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In mid-February, I traveled to Melbourne, Australia, to attend the Asia 
Pacific Regional Internet Conference on Operational Technologies 
(APRICOT). I normally attend around 10 or 12 similar Internet-
related events in a year, be they Network Operator Group (NOG) 
conferences, Regional Internet Registry (RIR) events, or meetings of 
The Internet Engineering Task Force (IETF). This year, most of these 
events have either been cancelled or have “gone virtual” as the world 
tackles the COVID-19 pandemic. 

The pandemic has clearly demonstrated the resilience and flexibil-
ity of the Internet and the people and organizations that rely on it 
for work, education, and entertainment. The various lock-downs or  
shelter-in-place orders have also given many of us an opportunity 
to take a closer look at some of the underlying technologies of the 
Internet, as we participate in online events or perhaps read more 
books and articles. This journal continues to receive many interesting 
articles on all aspects of networking, and in addition to the normal 
issues in print (and PDF format), we are also planning to expand our 
online presence in the near future.

Buffering is a central concept in packet-switched networks. Appli- 
cations such as streaming audio or video rely on buffers to com- 
pensate for the fact that packets do not arrive at a fixed rate or even 
in a fixed order. Memory buffers are also used within the switches 
of the network to account for variations in network bandwidth  
and throughput. In our first article, Geoff Huston discusses network  
buffers and explains the numerous mechanisms that are used or  
have been proposed to tackle network congestion.

Previous articles in this journal have discussed various aspects of 
unsolicited e-mail, commonly referred to as “spam.” This time, John 
Levine explains recent developments in anti-spam efforts, specifically 
Domain-based Message Authentication, Reporting & Conformance 
(DMARC) and Authenticated Received Chain (ARC).

As always, we welcome your feedback and suggestions on anything 
you read in this journal. Letters to the Editor may be edited for  
clarity and length and can be sent to ipj@protocoljournal.org. 
Please make sure your subscription details are accurate. 

—Ole J. Jacobsen, Editor and Publisher 
ole@protocoljournal.org
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What’s the Right Network Buffer Size?
by Geoff Huston, APNIC

P acket-switched networks need to use memory buffers within 
the switches of the network. In a simple example, if two pack-
ets arrive at a switch at the same time and are destined to the 

same output port, then one packet needs to wait in a local buffer 
while the other packet is sent on, assuming that the switch does  
not want to needlessly discard packets. Not only do these buffers 
address such timing issues that are associated with multiplexing, 
they are also useful in smoothing packet bursts and performing 
rate adaptation that is necessary when packet sources are self-
clocked. However, there is a question that has never been answered 
satisfactorily: What’s the “right” size for the memory buffer of a 
switch? If buffers are generally good and improve data throughput  
by reducing the incidence of packet drop, then more (or larger) 
buffers are better, right? Not necessarily, because buffers also add 
additional delay to packet transit through the network if the packet 
gets parked into one of more buffers in transit. If you want to provide a  
low-jitter packet-transit service, then deep buffers in the network are 
decidedly unfriendly! The result is the rather enigmatic observation 
that network buffers have to be as big as they need to be, but no 
bigger.

Buffers in a packet-switched communication network serve at 
least two purposes. They impose some order on the highly erratic 
instantaneous packet rates that are inherent when many diverse 
packet flows are multiplexed into a single common transmission 
system, and they compensate for the propagation delay inherent in 
any congestion feedback control signal and the consequent coarseness 
of response to congestion events by end systems. 

The Internet adds an additional dimension to this topic. Most Internet 
traffic is still controlled by the rate adaptation that various forms of 
Transmission Control Protocol (TCP) congestion-control algorithms 
use. The overall objective of these rate-control mechanisms is to 
make efficient use of the network, such that no network resource is 
idle when there is latent demand for more resources, and fair use of 
the network, such that if the network has multiple flows, then each 
flow will be given a proportionate share of the network resources, 
relative to the competing resource demands from other flows.

