
May 2020 Volume 23, Number 1

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

F r o m T h e E d i t o r

In mid-February, I traveled to Melbourne, Australia, to attend the Asia
Pacific Regional Internet Conference on Operational Technologies
(APRICOT). I normally attend around 10 or 12 similar Internet-
related events in a year, be they Network Operator Group (NOG)
conferences, Regional Internet Registry (RIR) events, or meetings of
The Internet Engineering Task Force (IETF). This year, most of these
events have either been cancelled or have “gone virtual” as the world
tackles the COVID-19 pandemic.

The pandemic has clearly demonstrated the resilience and flexibil-
ity of the Internet and the people and organizations that rely on it
for work, education, and entertainment. The various lock-downs or
shelter-in-place orders have also given many of us an opportunity
to take a closer look at some of the underlying technologies of the
Internet, as we participate in online events or perhaps read more
books and articles. This journal continues to receive many interesting
articles on all aspects of networking, and in addition to the normal
issues in print (and PDF format), we are also planning to expand our
online presence in the near future.

Buffering is a central concept in packet-switched networks. Appli-
cations such as streaming audio or video rely on buffers to com-
pensate for the fact that packets do not arrive at a fixed rate or even
in a fixed order. Memory buffers are also used within the switches
of the network to account for variations in network bandwidth
and throughput. In our first article, Geoff Huston discusses network
buffers and explains the numerous mechanisms that are used or
have been proposed to tackle network congestion.

Previous articles in this journal have discussed various aspects of
unsolicited e-mail, commonly referred to as “spam.” This time, John
Levine explains recent developments in anti-spam efforts, specifically
Domain-based Message Authentication, Reporting & Conformance
(DMARC) and Authenticated Received Chain (ARC).

As always, we welcome your feedback and suggestions on anything
you read in this journal. Letters to the Editor may be edited for
clarity and length and can be sent to ipj@protocoljournal.org.
Please make sure your subscription details are accurate.

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

Network Buffer Sizes 2

Mail Security with
DMARC and ARC 21

Letter to the Editor 35

Fragments 37

Thank You! 40

Call for Papers 42

Supporters and Sponsors 43

http://www.cisco.com/ipj
mailto:ipj%40protocoljournal.org?subject=
mailto:ole%40protocoljournal.org%20?subject=

The Internet Protocol Journal
2

What’s the Right Network Buffer Size?
by Geoff Huston, APNIC

P acket-switched networks need to use memory buffers within
the switches of the network. In a simple example, if two pack-
ets arrive at a switch at the same time and are destined to the

same output port, then one packet needs to wait in a local buffer
while the other packet is sent on, assuming that the switch does
not want to needlessly discard packets. Not only do these buffers
address such timing issues that are associated with multiplexing,
they are also useful in smoothing packet bursts and performing
rate adaptation that is necessary when packet sources are self-
clocked. However, there is a question that has never been answered
satisfactorily: What’s the “right” size for the memory buffer of a
switch? If buffers are generally good and improve data throughput
by reducing the incidence of packet drop, then more (or larger)
buffers are better, right? Not necessarily, because buffers also add
additional delay to packet transit through the network if the packet
gets parked into one of more buffers in transit. If you want to provide a
low-jitter packet-transit service, then deep buffers in the network are
decidedly unfriendly! The result is the rather enigmatic observation
that network buffers have to be as big as they need to be, but no
bigger.

Buffers in a packet-switched communication network serve at
least two purposes. They impose some order on the highly erratic
instantaneous packet rates that are inherent when many diverse
packet flows are multiplexed into a single common transmission
system, and they compensate for the propagation delay inherent in
any congestion feedback control signal and the consequent coarseness
of response to congestion events by end systems.

The Internet adds an additional dimension to this topic. Most Internet
traffic is still controlled by the rate adaptation that various forms of
Transmission Control Protocol (TCP) congestion-control algorithms
use. The overall objective of these rate-control mechanisms is to
make efficient use of the network, such that no network resource is
idle when there is latent demand for more resources, and fair use of
the network, such that if the network has multiple flows, then each
flow will be given a proportionate share of the network resources,
relative to the competing resource demands from other flows.

The study of buffer sizing is not one that occurs in isolation. The
related areas of study encompass various forms of queueing disciplines
that these network elements use, the congestion-control protocols
that data senders use, and the mix of traffic on the network. The area
also encompasses considerations of hardware design; Application-
Specific Integrated Circuit (ASIC) chip layouts; and the speed, cost,
and power requirements of switch hardware.

The Internet Protocol Journal
3

The topic of buffer sizing was the subject of a workshop at Stanford
University in early December 2019. The workshop drew together
academics, researchers, vendors, and operators to look at this topic
from their perspectives. It hosted 98 attendees from 12 countries,
with 26 from academia and 72 from industry. The following are my
notes from this highly stimulating workshop[0].

Background
In an autonomously managed packet network, packet senders learn
from reflections of data that packet receivers provide, in a similar
fashion to the way a radar system “learns” from a reflected signal.
In a reliable flow-controlled TCP session the receiver sends an ACK
packet to acknowledge the receipt of one or more data packets. Each
ACK describes how many in-sequence bytes the receiver removed
from the network. The sender can use this ACK signal to guide the
injection of additional data into the network. One aim of each packet
sender is a position of stability, where every packet passed into the
network is matched against a packet leaving the network. In the TCP
context, this behaviour is termed ACK Pacing.

While the sender can use ACK pacing to determine a stable sending
rate, it cannot readily determine a fair and efficient sending rate. The
unknown factor in this model is that the sender is not aware of the
right amount of network resources to claim for the data transaction
that would sustain a fair and efficient outcome. The TCP approach
to solve this problem is to use a process of dynamic discovery where
the sender probes the network by gently increasing sending rates
until it receives an indication that the sending rate is too high. It
then backs off its sending rate to a point that it believes is lower than
the sustainable maximum rate and resumes the probe activity[1].

This classic model of TCP flow management is termed Additive
Increase, Multiplicative Decrease (AIMD). The sending rate is
increased by a constant amount over each time interval (usually the
time to send a packet to the receiver and the receiver to send an
acknowledgement packet back to the sender, or a Round Trip Time
(RTT) interval). In response to a packet-loss event, indicated by
Duplicate ACKs that suggest the next in-sequence packet has been
lost and the receiver considers successive packets to be out of order,
the sender decreases the sending rate by a multiplicative ratio. The
classic model of TCP uses an additive factor of 1 TCP Message
Segment Size (MSS)[9] of data per RTT and a rate halving (divide
by 2) in response to a packet loss. The result is a “sawtooth” TCP
behaviour[2] (Figure 1). This control is determined by the sender
maintaining a Congestion Window value, which is the maximum
amount of unacknowledged data that the sender can have. Increasing
the sending rate is achieved by increasing this value, and a decrease is
achieved by reducing this value. When the value is reduced, then the
sender must wait for the amount of unacknowledged data to drop
below the new value before sending new data into the network.

The Internet Protocol Journal
4

Figure 1: TCP AIMD Congestion-
Control Behaviour

Se
nd

in
g

Ra
te

 /
Se

nd
er

 W
in

do
w

Time

Sender’s Window Recovery Interval
(1xRTT)

Packet Loss

Rate Halving

Congestion
Avoidance

Congestion
Avoidance

We can mathematically model this behaviour of rate halving in
response to packet loss and linear increase otherwise. If the packet-loss
function is assumed to be a random loss function with a probability
p, then the data-flow rate is proportional to the inverse square root
of the packet-loss probability, as given in following equation (0)[2]:

BW = =MSS C 3
2pRTT where C (0)

This result implies that the achievable capacity of an AIMD TCP
flow is inversely proportional to the square root of the packet-loss
probability.

But packet loss is not a random event. If we assume that packet loss
is the result of buffer overflow, then we also need to consider buf-
fers and buffer depth in more detail. An informal standard for the
Internet is that the buffer size should be equal to the delay-bandwidth
product of the link (the derivation of this “rule of thumb” result is
explained in the next section).

Size (1)= MSS RTT

As network link speeds increase, the associated buffers similarly
need to increase in size, based on this engineering rule of thumb.
The rapid progression of transmission systems from megabits per
second to gigabits per second and the prospect of moving to terabit
systems in the near future pose, particular scaling issues for silicon-
based switching and buffer systems. As networks increase in scale,
the switching scaling factors tend to show multiplicative properties.

Network Buffers continued

The Internet Protocol Journal
5

For example, if we have a single switch of capacity C and we want
to double the effective switching capacity but cannot increase the
capacity of the switching chip, then how many switching chips will
we need to produce a composite switch of capacity 2C? The answer
is not 2 but 6, as shown in Figure 2. A packet will also need to
traverse up to three switch fabrics, so the aggregate buffer size of the
path through the switch fabric may triple in size.

Figure 2: Doubling Switch Capacity

Switch
Fabric D

RA
M

C

Switch
Fabric D

RA
M

2C

Switch
Fabric D

RA
MSwitch

Fabric D
RA

M

C/4

C/2C/2

C/4C/4 C/4

Switch
Fabric D

RA
M

Switch
Fabric D

RA
MSwitch

Fabric D
RA

M

C/4

C/2C/2

C/4C/4 C/4

Self-clocking packet sources imply that congestion events within the
network are inevitable, and any control mechanism that is imposed
on these sources requires some form of feedback that allows the
source to craft an efficient response to congestion events. However,
this feedback is constrained by propagation delays and this lag
creates some coarseness in the response mechanisms. If the response
is too extreme, the sources will over-react to congestion and the
network will head into instability with oscillations between periods
of intense use and high packet loss and periods of idle operation. If
the response is too small, the congestion events will extend over time,
leading to protracted periods of operation with full buffers, high lag,
and high packet loss.

Robust control algorithms need to be stable for general topologies
with multiple constrained resources, and ways of achieving this
stability are still the subject of investigation and experimentation. If
feedback based on rate mismatch is available, then feedback based
on queue size is not all that useful for stabilising long-lived flows.
Feedback based on queue size is, however, important for clearing
transient overloads.

Over more than three decades of experience with congestion-manage-
ment systems, we have seen many theories, papers, and experiments.

The Internet Protocol Journal
6

Clearly, there is no general agreement on a preferred path to take
with congestion-control systems. However, a consistent factor here is
the network buffer size, and the sizing of these buffers in relation to
network capacity. One view, possibly extreme, says that buffers are
at the root of all performance issues.

The task of dimensioning buffers in a switching system has implica-
tions right down to the design of the ASIC that implements the switch
fabric. On-chip memory can be fast, but it is limited in capacity to
some 100 MB or less. Larger memory buffers need to be provisioned
off-chip, requiring I/O logic to interface to the memory bank, and the
speed of the off-chip system is typically slower than on-chip memory.
Hybrid systems have to compromise between devoting chip capacity
to switching, memory, and external memory interfaces. And layered
on top of these design trade-offs is the continuing need to switch at
higher speed across larger numbers of ports.

One objective of the Buffer Size Workshop was to continue the con-
versation about buffers, determine their relationship to congestion
control, and improve our understanding about the interdependence
among buffer size, queuing control, self-clocking algorithms, net-
work dimensioning, and traffic profiles.

How Big Should a Buffer Be in the Internet?
The single AIMD flow model predicts poor outcomes for flows
operating across buffers that are too deep or too shallow. Too deep
and the flow’s loss response of halving the congestion window does
not clear the buffer, and a standing queue forms that contributes to
an increased latency imposed in the flow (Figure 3).

Figure 3: Deep Buffers and Rate
Halving Congestion Response

Se
nd

in
g

Ra
te

 /
Se

ne
r W

in
do

w

Time

0 Buffer Point

Standing
Queue

Packet Loss

Rate Halving

Buffer Size Congestion
Avoidance

If the buffer is too shallow, then rate halving drops the sending rate
below the bottleneck capacity, and the link will be under-used until
the additive increase brings the rate up to the link capacity (Figure 4).

