammad Moghaddas

Charles Monson
Andrea Montefusco

Fernando Montenegro
Joel Moore

Maurizio Moroni
Brian Mort

Soenke Mumm

Tariq Mustafa
Stuart Nadin

Mazdak Rajabi Nasab
Krishna Natarajan
Darryl Newman
Paul Nikolich

Travis Northrup
Marijana Novakovic

David Oates
Ovidiu Obersterescu

Tim O’Brien
Mike O’Connor

Mike O’Dell
Jim Oplotnik

Carlos Astor Araujo
Palmeira

Alexis Panagopoulos
Gaurav Panwar

Manuel Uruena Pascual
Ricardo Patara
Dipesh Patel

Alex Parkinson
Craig Partridge

Dan Paynter
Leif Eric Pedersen

Juan Pena
Chris Perkins
David Phelan
Derrell Piper
Rob Pirnie

Marc Vives Piza
Jorge Ivan Pincay Ponce

Victoria Poncini
Blahoslav Popela
Eduard Llull Pou

Tim Pozar
David Raistrick

Priyan R Rajeevan
Paul Rathbone

Bill Reid
Rodrigo Ribeiro

Glenn Ricart
Justin Richards
Mark Risinger
Ron Rockrohr

Follow us on Twitter and Facebook @protocoljournal https://www.facebook.com/newipj

Carlos Rodrigues
Lex Van Roon
William Ross

Boudhayan Roychowdhury
Carlos Rubio
Timo Ruiter
RustedMusic
Babak Saberi

George Sadowsky
Scott Sandefur
Sachin Sapkal

Arturas Satkovskis
PS Saunders
John Sayer
Phil Scarr

Elizabeth Scheid
Jeroen Van Ingen Schenau

Carsten Scherb
Ernest Schirmer

Dan Schrenk
Richard Schultz
Roger Schwartz

SeenThere
Scott Seifel
Yury Shefer

Yaron Sheffer
Doron Shikmoni

Tj Shumway
Jeffrey Sicuranza

Thorsten Sideboard
Andrew Simmons

Pradeep Singh
Henry Sinnreich

Geoff Sisson
Helge Skrivervik

Darren Sleeth
Bob Smith

Courtney Smith
Mark Smith
Job Snijders

Ronald Solano
Asit Som

Ignacio Soto Campos
Peter Spekreijse

Thayumanavan Sridhar

The Internet Protocol Journal
26

Letters to the Editor

Ole,

Geoff Huston’s most recent article on the last 10 years of the Internet
is absolutely brilliant (IPJ Volume 21, No. 2, August 2018). As one
of the early implementers of our dear Internet, I am of course amazed
at its evolution these past decades, and Geoff has more than “kept
up”! His ability to summarize quickly and accurately is without peer.
Thank you all.

—Dan Lynch
dan@lynch.com

Geoff,

Thank you very much for your article “Another 10 Years” in The
Internet Protocol Journal. I enjoyed your perspective and your writ-
ing style very much. You have a great skill at explaining a great
amount of information.

I subscribed to the early ConneXions—The Interoperability Report
and later IPJ. I’ve been glad to see your articles over the many years.

Sincerely,
—Richard Berke

Richard_Berke@troweprice.com

The author responds:

I really appreciate your kind words, and I am glad you liked the
article.

—Geoff Huston
gih@apnic.net

Letters may be edited for clarity. We’d love to hear from you. Send us
your feedback via e-mail to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

Check your Subscription Details!
If you have a print subscription to this journal, you will find an expi-
ration date printed on the back cover. For the last couple of years, we
have “auto-renewed” your subscription, but now we ask you to log in
to our subscription system and perform this simple task yourself. The
subscription portal is here: https://www.ipjsubscription.org/
This process will ensure that we have your current contact informa-
tion as well as delivery preference (print edition or download). For
any questions, contact us by e-mail at: ipj@protocoljournal.org

The Internet Protocol Journal
27

Supporters and Sponsors

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsors Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

Your logo here!Your logo here!

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

David Conrad, Chief Technology Officer
Internet Corporation for Assigned Names and Numbers

Dr. Steve Crocker, CEO and Co-Founder
Shinkuro, Inc.

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Dr. Cullen Jennings, Cisco Fellow
Cisco Systems, Inc.

Olaf Kolkman, Chief Internet Technology Officer
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor
Faculty of Environmental and Information Studies,
Keio University, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
NMS
535 Brennan Street
San Jose, CA 95131

ADDRESS SERVICE REQUESTED