The study of buffer sizing is not one that occurs in isolation. The 
related areas of study encompass various forms of queueing disciplines 
that these network elements use, the congestion-control protocols 
that data senders use, and the mix of traffic on the network. The area 
also encompasses considerations of hardware design; Application-
Specific Integrated Circuit (ASIC) chip layouts; and the speed, cost, 
and power requirements of switch hardware.
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The topic of buffer sizing was the subject of a workshop at Stanford 
University in early December 2019. The workshop drew together 
academics, researchers, vendors, and operators to look at this topic 
from their perspectives. It hosted 98 attendees from 12 countries, 
with 26 from academia and 72 from industry. The following are my 
notes from this highly stimulating workshop[0].

Background
In an autonomously managed packet network, packet senders learn 
from reflections of data that packet receivers provide, in a similar 
fashion to the way a radar system “learns” from a reflected signal. 
In a reliable flow-controlled TCP session the receiver sends an ACK 
packet to acknowledge the receipt of one or more data packets. Each 
ACK describes how many in-sequence bytes the receiver removed 
from the network. The sender can use this ACK signal to guide the 
injection of additional data into the network. One aim of each packet 
sender is a position of stability, where every packet passed into the 
network is matched against a packet leaving the network. In the TCP 
context, this behaviour is termed ACK Pacing. 

While the sender can use ACK pacing to determine a stable sending 
rate, it cannot readily determine a fair and efficient sending rate. The 
unknown factor in this model is that the sender is not aware of the 
right amount of network resources to claim for the data transaction 
that would sustain a fair and efficient outcome. The TCP approach  
to solve this problem is to use a process of dynamic discovery where 
the sender probes the network by gently increasing sending rates 
until it receives an indication that the sending rate is too high. It  
then backs off its sending rate to a point that it believes is lower than 
the sustainable maximum rate and resumes the probe activity[1].

This classic model of TCP flow management is termed Additive 
Increase, Multiplicative Decrease (AIMD). The sending rate is 
increased by a constant amount over each time interval (usually the  
time to send a packet to the receiver and the receiver to send an 
acknowledgement packet back to the sender, or a Round Trip Time 
(RTT) interval). In response to a packet-loss event, indicated by 
Duplicate ACKs that suggest the next in-sequence packet has been  
lost and the receiver considers successive packets to be out of order,  
the sender decreases the sending rate by a multiplicative ratio. The 
classic model of TCP uses an additive factor of 1 TCP Message 
Segment Size (MSS)[9] of data per RTT and a rate halving (divide 
by 2) in response to a packet loss. The result is a “sawtooth” TCP 
behaviour[2] (Figure 1). This control is determined by the sender 
maintaining a Congestion Window value, which is the maximum 
amount of unacknowledged data that the sender can have. Increasing 
the sending rate is achieved by increasing this value, and a decrease is 
achieved by reducing this value. When the value is reduced, then the 
sender must wait for the amount of unacknowledged data to drop 
below the new value before sending new data into the network.
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Figure 1: TCP AIMD Congestion-
Control Behaviour
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We can mathematically model this behaviour of rate halving in 
response to packet loss and linear increase otherwise. If the packet-loss 
function is assumed to be a random loss function with a probability 
p, then the data-flow rate is proportional to the inverse square root 
of the packet-loss probability, as given in following equation (0)[2]:

BW = =MSS C 3
2pRTT where C (0)

This result implies that the achievable capacity of an AIMD TCP 
flow is inversely proportional to the square root of the packet-loss 
probability.

But packet loss is not a random event. If we assume that packet loss 
is the result of buffer overflow, then we also need to consider buf-
fers and buffer depth in more detail. An informal standard for the 
Internet is that the buffer size should be equal to the delay-bandwidth 
product of the link (the derivation of this “rule of thumb” result is 
explained in the next section).

Size (1)= MSS  RTT

As network link speeds increase, the associated buffers similarly 
need to increase in size, based on this engineering rule of thumb. 
The rapid progression of transmission systems from megabits per 
second to gigabits per second and the prospect of moving to terabit  
systems in the near future pose, particular scaling issues for silicon- 
based switching and buffer systems. As networks increase in scale, 
the switching scaling factors tend to show multiplicative properties.