Network Buffers continued

The Internet Protocol Journal
7

Figure 4: Shallow Buffers and Rate
Halving Congestion Response

Se
nd

in
g

Ra
te

 /
Se

ne
r W

in
do

w

Time

Link Idle
Period

Packet Loss

Rate HalvingBuffer
Size

Congestion
Avoidance

0 Buffer Point

The delay-bandwidth product rule of thumb generates some ex-
tremely large queue-capacity requirements in medium-delay,
high-capacity systems. A 10-Gbs system using a 100-ms RTT link
requires a 125-MB memory pool per port that can read and write at
10 Gbps. A 1-Tbps system would require a 12.5-GB memory pool per
port that can read and write at 1 Tbps. A 16-port switch would
require 200 GB of high-speed buffer memory using this same design
guideline.

Such numbers are challenging for switch designers, and it is reason-
able to review the original work to understand the derivation of this
provisioning rule.

This model of provisioning the queue to the bandwidth-delay product
is derived from a AIMD control algorithm of a single flow using
an additive value of 1 segment per RTT and halving the congestion
window on packet loss, coupled with the objective of using the buffer
to keep the link busy during the period of window deflation.

However, something a little deeper in the oscillation of the AIMD
flow-control process affects the selection of the buffer size. In the
purely hypothetical situation of a single flow operating across a
single switch with a lossless transmission medium, the only source
of packet loss is buffer exhaustion. If the switch has no buffer at all,
then the AIMD algorithm will operate in a steady state between half
capacity and full capacity, leaving approximately one-fourth of the
capacity unused by the flow.

The objective is to use a buffer as a reservoir to fill the transmission
link while the sender pauses, waiting for the receiver’s count of
unacknowledged data to fall below the new congestion-window
value. If the buffer size is set to the link bandwidth times the link
RTT, then the buffer will be drained at the point when the sender’s
unacknowledged data reaches the congestion-window value and the
sender can resume sending.

The Internet Protocol Journal
8

While this result is from a theoretical analysis of a single flow
through a single link, experiments by Villamizar and Song in 1994[3]
pointed to a more general use of this dimensioning guideline in the
case of multiple flows across multiple links. The rationale for this
experimental observation was a supposition that synchronisation
occurs across the dominant TCP flows, and the aggregate behaviour
of the elemental flows was similar to a single large flow. This work
was the foundation of today’s common assumption that buffers in
the network should be provisioned at a size equal to the round-trip
delay multiplied by the capacity in order to ensure efficient loading
of the link; see equation (1).

This supposition has been subsequently questioned. The scenario of
a link loaded with a diversity of flows in RTT, duration, and burst
profiles implies that synchronisation across such flows is highly
unlikely, obviously having implications for buffer-size calculation. If
there are two concurrent TCP flows, they have the same RTT, and
they resonate in the increase and decrease events, then the buffer
requirement will be the same for an efficient use of the network and
a fair sharing of the available bandwidth. But if the increase and
decrease of the two sessions are exactly out of phase, then a fair
and efficient outcome would be created by a buffer size that is three-
quarters of the original single flow. The real world typically sees a
number of concurrent flows where both the RTT and the phase of
the TCP duty cycle all vary. A Stanford TCP research group study
in 2004[4] used the central-limit theorem to point to a radically
smaller model of buffer size. You can maintain link efficiency for N
desynchronised flows with a buffer that is dimensioned to the size of:

Size (2)= BW RTT
N

This result is radical for high-speed extended latency links in a busy
network. The consequences on router design are enormous: “For
example, a 1 Tb/s ISP router carrying one TCP flow with an RTTmin
of 100ms would require 12.5 GB of buffer and off-chip buffering. If
it carries 100,000 flows, then the buffer can be safely reduced to less
than 40MB, reducing the buffering and worst-case latency by 99.7%.
With small buffers, the buffer would comfortably fit on a single chip
switch ASIC.”[5]

Queue Management
The default operation of a queue within a switch is to accept
new packets while there is still space in the queue and discard all
subsequently arriving packets until the output process has cleared
space in the queue. If an incoming packet burst arrives at a switch
and the queue capacity is insufficient to hold the burst, then the tail of
the burst will be discarded. This tail-drop behaviour can compromise
the performance of the flow, because the clocking information for the
tail end of the burst has been lost.

Network Buffers continued

The Internet Protocol Journal
9

One mitigation of this behaviour is Active Queue Management
(AQM), where the process of queue formation triggers “early” drop.
In other words, a packet drop will occur even when there is space in
the queue to accept the packet. The ideal outcome of AQM is that
packet drop in a large burst will occur inside the burst and the trailing
packets following the dropped packet (which are not dropped as
there is still space in the queue) will carry a coherent clocking signal
in the ACK packet train that allows the flow to repair the loss quickly
without losing the implicit clocking signal. Loss-based congestion-
control algorithms will react to this packet drop by dropping their
congestion-control window size, reducing their sending rate without
collapsing the sending rate back to zero.

Drop-based TCP control algorithms react predictably to packet loss.
However, the Internet is not entirely homogenous with respect to
flow-control algorithms, and we are seeing increasing interest in
flow systems that account for variance of the RTT measurements in
a flow, or so-called delay-based TCP control systems. Delay-based
paced control algorithms react differently to queue drop, and a
“pure” delay-based flow-control system is indifferent to a loss signal.
The question is: Are there AQM functions that can support a mix
of congestion-control algorithms? Indeed, is the question of what
form of AQM to use a more important question than the size of the
underlying buffer?

Explicit Network Feedback
For many years there has been considerable debate between an end-
system approach that uses only the received ACK stream to infer the
network congestion state in the data forwarding direction from a
packet loss signal (Figure 5), and an approach that uses some form
of explicit signalling from the network that can directly inform the
source of the network state. Very early efforts in such direct sig-
nalling through Internet Control Message Protocol (ICMP) Source
Quench messages were quickly discounted because of the various
issues related to its potential for Denial-of-Service (DoS) attacks and
its inability to authenticate the messages.

The Explicit Congestion Notification (ECN) proposal[6] tried to
address the most obvious failing of the earlier approach by placing
the congestion signal inside the end-to-end IP packet exchange.
Switching elements that were experiencing the onset of local con-
gestion load in their buffers were expected to set a Congestion
Experienced bit in the IP packet header of packets that were con-
tributing to this load condition. Receivers were expected to translate
this bit into the ACK packet header, so that the sender received an
explicit congestion signal rather than having to infer congestion
from an ACK signal that reflects packet loss (Figure 6).

The Internet Protocol Journal
10

Figure 5: Loss-Based Congestion-Control Behaviour

Congested Queue State

Sender
Drop

ACKs

Duplicate
ACK

Data

Receiver

Figure 6: ECN Marking

Congested Queue State

ECN Marking

ECN Marking

ACKs

Data

Sender Receiver

The advantage of ECN is that the sender is not placed in the position
of being informed of a congestion condition well after the condition
has occurred. Explicit notification allows the sender to be informed
of a condition as it is forming, so that it can take action while there
is still a coherent ACK pacing signal coming back from the receiver
(that is, before packet loss occurs). This measure mimics the intention
of delay-based flow systems, but with increased precision assuming
that all switches were to perform this congestion marking.

However, ECN is only a single bit marking. Is that enough? Would a
richer marking framework facilitate a more precise sender response?
What if we had a marking regime that marks based on the dis-
tance from the current rate to a desired fair-efficient rate? Or use
a larger vector to record the congestion state in multiple queues on
the path?

Network Buffers continued

The Internet Protocol Journal
11

The conclusion from one presentation is that the single-bit marking,
while coarse and non-specific, is probably sufficient to moderate self-
clocking TCP flows such that they do not place pressure on network
buffers, leaving the buffers to deal with short-term bursts from
unconstrained sources.

Another presentation at the workshop explored a network-level
direct-feedback message, analogous to the ICMP Packet Too Big
messages in Path MTU Discovery (PMTUD). To short-circuit the
delays associated with completing the entire round trip, this approach
envisages the switch experiencing the onset of congestion to explic-
itly message the source of this congestion condition (Figure 7).

Figure 7: Network-Congestion Signalling

Congested Queue State

Congestion Notification

Net
Congestion

Message

Data

Sender Receiver

Another presentation looked at the attachment of a detailed telemetry
log to each packet in a data-centre application. In the High-Precision
Congestion Control (HPCC) framework each switch attaches the time,
queue length, byte count, and link bandwidth to the data packet. The
receiver takes this data and attaches it to the corresponding ACK, so
that the sender can form a detailed model of the recent state of path
capability. HPCC allows the sender to calculate a fair sending rate and
then rapidly converge to this rate, while at the same time bounding
the formatting of queues and bounding queuing delays. The domain
of application of this approach appears to be the data centre, and the
objective is to achieve high speed with bounded delay for Remote
Direct Memory Access (RDMA)-style applications (Figure 8).

There is a degree of debate between congestion-based TCP con-
trol and delay-based mechanisms. On the one hand, we hear that
delay-based mechanisms can operate the flows at the onset of queue
formation in the network. On the other hand, we hear that attempt-
ing to set the flow to a fixed delay and operating with fairness to
other flows is intrinsically impossible and that we need to operate
flows with congestion moderation.

The Internet Protocol Journal
12

Figure 8: High-Precision Congestion Control

ACKs

Data

HPCC

Sender Receiver

Near and Far Buffers
What is the cost/power trade-off of buffers on-chip and off-chip? And
if we are considering off-chip, what do we actually mean, because
there are different implementation approaches to off-chip memory.
As a general observation, the performance of off-chip memory is not
remotely close to what is required by a high-capacity, high-speed
switch. This performance is not improving over time because memory
speed is not scaling at the same rate as transmission or switch speeds,
so the gap in performance between transmission and switching and
memory speed is only getting larger over time.

One switch chip fabricator, Broadcom, implements both deep and
shallow buffers. On its switch fabric chip Broadcom uses small, fast
buffers and wraps the switch fabric with everything it can to reduce
the dependency on deep buffers.

Recent operational data at Intel suggests that shallow buffers may
be “good enough,” but because of limitations in instrumenting
technologies there is insufficient confidence in these results to
allow switch chip designs to completely discount external memory
interfaces and a local cache and use on-chip memory exclusively.
Current switch designs use between 10% and 50% of chip area on
memory management. This observation applies to high-capacity,
high-speed switches, because at lower capacity and lower speeds
there is no such constraint and you can use large pools of off-chip
memory (relative to transmission speeds), although some constraint
in the amount of memory will likely produce a better outcome in
these contexts as well.

The question of future requirements is always present in chip design,
given the long times between phrasing requirements and deploy-
ment into networks. Where is this situation heading? Memory
buffers are not growing as fast as chip bandwidth. Clock speeds
are not increasing, and scaling chip bandwidth is currently achiev-
ing parallelism rather than increasing the chip clock speed.

Network Buffers continued

The Internet Protocol Journal
13

While doubling switch capacity may be feasible, contemplating an
increase in capacity by factors of 20, 50, or even 100 seem like par-
ticularly tough challenges.

Today packet rates are typically achieved with multiple parallel
pipelines, and orchestrating such highly parallel mechanisms creates
its own complexity in design. No one is yet prepared to call an end
to the prodigious outcomes of Moore’s Law in the semiconductor
realm, but it looks like clock speeds are not keeping up, and pin
density and even increasing gate density are becoming challenging.
Is doubling the number of ports on a switch chip good enough? If a
chip has twice the switch bandwidth, does it need twice the on-chip
memory capacity? Or less? The answer lies in external factors such as
congestion-control algorithms, queue-management disciplines, and
delay management.

Hop-by-Hop Flow Control
Hop-by-Hop Flow Control represents a revival of a very early attri-
bute of packet-switched networks, where an end-to-end path is
composed of a sequence of flow-controlled hops. Each switching ele-
ment sends at its line rate into the buffer of the next switch. When a
queue forms at the receiver, the hop flow control can pause the flow
coming from the adjacent switch and resume it when the queue is
cleared. Yes, this process sounds very reminiscent of X.25 and the
Digital Data Communications Message Protocol (DDCMP) compo-
nent of DECnet, and it’s the opposite of the intent of the end-to-end
approach. However, the approach can produce direct back pressure
on a bursting source with no packet drop and yield highly efficient use
without extensive buffer-induced delays. Essentially the self-clock-
ing nature of the flow is replaced with a network clocking function
(Figure 9). Admittedly, this approach is not universally applicable,
and it appears to offer a potential match to the intra-data-centre
environment where traffic patterns are highly bursty, propagation
times are low, paths are short, and volumes and speeds are intense.

Figure 9: Hop-by-Hop Flow Control

Closed Loop Closed Loop Closed LoopSender Receiver

Flow-Aware Buffer Management
It appears that the move towards shorter buffers relative to the link
speed is inevitable. But how to manage the feedback systems to allow
self-clocking data sources to adjust to the shortened buffer space is
still an outstanding issue.

The Internet Protocol Journal
14

One approach starts with a basic traffic characterisation of a rel-
atively small proportion of “elephant flows” (high volume, long
duration) mixed with a far higher count of “mice” flows (low vol-
ume, short duration). While elephant flows are highly susceptible to
congestion signalling, mice flows are not.

If the network could classify all currently active flows into either
elephants or mice, then the network could use different queuing
regimes for each traffic class. This sorting adds to the cost and
complexity of packet switches, and if scaling pressures are a factor
in switch design, then it’s not clear that the additional cost of switch
complexity would be offset by a far superior efficiency outcome in
the switching function.

Assuming that such a flow classification could be achieved dyna-
mically, we can consider differential responses. For short flows, there
is little benefit to be gained by any form of explicit congestion control
other than placing all such flows into their own queuing regime. For
long-lived large flows, we could contemplate an explicit network-
congestion signal. It could take the form of an explicit packet back
to the network-generated source. The advantage of this approach is
that the feedback of excessive sending rate is faster than a full RTT
interval, allowing the sender to give a timely response. However, this
idea does seem like a reprise of the ill-fated ICMP Source Quench
message, and all that was problematical with ICMP Source Quench is
probably still an issue in this form of network-congestion notification.

We can exploit this concept of the use of various queue regimes for
different flow types in a different way by using a short buffer for
long flows in the expectation that the implicit congestion signal of
packet drop would allow the long-duration flow to stabilise into the
available network resource, while short unregulated bursts could
have access to a deeper buffer, allowing effective use of the buffer as
a rate-adaptation tool to mitigate the burst.

This concept is taken even further in one project, which used the
observation that if a buffer is too deep, then the flow-rate reduction
following packet drop will leave a standing queue in the buffer, and
if the buffer is too shallow, then the rate reduction will leave a period
of an empty queue and an idle transmission system. This observation
means that a flow-aware buffer manager could adjust its buffer size
following observation of the post-reduction behaviour, reducing
the buffer if standing queues form and increasing it if the queue is
idle. It’s an interesting approach to fair-queuing flow management,
treating the per-flow buffer as an elastic resource that can resize itself
to adapt to the congestion-management discipline of the flow.

ISP Network Buffer Profile
P4 is a language used to program the data plane of network devices.
The language can express how a switch should process packets (“P4”
itself comes from the original paper that introduced the language,
Programming Protocol-independent Packet Processors[7].)

Network Buffers continued

The Internet Protocol Journal
15

Barefoot’s Tofino is an example of a new class of programmable
Ethernet packet switches that are controlled through P4 constructs,
and these units can currently handle aggregate capacity of some 12.8
Tbps of data-plane capacity. This capability allows for a measure-
ment regime that can expose packet characteristics at a nanosecond
level of granularity. By tapping the packet flow of a high-speed trunk
transmission system into and out of a switching element in the net-
work and attaching the taps to a P4 switch unit, it is possible to
match the times of ingress and egress of individual packets and gener-
ate a per-packet record of queuing delay within the switching element
at a nanosecond level of granularity.

This capability provides a new level of insight into burst behaviour in
high-speed carriage systems Internet Service Providers (ISPs) use. The
major observation from an exercise conducted on a large ISP network
was that network buffers are lightly used except for “microbursts,”
bursts of some 100 microseconds or so, where the queue adds a delay
element of more than 10 ms on a 10 GigE port. Further analysis
reveals an estimate of packet drop rates if the network buffers
were reduced in size, and for this case the analysis revealed that an
18-msec buffer would be able to sustain a packet drop rate of less
than 0.005%.

If buffer-congestion behaviours in such ISP networks are, in fact,
microbursts, then network measurement tools that operate at the
per-minute or even at the per-second level of granularity are simply
too crude. P4-based measurements that can resolve behaviours at
the nanosecond level offer new insights into buffer behaviours in
networks that carry a large volume of diverse flows. Even though
the per-flow control cycle of the data-plane flows is of the scale of
some milliseconds and longer, the microburst behaviour is that of a
load model that exhibits sub-millisecond burstiness. The timescale
of end-to-end congestion control operates at a far coarser level than
the observed behaviour of congestion within a switch running a
conventional traffic load.

This discussion leads to the observation that large-scale systems are
creating extremely rapid queue size fluctuations, and it is unrealistic
to expect that end-to-end control algorithms can control the queue
size. It might be that at best these control algorithms can contribute
to influencing the distribution of queue sizes.

Sender Pacing
The Internet can be seen as a process of statistical multiplexing of a
collection of self-clocked packet flows where the flows exhibit a high
degree of variance and a low level of stability. The reaction to this
unconstrained input condition so far is to use large buffers that can
absorb the variations in traffic. How large is “large enough” becomes
the critical question in such an environment. The work on buffer
sizing as being in proportion to the bandwidth-delay product of the
transmission elements is an outcome of a process that measures the
properties of the control algorithm for traffic flows.

The Internet Protocol Journal
16

It then derives estimates of buffer sizes that should be capable of car-
rying such a volume of traffic that it will efficiently and fairly load
the transmission system.

The exercise assumes that the buffer dimension is a free parameter
in network design, and control algorithms are fixed. Buffer speed
inside the network has to double at a cycle of some 2 years, and
the buffer size has to double in a similar timeframe. The product of
size and speed is a quadrupling every 2 years. The current tactical
response to this escalation of buffer requirements due to transmission
capacity increases has been to reduce the size of the buffers relative
to the transmission capacity. However, this response is not a long-
term sustainable solution because such under-provisioned network
buffers will impair overall network efficiency in these self-clocking
flow regimes.

The future prospects for self-clocked traffic flows are not looking
all that bright given that the growth demands for network buffer-
based mitigation of unconstrained sender behaviours appears to
be in excess of what can be satisfied within constraints of constant
unit cost of network infrastructure. Without overall economies of
scale where larger service-delivery systems achieve lower unit costs
of service delivery, the management of traffic and content assumes a
different trajectory that tends to drive towards greater distribution
and dispersal rather than continued aggregation and amalgamation.
For the large hyper-scaled content enterprises in today’s Internet, this
outcome is certainly not optimal.

It is a potentially fruitful thought process to consider this topic from
an inverted perspective and look at the desirable control-algorithm
behaviour that efficiently uses the network transmission resources
when the available buffering is highly restricted. This thought
process leads to the consideration of “pacing,” where the server uses
high-precision timers to smooth data flows as they leave the server,
attempting to create a stable traffic flow that matches bottleneck
capacity on the path. The more accurate this estimation of bottleneck
bandwidth, the lower the demand for buffer capacity due to burst
adaptation. Residual buffer demand is presumably based on the
demands of statistical multiplexing of disjoint flows. Given that
the senders are under the control of the service-delivery platforms
and there are orders of magnitude fewer high-volume senders than
receivers, this form of change is actually far less than the change
required by, say, the IPv6 transition.

It is this thinking that lies behind the Bottleneck Bandwidth and
Round-trip Propagation Time (BBR) protocol work. The send-
er’s flow-control algorithm generates an estimate of the bottleneck
bandwidth and the minimum RTT interval, and then paces packet
delivery so as to feed traffic into the bottleneck at exactly the bottle-
neck capacity, which should not involve the formation of a queue at
the bottleneck.

Network Buffers continued

The Internet Protocol Journal
17

The BBR control algorithm periodically probes up to revise its pre-
vious bandwidth estimate, and probes down to revise its previous
minimum RTT, and accounts for other congestion-formation signals,
such as ECN. This probing up and down, or dithering, is not pre-
cisely specified in the core BBR algorithm, and these parameters are
being revised in the light of deployment experience to determine dith-
ering settings that are both efficient and fair. The expectation is that
BBR will not drive the formation of standing queues in the network
and will pace the flow at the maximal rate that the network path can
fairly sustain.

However, BBR is not the only way to perform flow pacing, and a
large number of outstanding questions remain. How does pacing
at the sender affect the queue management at the edge close to the
client? What are the cross impacts of burst traffic with pacing? How
should a pacing-control algorithm react to packet loss? Or to out-
of-order packet delivery? Can strict flow pinning still be required
for Equal Cost Multiple Path (ECMP) routing or does pacing relax
such requirements for strict path pinning? Are pacing or self-clocking
the only options, or are there other approaches?

One perspective is that we are sitting between two constraint sets.
Escalating volume and speed in the core parts of the network implies
that bandwidth-delay product model buffer sizing is an unsustainable
approach. The scaling back of buffer sizes in the network means that
self-clocked protocols will potentially become more unstable and
compromise achievable network efficiency and fairness. From this
perspective sender pacing looks to be a promising direction to pursue.

Is There a Buffer Sizing Problem?
In the Internet we are currently seeing a diversity of responses to
network provisioning. Some network operators use equipment with
generous buffers. These buffers are overly generous according to the
buffer-bloat argument. Other network operators field equipment with
scant buffers that run the risk of starving data sources while leaving
idle network capacity.

There is a mix of congestion-control algorithms (CUBIC, NewReno,
BBR, Low Extra Delay Background Transport [LEDBAT], etc.) and
a mix of queue-management regimes (Controlled Delay [CoDel],
Random Early Detection [RED], Weighted Random Early Detection
[WRED])[8]. A diversity of deployment environments exists, includ-
ing mobile networks, Wi-Fi, wired access systems, LANs, and data
centres. And there is a mix of parameters of the desired objective
here, whether it is some form of fairness, loss, jitter, start-up speed,
steady-state throughput, stability, efficiency, or any combination of
these factors. It is little wonder that it’s challenging to formulate a
clear picture of common objectives and to determine what actions
are needed to achieve whatever we might want!

The Internet Protocol Journal
18

There is the assumption that large network buffers absorb impreci-
sion in clocking (timing “slop”) and allow simpler coarse rate-control
algorithms to operate effectively without needing high-precision tun-
ing. Small network buffers provide little leeway and tolerance for
such approximate approaches. This mistrust of the level of preci-
sion of control that end systems exercise is a pervasive view within
the networking community, and it could even be characterized as an
entrenched view. So entrenched is this view that probably no experi-
mental result could convince the community as a whole that network
buffers can be far smaller than they are today, all other factors being
equal. This fact is true despite the overwhelming evidence that overly
large buffers compromise network performance, a position that has
been described as “buffer bloat.” There are other reasons why large
buffers are a problem for networks and users. As we scale up the
size and speed of the network, large very-high-speed buffers are also
increasing in cost. If we are going to admit compromises and trade-
offs in network design, is reducing the relative size of the buffer an
acceptable trade-off?

And if we want to reduce buffer size and maintain efficient and fair
performance, how can we achieve it? One view is that sender pacing
can remove much of the pressure on buffers, and self-clocking flows
can stabilise without emitting transient bursts that buffers will need
to absorb. Another view, one that does not necessarily contradict
the first, is that the self-clocking algorithm can operate with higher
precision if there were some form of feedback from the network on
the state of the network path. This feedback can be as simple as a
single bit (ECN) or a complete trace of path element queue state
(HPCC).

This topic remains a rich area of unanswered questions. What does
it imply when the timescale of buffer-congestion events are orders of
magnitude smaller than the timescale of self-clocking flows? Are flows
overly reliant on loss signals and too insensitive to delay variation?
Can paced delay-based algorithms like BBR coexist with loss-based
oscillating algorithms such as CUBIC and NewReno? Would the
general adoption of sender pacing change the picture of buffer sizing
in the Internet?

How big should buffers be in the network? Or perhaps the opposite
is the more practical question: How small can we provision buffers
in an increasingly faster and larger network and still achieve efficient
and fair outcomes in a variety of deployment environments?

All of these questions are good and legitimate for further research,
experimentation, and measurement.