Network Buffers continued
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For example, if we have a single switch of capacity C and we want 
to double the effective switching capacity but cannot increase the 
capacity of the switching chip, then how many switching chips will 
we need to produce a composite switch of capacity 2C? The answer 
is not 2 but 6, as shown in Figure 2. A packet will also need to 
traverse up to three switch fabrics, so the aggregate buffer size of the 
path through the switch fabric may triple in size.

Figure 2: Doubling Switch Capacity
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Self-clocking packet sources imply that congestion events within the 
network are inevitable, and any control mechanism that is imposed 
on these sources requires some form of feedback that allows the 
source to craft an efficient response to congestion events. However, 
this feedback is constrained by propagation delays and this lag  
creates some coarseness in the response mechanisms. If the response 
is too extreme, the sources will over-react to congestion and the  
network will head into instability with oscillations between periods 
of intense use and high packet loss and periods of idle operation. If 
the response is too small, the congestion events will extend over time, 
leading to protracted periods of operation with full buffers, high lag, 
and high packet loss. 

Robust control algorithms need to be stable for general topologies 
with multiple constrained resources, and ways of achieving this 
stability are still the subject of investigation and experimentation. If 
feedback based on rate mismatch is available, then feedback based 
on queue size is not all that useful for stabilising long-lived flows. 
Feedback based on queue size is, however, important for clearing 
transient overloads. 

Over more than three decades of experience with congestion-manage-
ment systems, we have seen many theories, papers, and experiments. 
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Clearly, there is no general agreement on a preferred path to take 
with congestion-control systems. However, a consistent factor here is 
the network buffer size, and the sizing of these buffers in relation to 
network capacity. One view, possibly extreme, says that buffers are 
at the root of all performance issues. 

The task of dimensioning buffers in a switching system has implica-
tions right down to the design of the ASIC that implements the switch 
fabric. On-chip memory can be fast, but it is limited in capacity to 
some 100 MB or less. Larger memory buffers need to be provisioned 
off-chip, requiring I/O logic to interface to the memory bank, and the 
speed of the off-chip system is typically slower than on-chip memory. 
Hybrid systems have to compromise between devoting chip capacity 
to switching, memory, and external memory interfaces. And layered 
on top of these design trade-offs is the continuing need to switch at 
higher speed across larger numbers of ports.

One objective of the Buffer Size Workshop was to continue the con-
versation about buffers, determine their relationship to congestion 
control, and improve our understanding about the interdependence 
among buffer size, queuing control, self-clocking algorithms, net-
work dimensioning, and traffic profiles.

How Big Should a Buffer Be in the Internet?
The single AIMD flow model predicts poor outcomes for flows 
operating across buffers that are too deep or too shallow. Too deep 
and the flow’s loss response of halving the congestion window does 
not clear the buffer, and a standing queue forms that contributes to 
an increased latency imposed in the flow (Figure 3).

Figure 3: Deep Buffers and Rate 
Halving Congestion Response
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If the buffer is too shallow, then rate halving drops the sending rate 
below the bottleneck capacity, and the link will be under-used until 
the additive increase brings the rate up to the link capacity (Figure 4).

Network Buffers continued
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Figure 4: Shallow Buffers and Rate 
Halving Congestion Response
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The delay-bandwidth product rule of thumb generates some ex- 
tremely large queue-capacity requirements in medium-delay,  
high-capacity systems. A 10-Gbs system using a 100-ms RTT link  
requires a 125-MB memory pool per port that can read and write at  
10 Gbps. A 1-Tbps system would require a 12.5-GB memory pool per  
port that can read and write at 1 Tbps. A 16-port switch would  
require 200 GB of high-speed buffer memory using this same design  
guideline. 

Such numbers are challenging for switch designers, and it is reason-
able to review the original work to understand the derivation of this 
provisioning rule. 

This model of provisioning the queue to the bandwidth-delay product 
is derived from a AIMD control algorithm of a single flow using 
an additive value of 1 segment per RTT and halving the congestion 
window on packet loss, coupled with the objective of using the buffer 
to keep the link busy during the period of window deflation. 

However, something a little deeper in the oscillation of the AIMD 
flow-control process affects the selection of the buffer size. In the 
purely hypothetical situation of a single flow operating across a 
single switch with a lossless transmission medium, the only source 
of packet loss is buffer exhaustion. If the switch has no buffer at all, 
then the AIMD algorithm will operate in a steady state between half 
capacity and full capacity, leaving approximately one-fourth of the 
capacity unused by the flow.