Network Buffers continued

The Internet Protocol Journal
19

References and Further Reading
 [0] Workshop on Buffer Sizing, Stanford University, December 2–3,

2019. https://buffer-workshop.stanford.edu

 [1] Van Jacobson and Mike Karels, “Congestion Avoidance and
Control,” ACM SIGCOMM Computer Communications
Review, Volume 18, Issue 4, August 1988.

 This foundational paper is frequently cited by many papers on
TCP behaviour.

 [2a] Matt Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis J.
Ott, “The Macroscopic Behaviour of the TCP Congestion Avoid-
ance Algorithm,” ACM SIGCOMM Computer Communica-
tions Review, Volume 27, Issue 3, July 1997.

 Matt and Jamshid published a second paper of this topic in
October 2019, where they argue that this macroscopic model
will soon be completely obsolete:

 [2b] Matt Mathis and Jamshid Mahdavi, “Deprecating the
TCP Macroscopic Model,” ACM SIGCOMM Computer
Communications Review, Volume 49, Issue 5, October 2019.

 [3] Curtis Villamizar and Cheng Song, “High Performance TCP
in ANSNET,” ACM SIGCOMM Computer Communications
Review, Volume 24, No. 5, October 1994.

 An effort to generalise the buffer sizing theory into observed
practice in networks. It has been commonly acknowledged as
the rationale for using bandwidth-delay product as the buffer
sizing model for network equipment. This small-scale study was
within a single network, and the results have been applied in
a far more diverse set of deployment scenarios than the single
setup that was analysed in this paper.

 [4] Guido Appenzeller, Isaac Keslassy, and Nick McKeown, “Sizing
Router Buffers,” ACM SIGCOMM Computer Communica-
tions Review, Volume 34, Issue 4, September 2004.

 A widely cited paper that provides an analysis of multiple diverse
flows over a single common buffer, concluding that an efficient
and fair buffer size model is related to the inverse of the square
root of the number of active flows that traverse this common
link (and buffer).

 [5] Nick McKeown, Guido Appenzeller, and Isaac Keslassy,
“Sizing Router Buffers (Redux),” ACM SIGCOMM Computer
Communications Review, Volume 49, No. 5, October 2019.

 A very recent review of the buffer sizing conversation and high-
lighting some of the significant experiments with small buffers in
large networks since the 2004 paper. The paper includes numer-
ous questions about future requirements for buffer sizes.

https://buffer-workshop.stanford.edu

The Internet Protocol Journal
20

 [6] Sally Floyd, K. K. Ramakrishnan, and David L. Black, “The
Addition of Explicit Congestion Notification (ECN) to IP,” RFC
3168, September 2001.

 The specification of re-purposing two bits in the IPv4 packet
header for routers to use to mark congestion events into active
flows.

 [7] Pat Bossharty, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David Walker,
“Programming Protocol-independent Packet Processors,” ACM
SIGCOMM Computer Communications Review, Volume 44,
No. 3, July 2014.

 The specification of a programming language for packet
processors that has been used in recent very-high-speed packet-
switch processors.

 [8] “TCP Congestion Control,” Wikipedia,
 https://en.wikipedia.org/wiki/TCP_congestion_control

 [9] Geoff Huston, “MSS Values of TCP,” The Internet Protocol
Journal, Volume 22, No. 3, December 2019.

 [10] Geoff Huston, “Buffers and Protocols,” Presentation at RIPE
80 Meeting, May 12, 2020. Slides and video available at:

 https://ripe80.ripe.net/archives/video/316/

GEOFF HUSTON, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books,
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. At
various times Geoff has worked as an Internet researcher, an ISP systems architect,
and a network operator. E-mail: gih@apnic.net

Network Buffers continued

https://en.wikipedia.org/wiki/TCP_congestion_control
http://MSS Values of TCP
https://ripe80.ripe.net/archives/video/316/
mailto:gih%40apnic.net?subject=

The Internet Protocol Journal
21

Mail Security with DMARC and ARC
by John Levine

E lectronic mail is both one of the most useful services of the
Internet and the most frustrating. The best thing about mail
is that anyone can send a message to anyone else without pre

arrangement, while the worst thing about mail is that anyone can
send a message to anyone else without prearrangement. As mail
became ever more ubiquitous in the 1990s and 2000s, an increas-
ing fraction of it was mail the recipients didn’t want. In 2005, Dave
Crocker[1] and John Klensin[2] wrote articles in this journal about
the spam problem. Since then, several of the anti-spam techniques
described in Crocker’s article have become ubiquitous as the spam
problem has become worse.

One can distinguish between spam, unsolicited mail sent in bulk, and
phishing, mail sent to trick the recipient into revealing account cre-
dentials or other private information. (Some phishes are sent in bulk,
some are sent to specific victims, known as Spear Phishing.) Starting
in 2007, PayPal, which had long been among the biggest phishing
targets, started working with some large consumer mail systems to
keep PayPal phishes out of recipient mailboxes. The idea was that
the recipient systems could identify genuine e-mail from PayPal, and
reject anything else purporting to be from PayPal. In 2012 an indus-
try group started the DMARC project to generalize this technique.
In 2015 the Domain-based Message Authentication, Reporting &
Conformance (DMARC) specification was published as an indepen-
dent track RFC[3], and now it is ubiquitous in large mail systems.

DMARC works by tying the address in the RFC 5322[4] From:
header of a message to mail authentication, and letting a domain
offer policy advice to mail recipients. If a message is successfully vali-
dated by Sender Policy Framework (SPF) or DomainKeys Identified
Mail (DKIM), and the domain in that validation matches the one in
the From: header, the message is DMARC “aligned.” Sending mail
systems can publish DMARC policy records in the Domain Name
System (DNS) requesting recipient systems to quarantine (send to the
spam folder) or reject unaligned mail. This system works quite well
for the original intended application of DMARC, business-to-con-
sumer mail, where the sending organization generally has full control
over all mail sent from its domain. It works particularly well for
PayPal, where all the mail is some variation of “log into your account
to see what’s new,” so if a few messages are accidentally lost because
DMARC miscategorizes a legitimate message it’s not a big problem.

Underlying and Previous Work
DMARC depends on two existing mail authentication schemes,
Sender Policy Framework (SPF)[5] and DKIM[6]. SPF does path valida-
tion of the domain in the RFC 5321[7] MAIL FROM: address. A domain
can publish an SPF record that uses a complex syntax to specify a set
of IP addresses.

The Internet Protocol Journal
22

If the message was sent from one of those addresses, SPF validation
passes. (This description is oversimplified; see [5] for the full details.)
SPF has the virtue of being easy to implement because it requires no
changes to outgoing messages and a single DNS record to imple-
ment, but it can describe only a limited subset of the ways that mail is
delivered. For the most part it can handle only mail sent directly from
sender to recipient, without any forwarding or remailing, and does
not deal well with mail sent by third parties on the sender’s behalf.
While SPF provides a -all code that advises recipients to reject mail
from the domain if SPF validation fails, most mail systems disregard
the advice because the false positive rate is so high.

DKIM does message content validation by adding cryptographic
signature headers to a message that the recipient can check using
a key in the DNS. Each signature is stored in a DKIM-Signature
header field that contains several subfields, including the name of the
domain that added the signature. If a DKIM signature validates, it
means both that the message hasn’t been modified since it was signed
and that the domain in the signature takes responsibility for the mes-
sage. Since DKIM validates the contents of the message rather than
the path, it is unaffected by forwarding.

DKIM is considerably harder to implement than SPF because it
requires modifications to mail software to add the signature headers
to each outgoing message. It also requires the signing system to cre-
ate public/private key pairs, publish the public key in the DNS, and
configure the private key into the signing software. DKIM validation
fails when a message is modified in transit, such as when a mailing
list adds a subject tag or a message footer, and sometimes simply
because a Message Transfer Agent (MTA) hasn’t been configured to
add the signature in the first place. (In large enterprises it can be
remarkably hard to track down all of the computers sending mail.
DMARC helps address this problem, as we will see later.)

DKIM had an optional add-on called Author Domain Signing Practices
(ADSP)[8], which was sort of a proto-DMARC. A domain could pub-
lish an ADSP record in the DNS saying that if a message with the
domain in the From: header didn’t have a valid DKIM signature from
the same domain, recipients should discard the message. ADSP was
never deployed beyond experiments, and the Internet Engineering
Task Force (IETF) has since made it an historic specification.

DMARC Deployment
One of the reasons that previous sender policy approaches like SPF
-all and ADSP failed is that there is no way to test them other than
turning them on to see what happens. For a small domain with one
or two mail servers that might be possible, but for a large organi-
zation the risk is impossibly high since they rarely have complete
knowledge of all of the systems sending their mail and how those
systems are configured.

DMARC and ARC continued

The Internet Protocol Journal
23

DMARC offers a variety of features to check the alignment of the
mail of a domain before publishing any policy advice. It has powerful
reporting features that let a domain owner ask other systems to send
reports about the mail purporting to be from the domain. Domains
invariably ask for reports before publishing any policies, so they can
see what mail they send is and isn’t aligned. This information lets
them fix alignment issues before they do publish policies.

DMARC Validation
When a message arrives, DMARC validation involves first finding a
DMARC policy record for the From: header domain, then validating
SPF and the DKIM signature(s) on the message, and then perhaps
doing something to the message. The first step is to find the policy
record for the From: domain of the message, a DNS TXT record. If
that domain is marketing.mybiz.example, the first place to look
is _dmarc.marketing.mybiz.example. If there is a TXT record in
DMARC syntax, for example, it starts with v=DMARC1; that’s the
policy record. If not, it looks for a policy record in the “organiza-
tional domain.”

The DMARC specification is deliberately vague about how to find
the organizational domain, but in practice everyone uses the Mozilla
Public Suffix List (PSL)[9] where the organizational domain is the
superdomain just below the public suffix. In this case if the domain
were a typical Top-Level Domain (TLD) that accepts registrations at
the second level, the organization domain would be mybiz.example,
so it would look for a TXT record at _dmarc.mybiz.example. If
there is a TXT record in DMARC syntax, that’s the policy record;
otherwise there is no policy record for this domain.

The DMARC record is a list of key=value pairs, with rules for check-
ing alignment, what to do with unaligned mail, and where to send
aggregate and failure reports. A typical record might be:

v=DMARC1; p=none; rua=mailto:dmarc-a@example.net;
ri=3600; ruf=mailto:dmarc-f@example.net

There is no policy (none), abuse and failure reports are mailed to
the given addresses (rua and ruf), and the requested report inter-
val is an hour (ri is 3,600 seconds.) The point of the second check
for the organizational domain is twofold. First, the second check
makes it easier to deploy DMARC across a large enterprise, since
one DMARC organizational record can cover all of an organization’s
subdomains. The other is that it covers non-existent subdomains of
the organizational domain, for when hostile or buggy mailers send
mail purporting to be from such a subdomain.

The next step in validation is to check whether the From: header
domain is aligned with the SPF identity of the message. The SPF val-
idation process can produce a result of None, Neutral, Pass, Fail,
Softfail, Temperror, or Permerror. For DMARC alignment, only a
Pass result is acceptable.

The Internet Protocol Journal
24

The DMARC policy record can require strict SPF alignment, meaning
the From: domain and SPF identity have to be the same, or relaxed
SPF alignment, meaning they need only be in the same organiza-
tional domain. In the previous example, if the From: domain were
marketing.mybiz.example, an SPF identity of mail.mybiz.exam-
ple or just mybiz.example would be sufficient for relaxed SPF
alignment. Relaxed alignment is the default.

Next, the validator checks for DKIM alignment. For each valid
DKIM signature on the message, the validator compares the From:
domain to the d= domain of the signature. The policy record can
specify strict or relaxed DKIM alignment, again requiring either an
identical signature domain or just one in the same organizational
domain. If at least one valid DKIM signature is aligned, the message
is DKIM aligned. If the message is either SPF or DKIM aligned, it is
DMARC aligned.

If the message is aligned, we’re done other than perhaps saving some
statistics for later reporting. If it’s not aligned, the situation is poten-
tially much more complex if the recipient system opts to follow the
policy advice, as most mail systems (at least by mail volume) now do.

The policy record can specify policy advice of none, quarantine, or
reject. It can also specify an optional percentage of how often to
apply the policy. Advice of none means to do whatever the recipient
would have done with the message anyway. Advice of quarantine
means to treat the message extra skeptically, perhaps by filing it
in a spam folder or marking it as suspicious. Advice of reject asks
the recipient to reject the message at the end of the Simple Mail
Transfer Protocol (SMTP) session and not handle it further. If the
percentage is less than 100, the advice is to treat that percentage of
unaligned mail from the domain according to the advice, and the rest
one step less. For example, if the advice were reject and the percent
was 25, one-fourth of unaligned mail would be rejected and the other
three-quarters would be quarantined. (The percent has no effect if
the policy is none.)

As noted previously, the point of the percentage is to allow domain
owners to enable policies gradually, see what happens, and limit the
damage from misconfigurations.

DMARC Reporting
DMARC has two powerful reporting features. A domain can ask for
daily aggregate reports of what IP addresses have sent mail with the
domain in the From: header, with details about DMARC alignment
and DKIM and SPF validation. Many large mail systems including
Google, Yahoo/AOL, Comcast, and Fastmail send aggregate reports.

DMARC and ARC continued

The Internet Protocol Journal
25

It is also possible to request copies of messages that fail DMARC
validation, but for privacy reasons very few systems do. The only sig-
nificant mail system in the U.S. that sends failure reports is LinkedIn.

Even for a site that has no plans to publish a DMARC policy, the
reports are useful and interesting. They can provide insight into
where your mail is actually going, and who else might be sending
mail purporting to be from you.

To request each kind of report, the domain policy record includes a
tag with a list of mailto: Uniform Resource Identifiers (URIs), each
with an optional size limit of the maximum message report size the
system can handle. The default aggregate report interval is once a
day.

Aggregate reports constitute an Extensible Markup Language (XML)
file attached to an e-mail message in gzip or ZIP compressed form.
The XML file includes a section (a “record”) for each sending IP
address, with subsections (a “row”) for each combination of authen-
tication results. For example, here’s a section of a report Google sent
to my Smail system describing mail it received from two IP addresses:

 <record>
 <row>
 <source_ip>2001:470:1f07:1126:0:43:6f73:7461</source_ip>
 <count>1</count>
 <policy_evaluated>
 <disposition>none</disposition>
 <dkim>pass</dkim>
 <spf>pass</spf>
 </policy_evaluated>
 </row>
 <identifiers>
 <header_from>taugh.com</header_from>
 </identifiers>
 <auth_results>
 <dkim>
 <domain>iecc.com</domain>
 <result>pass</result>
 <selector>k1912</selector>
 </dkim>
 <dkim>
 <domain>taugh.com</domain>
 <result>pass</result>
 <selector>k1912</selector>
 </dkim>
 <spf>
 <domain>taugh.com</domain>
 <result>pass</result>
 </spf>
 </auth_results>
 </record>

The Internet Protocol Journal
26

 <record>
 <row>
 <source_ip>209.85.220.55</source_ip>
 <count>4</count>
 <policy_evaluated>
 <disposition>none</disposition>
 <dkim>fail</dkim>
 <spf>fail</spf>
 </policy_evaluated>
 </row>
 <identifiers>
 <header_from>taugh.com</header_from>
 </identifiers>
 <auth_results>
 <dkim>
 <domain>googlegroups.com</domain>
 <result>pass</result>
 <selector>20161025</selector>
 </dkim>
 <spf>
 <domain>googlegroups.com</domain>
 <result>pass</result>
 </spf>
 </auth_results>
 </record>

The first record for the IPv6 address reports on a message sent from
my mail server. It has a valid SPF and two valid DKIM signatures,
one with the From: header domain and one for the server domain,
so it was DMARC aligned. The second record describes four mes-
sages with valid SPF and DKIM signatures, but with SPF and DKIM
domains that don’t match the From: header, so they wouldn’t have
been DMARC aligned. Since the second group of messages have
googlegroups.com authentication identifiers, they’re probably the
same message, modified and remailed to a Google Groups mailing
list. [Since I know I sent only one message to the list that day, this
message leaks the number of Gmail subscribers to the list. I’ve seen
similar leakage for much larger lists; for example, like the one oper-
ated by the North American Network Operators’ Group (NANOG).]

Larger mail systems receive reports with larger numbers of messages
and more report sections. The reports are intended to be mechan-
ically handled. Some open source software is available to analyze
reports and put summaries in a database[10]. More often the reports
are sent directly to specialist services like Dmarcian[11] or Agari[12]

that offer freemium report analysis services, simple analysis for free,
or more sophisticated analysis and remediation advice for a fee.

The other kind of report is a failure report. When a message arrives
that has the domain address in the From: header and fails DMARC
validation, the recipient system may (but usually doesn’t) send the
message back in a failure report. The report is a multipart/report
e-mail message containing a structured report section and a full or
partial copy of the failing message.

DMARC and ARC continued

The Internet Protocol Journal
27

A typical report section follows:

Feedback-Type: auth-failure
User-Agent: Lua/1.0
Version: 1.0
Original-Mail-From: nanog-bounces@nanog.org
Original-Rcpt-To: xxx@linkedin.com
Arrival-Date: Thu, 26 Dec 2019 19:22:54 +0000
Message-ID: <20191226191849.6BBF111BA67D@ary.qy>
Authentication-Results: dmarc=fail (p=none; dis=none)header.from=iecc.com
Source-IP: 50.31.151.76
Delivery-Result: delivered
Auth-Failure: dmarc
Reported-Domain: iecc.com

The message in a failure report might be a legitimate one that was
unaligned when sent, or modified on the way to become unaligned.
Or it might be a fraudulent one, either an attempted phish, or just a
random spam message where the spamware happened to pick your
domain for the fake return address. For this particular report, it’s
obviously a real message relayed through the NANOG mailing list.

The original failure report included the full address of the recipient,
meaning that by looking at the failure reports, anyone who posts
to NANOG can see who subscribes to LinkedIn. This kind of data
leakage explains why most sites don’t send failure reports at all,
and most of the ones that do limit what they send, typically includ-
ing only the headers of a failing message and redacting recipient
address details.

Using DMARC Reporting to Prepare for Policy Publication
Before publishing a DMARC policy of quarantine or reject,
domain operators should be confident that as close as possible to
100% of the mail they send is DMARC aligned. They might send
unaligned mail if SPF records of a domain do not cover all of the IP
addresses that send valid mail, causing SPF validation to fail. Some
outgoing Mail Transfer/Transfer Agents (MTAs) might have DKIM
configured incorrectly or not at all, so there’s no aligned DKIM
signature. Large organizations often can have MTAs sending mail
that the network managers didn’t know about; for example, if a
department set up its own local server, or contracted with a third-
party mail sender.

The data from DMARC reports tells the operator what IP addresses
are sending unaligned mail, and generally makes it straightforward
to figure out why it’s unaligned. Mitigation might involve updating
the domain SPF records to include missing MTAs, fixing the DKIM
signing configuration in MTAs, or enforcing rules about unapproved
mail servers or third-party mail senders. (Many third parties can do
DKIM signing with a client’s domain, but that requires either sharing
the private signing keys(s) or delegating a DNS subtree that the third
party can manage.)

The Internet Protocol Journal
28

After the operator has the mail sufficiently under control, it can
gradually turn on sending policies. DMARC provides the quarantine
policy as an intermediate step between no policy and reject so there
is a chance for recipients to retrieve miscategorized mail. It can also
use the percentage parameter in the policy record to apply policies
gradually and limit the damage if mistakes occur.

DMARC vs. Discussion Lists
DMARC was originally intended for domains at organizations like
banks that send primarily business-to-business and business-to-
customer mail, and little or no person-to-person mail. When the
organization considers when to publish a DMARC policy, and what
policy to publish, it should remember that some fraction of its legiti-
mate mail will arrive unaligned because of intermediate processing
that DMARC cannot describe. Since the organization presumably
knows what mail it sends, it can weigh the benefits of less phishing
versus the cost of lost mail and make a decision that is reasonable for
the organization.

In 2014, AOL and Yahoo, two large consumer mail systems, had
separate security breaches in which intruders stole copies of millions
of their users’ address books. The stolen data was quickly sold to
spammers, who used it to send spam to AOL and Yahoo users that
appeared to be from the recipients’ friends. This situation caused an
expensive support problem at AOL and Yahoo as users complained
about the spam and asked why their friends were spamming them.
First AOL, and then Yahoo, “solved” the problem by quickly pub-
lishing DMARC p=reject policies that told every mail system that
implements DMARC to reject any AOL or Yahoo mail that didn’t
come directly from AOL or Yahoo. This decision was very different
from the ones made by organizations described previously. In this
case the benefit of the policy was to mitigate the cost of an opera-
tional failure, with little if any benefit for most of their users, while
creating major problems for their discussion list users.

A small but important part of the mail from users of any consumer
mail system is unaligned yet legitimate mail that recipients want.
That happens typically because the mail is routed indirectly from
the sending user to the ultimate recipients. A particular point of
contention is e-mail discussion lists where the normal actions of list
managers make most of the mail unaligned. This situation can cause
non-receipt of mail sent to subscribers on mail systems that enforce
DMARC policies on incoming mail, and it can also cause removal of
subscribers from lists because of bounces caused by DMARC failures.
(Yahoo was aware of the mailing list issues but decided to publish
p=reject anyway, according to someone who was there at the time.)
Another source of unaligned mail is third-party mailing services. A
small organization like an athletic club or scout troop often has an
announcement list where the return address on the announcements
is the personal address of the organization’s secretary, who may use
AOL or Yahoo.

DMARC and ARC continued

The Internet Protocol Journal
29

A variety of proposed workarounds have been made for the
problems that DMARC causes to mailing lists, none of which are
very satisfactory. Initially, the easiest approach was to tell people
sending mail from addresses with DMARC policies to subscribe from
another address. That approach stopped being practical when AOL
and Yahoo flipped the switch.

Since then, mailing list software has taken a range of approaches
to ensure that the messages the list sends out are aligned. In a few
cases, lists tried to turn off any features that would modify messages
in ways that would invalidate DKIM signatures, hoping that DKIM
signatures on incoming messages would remain valid when resent
from the list. This idea didn’t work very well, partly because remailed
messages weren’t SPF aligned (the list uses its own envelope address
for bounce management), and users want the changes that lists make,
such as adding subject line tags to identify the list.

Mailing lists have settled on two general anti-DMARC approaches[13].
The most common is to put the list address into the From: header so
the list can add a DKIM signature with its own domain and make
the message DMARC aligned. For example, if the incoming message
included:

From: Steve C <steve@aol.com>
To: nodule@lists.example.com

The list might rewrite it as:

From: Steve C via the nodule list <nodule@lists.example.com>
To: somelist@lists.example.com
Reply-To: Steve <steve@aol.com>

The rewritten From: header usually includes the author’s address
comment and the list name. The author’s actual address is placed
in a Reply-To: header, or occasionally a Cc: header. This approach
allows DMARC alignment, since the list can add a lists.example.com
DKIM signature, but makes mail from the list harder to handle. Mail
user agents treat Reply-To: in different ways, leading to confusion
about whether someone is replying to the author of a message, or
to the list, or both. Adding to the confusion, some lists only rewrite
the headers for messages in author domains that publish a DMARC
policy, so messages from the same list have different headers.

Another approach is to rewrite the From: header to replace the prob-
lematic author address with one that is DMARC aligned but still
represents the author. For example, my mailing lists would rewrite
the headers in the previous example like this, changing the author
address only by adding a local domain suffix:

From: Steve C <steve@aol.com.dmarc.fail>
To: nodule@lists.example.com

The Internet Protocol Journal
30

The domain dmarc.fail is a real domain I registered. (It was avail-
able.) I publish an MX record for *.dmarc.fail, to catch any mail
sent to rewritten addresses. The rewritten message as sent by the
mailing lists has a dmarc.fail DKIM signature, so it’s properly
DMARC aligned. When the list software rewrites an address, it cre-
ates a forwarding entry for the rewritten address that redirects back
to the original address. The forwarding entries are deleted after a few
days so that replies to the author sent shortly after the original mes-
sage go back to the author, but the forwarding is limited, so it’s not a
useful vector to relay third-party spam.

This technique works fairly well. Since only the From: header is
changed, there’s no effect on Reply-To: or other mail behavior, and
the author’s identity is easy to recognize. Other systems have imple-
mented the same idea in perhaps less passive-aggressive ways. The
IETF’s working mailing lists rewrite the address into the local part;
for example:

From: Steve C <steve=40aol.com@lists.ietf.org>

The commercial LISTSERV mailing list service rewrites the address
into an opaque local address and puts the real address in Reply-To:

From: Steve C <00000006b01fa96f-dmarc-request@lists.example.com>
Reply-To: Steve C <steve@aol.com>, Nodule list <nodule@lists.example.com>

The primary disadvantage of the address rewriting is that it requires
access to the local mail system of the list to manage the set of tem-
porary forwarding addresses, rather than doing it entirely inside the
list software.

The other anti-DMARC approach that some lists take is message
wrapping, enclosing the message as a Multi-Purpose Internet Mail
Extensions (MIME) part within an outer message from the list. Most
mailing lists have a MIME digest option, to send the day’s messages
as a set of MIME parts within a single daily message, so this process
in effect turns each message into a one-message digest. The outer
message typically has the list address in the From: header, while the
inner message is unmodified.

Technically, this approach should work well, because it uses exist-
ing well-standardized features of RFC 5322 mail. Having done some
experiments to see how workable it is, I found that in practice it
works very badly because mail user agents treat MIME attached
messages as an afterthought. While the inner message is typically dis-
played legibly, it is often not possible to reply to the inner message
without clumsy extra steps, or in some cases at all, and multipart
messages or those with attachments are handled inconsistently. The
IETF experimented with several varieties of MIME wrapping before
deciding that rewriting the From: header was the best of a bad lot.

While all of these approaches allow mailing lists to send DMARC-
aligned mail, none of them are very satisfactory, and none let mailing
lists work as well as they did before DMARC.

DMARC and ARC continued

The Internet Protocol Journal
31

ARC
While the amount of mail that large providers get from mailing lists
is small, on the order of 1% to 2% of the non-spam total, it is mail
that the recipients care about deeply. After years of complaints, sev-
eral large mail providers developed Authenticated Received Chain
(ARC) to help them handle wanted but unaligned user mail.

An obvious way to handle unaligned mail from mailing lists would
be to whitelist them. Large mail systems have a pretty good idea
of where the lists are (the number of mailing list hosts worldwide
is probably only about 10,000), so they could just accept the mail
from the lists that they know their users want. The problem with
this concept is that mailing lists don’t do a very good job of spam
filtering, and spam leaks through them all the time.

In particular, most lists check only that the address in the From:
header is subscribed to the list before forwarding a message. If a
subscriber’s account is compromised and starts sending spam, any
message sent to a list will generally get forwarded to the list. Even
without an account being compromised, if a stolen address book
happens to contain your address and the address of a list to which
you subscribe, spamware can forge mail from you to the list, and
again the list will forward it. I’ve seen this happen multiple times, and
it is quite frustrating since the person whose address is being forged
can’t do anything about it.

The goal of ARC is to add a “chain of custody” to a message that
shows what happened to it each time it was forwarded. This tech-
nique lets the ultimate recipient system retroactively make spam
filtering decisions based on what happened to the message at the for-
warding systems.

ARC builds on existing mail technology. It adapts the Authentication-
Results (A-R) header[14] that many mail systems apply to incoming
messages that records the authentication status of the message at the
time an MTA received the message. Here is a typical A-R header that
my MTA applied to an incoming message from Apple’s me.com:

Authentication-Results: iecc.com; spf=pass spf.mailfrom=xxx@me.com
 spf.helo=mr85p00im-hyfv06011401.me.com smtp.remote-ip="17.58.23.191";
 dkim=pass header.d=me.com header.s=1a1hai header.a=rsa-sha256;
 dmarc=pass header.from=me.com (p=quarantine, pct=100)

The first field is the name of the system that added the header, fol-
lowed by groups of authentication results, in this case for SPF, DKIM,
and DMARC. Each group includes the result and relevant items like
the envelope MAIL FROM and sending IP for SPF. All of the fields are
optional other than the system name, and they are added only for the
kinds of authentication the system checked. ARC combines a modi-
fied A-R header and two DKIM-like signature headers into an ARC
seal, which is intended to describe the passage of a message through a
system such as a mailing list manager. A single message may have mul-
tiple ARC seals if it has passed through multiple forwarding systems.

The Internet Protocol Journal
32

Each seal is numbered, starting with 1 for the first seal applied. Each
header in an ARC seal has an i= clause to indicate which seal it’s
part of.

The headers in an ARC seal look like this:

ARC-Message-Signature: i=1; a=rsa-sha256; d=microsoft.com; s=abcd; h=From:Date:...
ARC-Authentication-Results: i=1; mx.microsoft.com 1; spf=pass …; dkim=pass …
ARC-Seal: i=1; a=rsa-sha256; s=abcd; d=microsoft.com; cv=none; b=j7M/jt9eVP…

The ARC-Message-Signature (AMS) is almost identical to a DKIM
signature, with the added i= field. It is intended to cover the usual
headers and body of the message, at the time the message was sent
from the signing system. If the system makes changes to the message,
the AMS is applied after those changes. When a message is received,
the most recent AMS signature will be valid unless an inter-mediate
system has modified the message since the ARC seal was applied and
not added a seal of its own.

The ARC-Authentication-Results (AAR) header reports the authenti-
cation status at the time the sealing system received the message; that
is, before any modifications reflected in the AMS.

The ARC-Seal header is a DKIM-like signature that covers only the
three headers in the ARC seal, to validate the seal itself. It also indi-
cates whether the chain of ARC seals in the message was intact when
the message was sealed, using the cv= (chain value) field. If this seal
is the first one, the chain value is “none” for no previous seal. For
any subsequent seal, the chain value is “pass” if the previous seal was
valid (the DKIM-like signatures validated) and the previous seal had
cv=none or cv=pass. Otherwise the chain value is “fail.”

If a mail system receives a message from a trustworthy source with
a valid ARC chain, it can use the information in the ARC seals to
make exceptions to its DMARC policy. As a simple example, assume
a message that is not DMARC aligned arrives, but it has a valid
chain of ARC seals. In one of the seals, an AAR header shows that
the message was DMARC aligned (dmarc=pass) and the header.
from domain was the same as the one currently in the message. That
means the lack of alignment is due to changes made by the forward-
ing system. If the forwarding system is considered trustworthy, for
example, a host that hosts discussion lists, the receiving system can
decide to deliver the message. More complicated analysis is possible,
but I expect this sort of analysis looking for typical mailing list opera-
tions is likely to be the most common. Since malicious systems can
add fake ARC seals, this analysis makes sense only for mail from
trust-worthy sources. Identifying sources trustworthy enough to
apply ARC exceptions may be a problem for mail systems too small
to develop reliable data on hosts that send mail to them. There are
some efforts to provide shared lists of reputable mailing list hosts
that will likely be good enough, since the number of active list hosts
is not large and changes slowly.

DMARC and ARC continued

The Internet Protocol Journal
33

At this point the implementation of ARC has started, but it is not yet
common enough to let mailing lists stop doing anti-DMARC header
munging. Python and Perl libraries for DKIM have both added ARC
support[15]. The Sympa 6.2 mailing list manager has ARC support, as
does GNU Mailman 3.1, but not Mailman 2.x.

Large mail systems including Google’s Gmail and Microsoft’s
outlook.com have some ARC support, and both Gmail and
outlook.com put ARC seals on forwarded and mailing list mail,
but neither is yet using it for mail filtering other than experimen-
tally. Few mailing lists yet add ARC seals, partly because of the
lack of ARC support in the list software they currently use, and partly
because the list managers are unaware of ARC.

Conclusions
DMARC started as a relatively simple technique to deter phish-
ing of high-profile commercial domains such as those of banks and
payment providers. Consumer mail systems AOL and Yahoo then
repurposed it to deal with spam forging their users’ addresses. While
this repurposing largely solved the spam forgery problem of mail sys-
tems, it caused severe collateral damage to e-mail discussion lists.
While many lists have tried to work around the DMARC problems,
all of the workarounds have drawbacks that make them ultimately
unsatisfactory. To help undo the DMARC damage, a group of large
mail providers invented ARC, which makes it somewhat possible to
examine the history of a message and see how a message that is not
DMARC aligned got that way.

The ongoing evolution of DMARC, mailing lists, and ARC is yet
another round of security measures with unexpected consequences.
With any luck, ARC will be the end of this sequence of effect, side-
effect, and counter-effect, but we won’t know until ARC is more
widely deployed, hopefully in a few years.

References and Further Reading
 [1] Dave Crocker, “Challenges in Anti-Spam Efforts,” The Internet

Protocol Journal, Volume 8, No. 4, December 2005.

 [2] John Klensin, “Another Look at Spam,” The Internet Protocol
Journal, Volume 8, No. 4, December 2005.

 [3] Murray Kucherawy and Elizabeth Zwicky, Eds., “Domain-
based Message Authentication, Reporting, and Conformance
(DMARC),” RFC 7489, March 2015.

 [4] Peter W. Resnick, “Internet Message Format,” RFC 5322,
October 2008.

 [5] Scott Kitterman, “Sender Policy Framework (SPF) for
Authorizing Use of Domains in Email, Version 1,” RFC 7208,
April 2014.

https://ipj.dreamhosters.com/wp-content/uploads/issues/2005/ipj08-4.pdf
https://ipj.dreamhosters.com/wp-content/uploads/issues/2005/ipj08-4.pdf
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc7208

The Internet Protocol Journal
34

 [6] Murray Kucherawy, David Crocker, and Tony Hansen,
“DomainKeys Identified Mail (DKIM) Signatures,” RFC 6376,
September 2011.

 [7] John C. Klensin, “Simple Mail Transfer Protocol,” RFC 5321,
October 2008.

 [8] John Levine, Mark Delany, Eric Allman, and Jim Fenton,
“DomainKeys Identified Mail (DKIM) Author Domain Signing
Practices (ADSP),” RFC 5617, August 2009.

 [9] See https://publicsuffix.org/ for the PSL, and https://
wiki.mozilla.org/Public_Suffix_List for a description of
its use and history.

 [10] See https://www.taugh.com/rddmarc/

 [11] Dmarcian: www.dmarcian.com

 [12] Agari: www.agari.com

 [13] Mailman and DMARC, https://wiki.list.org/DEV/DMARC

 [14] Murray Kucherawy, “Message Header Field for Indicating
Message Authentication Status,” RFC 8601, May 2019.

 [15] See https://pypi.org/project/dkimpy/ for the Python
library, and https://metacpan.org/release/Mail-DKIM for
the Perl library.

JOHN R. LEVINE writes, speaks, and consults on the Internet, electronic mail,
cybersecurity, and related topics. He speaks to many trade, policy, and general
groups. He has testified at the Federal Trade Commission Spam Forum on the
mechanics of spam, to the Senate Commerce Committee on Spyware, and is part
of the Industry Canada Task Force on Spam. He has spoken at the Internet Law
and Policy Forum and at many conferences. He is frequently interviewed in the
print and electronic media and has extensive working relationships with reporters.
John consults and provides advice and expertise on e-mail and Internet systems,
security, and software. He co-founded the Domain Assurance Council, a non-profit
industry consortium that establishes standards for e-mail certification and security.
Levine has served as an expert witness on a variety of computer topics including
e-mail spam, compiler software, and graphic image file formats. He has written
many books on the Internet and other computer topics. His books range from the
best-selling Internet for Dummies, with over seven million copies of eleven editions
in print in dozens of languages, Fighting Spam for Dummies, and Windows Vista:
The Complete Reference, to books on computer language tools and graphics pro-
gramming. E-mail: johnl@taugh.com

DMARC and ARC continued

https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5617
https://publicsuffix.org/
https://wiki.mozilla.org/Public_Suffix_List
https://wiki.mozilla.org/Public_Suffix_List
https://www.taugh.com/rddmarc/
http://www.dmarcian.com
http://www.agari.com
https://wiki.list.org/DEV/DMARC
https://tools.ietf.org/html/rfc8601
https://pypi.org/project/dkimpy/
https://metacpan.org/release/Mail-DKIM
mailto:johnl%40taugh.com?subject=

The Internet Protocol Journal
35

Letter to the Editor

Ole,

I enjoyed reading Geoff Huston’s article “MSS Values of TCP,”
(The Internet Protocol Journal, Volume 22, No. 3, December 2019).
I had not been familiar with the variation of Maximum Segment Size
(MSS) values that are used in the broad Internet.

I have never run into a client or server device that has been unable to
operate with greater than a 576-byte Maximum Transmission Unit
(MTU). Even the early Intel 8088-based MS DOS PCs in the 1980s
with 3Com 3c501 Network Interface Cards (NICs) could handle
1500-byte MTU. In modern times only a tiny fraction of our tens of
thousands of connected hosts are capable of Ethernet Jumbo packets
(SAN nodes replicating data between data centers; our routers along
just those paths are configured for 9,216-byte MTU).

Geoff touched only briefly on encapsulation influencing resulting TCP
MSS values. Our Wide-Area Network (WAN) connections between
our office locations use Internet Protocol Security (IPsec) tunnels, and
we also use IPsec tunnels between our office locations and our virtual
routers inside the Amazon Virtual Private Cloud (VPC). In addition
to those, we have some Generic Routing Encapsulation (GRE) tunnel
connections with some information providers and partners (Zscaler
is an example). With the recent availability of low-cost high-speed
Layer 2 connections between some sites, we have been implementing
Media Access Control security [MACsec] (lower router resource con-
sumption than IPsec). We also are beginning to use Virtual Extensible
LAN (VXLAN) between our two data centers. With all of these
encapsulations in our network, we’ve been avoiding IP fragmenta-
tion of TCP packets by configuring TCP adjust-mss on our Cisco
routers. We also use adjust-mss on our Wireless LAN Controllers.

We still face plenty of User Datagram Protocol (UDP) packets from
video devices that would need to be fragmented if attached with
default configuration. When our IT group controls such devices, we
configure their MTU to fit within our IPsec tunnels.

Regards, —Richard Berke, Richard.Berke@troweprice.com

Richard,

Thanks for your comments about MSS sizes and the related topic of
MTU selection.

We need to go back to the 1970s to find some variation from the
current ubiquity of the 1,500-octet MTU that dominates today’s
communications, and very little of that early network environment
has survived. However, we can piece together some of the thinking
behind the original design of the Internet Protocol and the selection
of MTU and MSS values.

The author responds:

mailto:Richard.Berke%40troweprice.com%20?subject=

The Internet Protocol Journal
36

Smaller packet sizes made packets less susceptible to bit-error-rate
corruption and could reduce jitter (which was a major consideration
behind the design of Asynchronous Transfer Mode (ATM) cells), but
at the same time smaller packets had a reduced payload efficiency.
Various mainframe vendors tuned their network products to match
their intended deployment environment, including the choice of sup-
ported packet sizes.

As a “network of networks,” the Internet was envisaged to work
across various permutations of networks, all with differing MTU
sizes. The fragmentation model of IP Version 4 came from this
approach, where an IP router was permitted to fragment a packet if
it was too large for the next network.

IP Version 4 permitted IP packets between 20 and 65,535 octets
in size. While in a strict sense the minimum MTU is 20 octets, that
is without any payload at all. A 21-octet MTU would make some
level of progress in sending a payload, albeit extremely inefficiently.

Where does 576 octets come from? IP hosts were not required to
accept the entire protocol-permitted range of packet sizes. The speci-
fication required IP hosts to reassemble and accept IP packets up
to 576 octets in size. Why 576? It is such an odd number. I could
understand a value of 532, 542, 572, or even 592 octets, all based on
a 512-octet payload and various permutations of minimum or maxi-
mum IP headers and optionally including a TCP header. However,
I can’t get to 576 octets that way, so I don’t have any credible expla-
nation as to why this value was chosen.

By the time we were designing IPv6 in the early 1990s the think-
ing had changed, and fragmentation was frowned upon. It was slow
and insecure, and the experts advised its avoidance wherever pos-
sible. What should the minimum unfragmented MTU be for IPv6?
Ethernet framing was ubiquitous by this time, so a 1,500-octet MTU
size seemed like a good first answer. But the Internet had a new aspect
by then: it was no longer a “network of networks” but was the base
substrate network upon which other networks were overlaid. Various
other headers, including IP-in-IP, were being added. So, we needed
to specify a universal minimum unfragmented IPv6 packet size that
would be relevant in many kinds of IP-in-IP contexts. The value of
1,280 octets as the new minimum unfragmentable packet size was
chosen for IPv6. Why 1,280? I understand that this number was cho-
sen because it’s the sum of 1,024 and 256.

My view is that the marginal loss of payload efficiency is small enough
that for the public Internet a 1,220-octet MTU can be used with
some confidence that it will not encounter MTU mismatch issues.

Regards, —Geoff Huston, gih@apnic.net

Letter to the Editor continued

mailto:gih%40apnic.net%20?subject=

The Internet Protocol Journal
37

Fragments
Keeping the DNS Secure During the Coronavirus Pandemic
The Internet’s value in bringing people together has never been more
apparent than it is now. While most of us are under some form of
“stay at home” order in an effort to slow the spread of the coronavi-
rus, the Internet provides us with a lifeline. It brings us information
and entertainment, allows some of us to continue our work and edu-
cation, and brings us what we need most at times of isolation—social
connections.

The role of the Internet Corporation for Assigned Names and
Numbers (ICANN) community, Board, and organization in maintain-
ing a secure, stable, and unified Internet has always been important,
but at this time, when reliance on the Internet has skyrocketed,
our collective role has become all the more vital. ICANN’s mission
frames our concern about cybercriminals who are exploiting the pan-
demic by perpetrating scams and victimizing Internet users. Some
are selling phony cures, treatments, and vaccines. Some are using
domain names as part of their efforts to prey on people at this time
when many are experiencing anxiety, fear, and loneliness. The U.S.
Federal Trade Commission reports that it has fielded more than 7,800
coronavirus-related complaints. The agency noted that U.S. consum-
ers alone have collectively lost more than U.S. $5 million.

Of course, ICANN cannot involve itself in content issues, both
because of our Bylaws as well as practically, but that does not mean
we are unaware or unconcerned about those who are using the
Domain Name System (DNS) to victimize others. It is this concern
that prompted me to contact the registries and registrars thanking
them for their efforts and actions aimed at helping to mitigate and
minimize the abusive domain names being used to maliciously take
advantage of the coronavirus pandemic. For example, the Registrar
Stakeholder Group[1] has posted a useful guide, entitled “Registrar
approaches to the COVID-19 Crisis” that provides a number of steps
and resources the registrar community can use in their efforts.

Many of our contracted parties already support a Framework to
Address Abuse,[2] which deals with DNS abuse and website content
abuse. I continue to commend them for making this commitment
to protect the DNS from those who would maliciously exploit
domain names. In my correspondence to the registries and regis-
trars, I expressed ICANN org’s appreciation for their work during
the pandemic.

Additionally, I’m pleased to tell you that ICANN org has joined regis-
tries, registrars, security experts, law enforcement, Internet engineers,
and others, in the COVID-19 Cyber Threat Coalition (CTC)[3]. The
CTC’s mission is to, “operate the largest professional-quality threat
lab in the history of cybersecurity out of donated cloud infrastructure
and with rapidly assembled teams of diverse, cross-geography, cross-
industry threat researchers.”

The Internet Protocol Journal
38

I am proud that so many in the Internet ecosystem are joining together
during this crisis to stop those who prey on the desperate. We will
continue to keep you advised of our engagement efforts to mitigate
the misuse of domain names during these critical times.

—Göran Marby, President and Chief Executive Officer, ICANN

 [1] https://rrsg.org/
 [2] http://dnsabuseframework.org
 [3] https://www.cyberthreatcoalition.org/

Global Encryption Coalition Formed
Encryption is a critical technology that helps keep people, their infor-
mation, and communications private and secure. However, some
governments and organisations are pushing to weaken encryption,
which would create a dangerous precedent that compromises the
security of billions of people around the world. Actions in one coun-
try that undermine encryption threaten us all.

As a global coalition, we call on governments and the private sector
to reject efforts to undermine encryption and pursue policies that
enhance, strengthen and promote use of strong encryption to pro-
tect people everywhere. We also support and encourage the efforts of
companies to protect their customers by deploying strong encryption
on their services and on their platforms.

The mission of the Global Encryption Coalition is to promote and
defend encryption in key countries and multilateral gatherings where
it is under threat. It also supports efforts by companies to offer
encrypted services to their users.

With a steering committee led by the Center for Democracy and
Technology (CDT), Global Partners Digital (GPD) and the Internet
Society (ISOC), the Global Encryption Coalition is composed of
national coalitions, civil society groups, corporations, academics,
and technologists around the world who agree to support its found-
ing statement.

For more information, visit: https://www.globalencryption.org/

APNIC Launches Networing from Home Events
With most Asia Pacific economies forced into various states of lock-
down to minimize COVID-19 infections, Network Operator Group
(NOG) meetings and other technical events in the region have either
been cancelled or postponed. NOGs are a great forum for network
engineers to share experience with their peers, work out solutions to
common technical problems, and build the strong relationships that
help the Internet operate. There are 22 NOGs in the APNIC region,
but sadly that means a lot of events have been cancelled in 2020.

Networking from Home is a new virtual event initiative to provide
a place for technical folk in the region to share their experience and
expertise with their peers, just like they would at a NOG event.

Fragments continued

https://rrsg.org/
http://dnsabuseframework.org
https://www.cyberthreatcoalition.org/
https://www.globalencryption.org/

The Internet Protocol Journal
39

There will be four free online events—one each held in the time zones
of South East Asia, South Asia, East Asia, and Oceania—and they
will be a digestible 2.5 hours long. Presentations will be short and
punchy and interaction is encouraged! APNIC’s Geoff Huston will
deliver a different keynote at each event, and he will be supported by
a range of great speakers suggested by the NOG communities.

If you have a great presentation in mind, get in touch with the
Program Committees for the events. For more information, visit:
https://nfh.apnic.net/

Check your Subscription Details!
If you have a print subscription to this journal, you will find an expi-
ration date printed on the back cover. For the last couple of years, we
have “auto-renewed” your subscription, but now we ask you to log in
to our subscription system and perform this simple task yourself. The
subscription portal is here: https://www.ipjsubscription.org/
This process will ensure that we have your current contact informa-
tion, as well as delivery preference (print edition or download). For
any questions, contact us by e-mail at: ipj@protocoljournal.org

Our Privacy Policy
The General Data Protection Regulation (GDPR) is a regulation for
data protection and privacy for all individual citizens of the European
Union (EU) and the European Economic Area (EEA). Its implemen-
tation in May 2018 led many organizations worldwide to post or
update privacy statements regarding how they handle information
collected in the course of business. Such statements tend to be long
and include carefully crafted legal language. We realize that we may
need to provide similar language on our website and in the printed
edition, but until such a statement has been developed here is an
explanation of how we use any information you have supplied relat-
ing to your subscription:

• The mailing list for The Internet Protocol Journal (IPJ) is entirely
“opt in.” We never have and never will use mailing lists from other
organizations for any purpose.

• You may unsubscribe at any time using our online subscription
system or by contacting us via e-mail. We will honor any request
to remove your name and contact information from our database.

• We will use your contact information only to communicate with
you about your subscription; for example, to inform you that a
new issue is available, that your subscription needs to be renewed,
or that your printed copy has been returned to us as undeliverable
by the postal authorities.

• We will never use your contact information for any other purpose
or provide the subscription list to any third party other than for the
purpose of distributing IPJ by post or by electronic means.

• If you make a donation in support of the journal, your name will
be listed on our website and in print unless you tell us otherwise.

https://nfh.apnic.net/
https://www.ipjsubscription.org/
mailto:ipj%40protocoljournal.org?subject=

The Internet Protocol Journal
40

Thank You!
Publication of IPJ is made possible by organizations and individuals around the world dedicated to
the design, growth, evolution, and operation of the global Internet and private networks built on the
Internet Protocol. The following individuals have provided support to IPJ. You can join them by visiting
http://tinyurl.com/IPJ-donate

Fabrizio Accatino
Michael Achola
Martin Adkins
Christopher Affleck
Scott Aitken
Jacobus Akkerhuis
Antonio Cuñat Alario
Nicola Altan
Matteo D’Ambrosio
Jens Andersson
Danish Ansari
Finn Arildsen
Tim Armstrong
Richard Artes
Michael Aschwanden
David Atkins
Jac Backus
Jaime Badua
Bent Bagger
Eric Baker
Santosh Balagopalan
Michael Bazarewsky
David Belson
Hidde Beumer
Pier Paolo Biagi
John Bigrow
Orvar Ari Bjarnason
Axel Boeger
Keith Bogart
Mirko Bonadei
Roberto Bonalumi
Julie Bottorff
Photography
Gerry Boudreaux
L de Braal
Kevin Breit
Thomas Bridge
Ilia Bromberg
Václav Brožík
Christophe Brun
Gareth Bryan
Stefan Buckmann
Caner Budakoglu
Darrell Budic
Scott Burleigh
Jon Harald Bøvre
Olivier Cahagne
Antoine Camerlo

Tracy Camp
Ignacio Soto Campos
Fabio Caneparo
Roberto Canonico
David Cardwell
John Cavanaugh
Lj Cemeras
Dave Chapman
Stefanos Charchalakis
Greg Chisholm
David Chosrova
Marcin Cieslak
Brad Clark
Narelle Clark
Joseph Connolly
Steve Corbató
Brian Courtney
Dave Crocker
Kevin Croes
John Curran
André Danthine
Morgan Davis
Jeff Day
Julien Dhallenne
Freek Dijkstra
Geert Van Dijk
David Dillow
Richard Dodsworth
Ernesto Doelling
Michael Dolan
Eugene Doroniuk
Karlheinz Dölger
Joshua Dreier
Lutz Drink
Andrew Dul
Joan Marc Riera
Duocastella
Holger Durer
Mark Eanes
Peter Robert Egli
George Ehlers
Peter Eisses
Torbjörn Eklöv
Y Ertur
ERNW GmbH
ESdatCo
Steve Esquivel
Jay Etchings

Mikhail Evstiounin
Paul Ferguson
Ricardo Ferreira
Kent Fichtner
Michael Fiumano
The Flirble Organisation
Gary Ford
Jean-Pierre Forcioli
Susan Forney
Christopher Forsyth
Andrew Fox
Craig Fox
Fausto Franceschini
Valerie Fronczak
Tomislav Futivic
Edward Gallagher
Andrew Gallo
Chris Gamboni
Xosé Bravo Garcia
Osvaldo Gazzaniga
Kevin Gee
Greg Giessow
John Gilbert
Serge Van Ginderachter
Greg Goddard
Tiago Goncalves
Octavio Alfageme
Gorostiaga
Barry Greene
Jeffrey Greene
Richard Gregor
Martijn Groenleer
Geert Jan de Groot
Christopher Guemez
Gulf Coast Shots
Sheryll de Guzman
Rex Hale
Jason Hall
James Hamilton
Stephen Hanna
Martin Hannigan
John Hardin
David Harper
Edward Hauser
David Hauweele
Marilyn Hay
Headcrafts SRLS
Hidde van der Heide

Johan Helsingius
Robert Hinden
Asbjorn Hojmark
Damien Holloway
Alain Van Hoof
Edward Hotard
Bill Huber
Hagen Hultzsch
Kevin Iddles
Mika Ilvesmaki
Karsten Iwen
David Jaffe
Ashford Jaggernauth
Martijn Jansen
Jozef Janitor
John Jarvis
Dennis Jennings
Edward Jennings
Aart Jochem
Brian Johnson
Curtis Johnson
Richard Johnson
Jim Johnston
Jonatan Jonasson
Daniel Jones
Gary Jones
Jerry Jones
Anders Marius
 Jørgensen
Amar Joshi
David Jump
Merike Kaeo
Andrew Kaiser
Christos Karayiannis
David Kekar
Jithin Kesavan
Jubal Kessler
Shan Ali Khan
Nabeel Khatri
Dae Young Kim
William W. H.
 Kimandu
John King
Russell Kirk
Gary Klesk
Anthony Klopp
Henry Kluge
Michael Kluk

Andrew Koch
Ia Kochiashvili
Carsten Koempe
Richard Koene
Alexader Kogan
Antonin Kral
Robert Krejčí
Mathias Körber
John Kristoff
Terje Krogdahl
Bobby Krupczak
Murray Kucherawy
Warren Kumari
George Kuo
Dirk Kurfuerst
Darrell Lack
Yan Landriault
Markus Langenmair
Fred Langham
Andrew Lamb
Richard Lamb
Sig Lange
Tracy LaQuey Parker
Rick van Leeuwen
Simon Leinen
Robert Lewis
Christian Liberale
Martin Lillepuu
Roger Lindholm
Sergio Loreti
Eric Louie
Guillermo a Loyola
Hannes Lubich
Dan Lynch
Sanya Madan
Miroslav Madić
Alexis Madriz
Carl Malamud
Jonathan Maldonado
Michael Malik
Yogesh Mangar
Bill Manning
Harold March
Vincent Marchand
Gabriel Marroquin
David Martin
Jim Martin
Ruben Tripiana Martin

http://tinyurl.com/IPJ-donate

The Internet Protocol Journal
41

Follow us on Twitter and Facebook @protocoljournal https://www.facebook.com/newipj

Job Snijders
Ronald Solano
Asit Som
Ignacio Soto
 Campos
Evandro Sousa
Peter Spekreijse
Thayumanavan
 Sridhar
Paul Stancik
Ralf Stempfer
Matthew Stenberg
Adrian Stevens
Clinton Stevens
John Streck
Martin Streule
Viktor Sudakov
Edward-W. Suor
Vincent Surillo
T2Group
Roman Tarasov
David Theese
Douglas Thompson
Lorin J Thompson
Joseph Toste
Rey Tucker
Sandro Tumini
Angelo Turetta
Phil Tweedie
Steve Ulrich
Unitek Engineering AG
John Urbanek
Martin Urwaleck
Betsy Vanderpool
Surendran
 Vangadasalam
Ramnath Vasudha
Philip Venables
Buddy Venne
Alejandro Vennera
Luca Ventura
Tom Vest
Dario Vitali
Michael L Wahrman
Laurence Walker
Randy Watts
Andrew Webster

Timothy Martin
Carles Mateu
Juan Jose Marin
 Martinez
Ioan Maxim
David Mazel
Miles McCredie
Brian McCullough
Joe McEachern
Alexander McKenzie
Jay McMaster
Mark Mc Nicholas
Carsten Melberg
Kevin Menezes
Bart Jan Menkveld
William Mills
David Millsom
Desiree Miloshevic
Joost van der Minnen
Thomas Mino
Rob Minshall
Wijnand Modderman
Mohammad Moghaddas
Charles Monson
Andrea Montefusco
Fernando Montenegro
Joel Moore
John More
Maurizio Moroni
Brian Mort
Soenke Mumm
Tariq Mustafa
Stuart Nadin
Michel Nakhla
Mazdak Rajabi Nasab
Krishna Natarajan
Naveen Nathan
Darryl Newman
Thomas Nikolajsen
Paul Nikolich
Travis Northrup
Marijana Novakovic
David Oates
Ovidiu Obersterescu
Tim O’Brien
Mike O’Connor
Mike O’Dell

John O’Neill
Jim Oplotnik
Packet Consulting
 Limited
Carlos Astor Araujo
 Palmeira
Alexis Panagopoulos
Gaurav Panwar
Manuel Uruena Pascual
Ricardo Patara
Dipesh Patel
Alex Parkinson
Craig Partridge
Dan Paynter
Leif Eric Pedersen
Rui Sao Pedro
Juan Pena
Chris Perkins
Michael Petry
Alexander Peuchert
David Phelan
Derrell Piper
Rob Pirnie
Marc Vives Piza
Jorge Ivan Pincay Ponce
Victoria Poncini
Blahoslav Popela
Eduard Llull Pou
Tim Pozar
David Raistrick
Priyan R Rajeevan
Balaji Rajendran
Paul Rathbone
William Rawlings
Bill Reid
Petr Rejhon
Robert Remenyi
Rodrigo Ribeiro
Glenn Ricart
Justin Richards
Mark Risinger
Gregory Robinson
Ron Rockrohr
Carlos Rodrigues
Magnus Romedahl
Lex Van Roon
Alessandra Rosi

David Ross
William Ross
Boudhayan
 Roychowdhury
Carlos Rubio
Timo Ruiter
RustedMusic
Babak Saberi
George Sadowsky
Scott Sandefur
Sachin Sapkal
Arturas Satkovskis
PS Saunders
Richard Savoy
John Sayer
Phil Scarr
Elizabeth Scheid
Jeroen Van Ingen
 Schenau
Carsten Scherb
Ernest Schirmer
Philip Schneck
Dan Schrenk
Richard Schultz
Timothy Schwab
Roger Schwartz
SeenThere
Scott Seifel
Yury Shefer
Yaron Sheffer
Doron Shikmoni
Tj Shumway
Jeffrey Sicuranza
Thorsten Sideboard
Greipur Sigurdsson
Andrew Simmons
Pradeep Singh
Henry Sinnreich
Geoff Sisson
Helge Skrivervik
Darren Sleeth
Richard Smit
Bob Smith
Courtney Smith
Eric Smith
Mark Smith
Craig Snell

Tim Weil
Jd Wegner
Westmoreland
Engineering Inc.
Rick Wesson
Peter Whimp
Russ White
Jurrien Wijlhuizen
Derick Winkworth
Pindar Wong
Phillip Yialeloglou
Janko Zavernik
Muhammad Ziad
 Ziayuddin
Jose Zumalave
Romeo Zwart
Bernd Zeimetz
廖 明沂.

https://www.facebook.com/newipj

The Internet Protocol Journal
42

Call for Papers

The Internet Protocol Journal (IPJ) is a quarterly technical publication
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about
all aspects of Internet technology. IPJ is not intended to promote any
specific products or services, but rather is intended to serve as an
informational and educational resource for engineering profession-
als involved in the design, development, and operation of public and
private internets and intranets. In addition to feature-length articles,
IPJ contains technical updates, book reviews, announcements, opin-
ion columns, and letters to the Editor. Topics include but are not
limited to:

• Access and infrastructure technologies such as: Wi-Fi, Gigabit
Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile
wireless.

• Transport and interconnection functions such as: switching, rout-
ing, tunneling, protocol transition, multicast, and performance.

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
troubleshooting, and mapping.

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed sys-
tems, cloud computing, and quality of service.

• Application and end-user issues such as: E-mail, Web authoring,
server technologies and systems, electronic commerce, and appli-
cation management.

• Legal, policy, regulatory and governance topics such as: copyright,
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

mailto:ole%40protocoljournal.org?subject=
mailto:olejacobsen%40me.com?subject=
http://creativecommons.org/

The Internet Protocol Journal
43

Supporters and Sponsors

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsors Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

Your logo here!

http://www.cisco.com
https://www.dns-oarc.net
http://www.google.com
mailto:sponsor%40protocoljournal.org?subject=
http://www.sidn.nl
http://www.qacafe.com
http://www.internetsociety.org
https://www.icann.org
https://www.isc.org
https://afrinic.net
http://www.limelight.com/
https://ams-ix.net
http://comcast.net
http://afilias.info/
http://de-cix.net
http://apricot.net
http://www.apnic.net
http://www.wide.ad.jp/
http://labs.verisigninc.com
http://www.lacnic.net
http://www.lacnic.net
http://www.juniper.net
https://jprs.co.jp
http://www.ripe.net
http://www.team-cymru.org
http://www.us.ntt.net/
http://nsrc.org/
http://www.linx.net
https://pknic.net.pk
http://www.akamai.com

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

David Conrad, Chief Technology Officer
Internet Corporation for Assigned Names and Numbers

Dr. Steve Crocker, CEO and Co-Founder
Shinkuro, Inc.

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Dr. Cullen Jennings, Cisco Fellow
Cisco Systems, Inc.

Olaf Kolkman, Chief Internet Technology Officer
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor
Faculty of Environmental and Information Studies,
Keio University, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
Link Fulfillment
7650 Marathon Dr., Suite E
Livermore, CA 94550

CHANGE SERVICE REQUESTED

http://creativecommons.org/licenses/by-nc-nd/2.0/