The objective is to use a buffer as a reservoir to fill the transmission 
link while the sender pauses, waiting for the receiver’s count of 
unacknowledged data to fall below the new congestion-window 
value. If the buffer size is set to the link bandwidth times the link 
RTT, then the buffer will be drained at the point when the sender’s 
unacknowledged data reaches the congestion-window value and the 
sender can resume sending. 
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While this result is from a theoretical analysis of a single flow 
through a single link, experiments by Villamizar and Song in 1994[3] 
pointed to a more general use of this dimensioning guideline in the 
case of multiple flows across multiple links. The rationale for this 
experimental observation was a supposition that synchronisation 
occurs across the dominant TCP flows, and the aggregate behaviour 
of the elemental flows was similar to a single large flow. This work 
was the foundation of today’s common assumption that buffers in 
the network should be provisioned at a size equal to the round-trip 
delay multiplied by the capacity in order to ensure efficient loading 
of the link; see equation (1).

This supposition has been subsequently questioned. The scenario of 
a link loaded with a diversity of flows in RTT, duration, and burst 
profiles implies that synchronisation across such flows is highly 
unlikely, obviously having implications for buffer-size calculation. If 
there are two concurrent TCP flows, they have the same RTT, and 
they resonate in the increase and decrease events, then the buffer 
requirement will be the same for an efficient use of the network and 
a fair sharing of the available bandwidth. But if the increase and 
decrease of the two sessions are exactly out of phase, then a fair 
and efficient outcome would be created by a buffer size that is three-
quarters of the original single flow. The real world typically sees a 
number of concurrent flows where both the RTT and the phase of 
the TCP duty cycle all vary. A Stanford TCP research group study 
in 2004[4] used the central-limit theorem to point to a radically 
smaller model of buffer size. You can maintain link efficiency for N 
desynchronised flows with a buffer that is dimensioned to the size of:

Size (2)= BW RTT
N

This result is radical for high-speed extended latency links in a busy 
network. The consequences on router design are enormous: “For 
example, a 1 Tb/s ISP router carrying one TCP flow with an RTTmin 
of 100ms would require 12.5 GB of buffer and off-chip buffering. If 
it carries 100,000 flows, then the buffer can be safely reduced to less 
than 40MB, reducing the buffering and worst-case latency by 99.7%. 
With small buffers, the buffer would comfortably fit on a single chip 
switch ASIC.”[5]

Queue Management
The default operation of a queue within a switch is to accept 
new packets while there is still space in the queue and discard all 
subsequently arriving packets until the output process has cleared 
space in the queue. If an incoming packet burst arrives at a switch 
and the queue capacity is insufficient to hold the burst, then the tail of 
the burst will be discarded. This tail-drop behaviour can compromise 
the performance of the flow, because the clocking information for the 
tail end of the burst has been lost.

Network Buffers continued
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One mitigation of this behaviour is Active Queue Management 
(AQM), where the process of queue formation triggers “early” drop. 
In other words, a packet drop will occur even when there is space in 
the queue to accept the packet. The ideal outcome of AQM is that 
packet drop in a large burst will occur inside the burst and the trailing 
packets following the dropped packet (which are not dropped as 
there is still space in the queue) will carry a coherent clocking signal 
in the ACK packet train that allows the flow to repair the loss quickly 
without losing the implicit clocking signal. Loss-based congestion-
control algorithms will react to this packet drop by dropping their 
congestion-control window size, reducing their sending rate without 
collapsing the sending rate back to zero.

Drop-based TCP control algorithms react predictably to packet loss. 
However, the Internet is not entirely homogenous with respect to 
flow-control algorithms, and we are seeing increasing interest in 
flow systems that account for variance of the RTT measurements in 
a flow, or so-called delay-based TCP control systems. Delay-based 
paced control algorithms react differently to queue drop, and a 
“pure” delay-based flow-control system is indifferent to a loss signal. 
The question is: Are there AQM functions that can support a mix  
of congestion-control algorithms? Indeed, is the question of what 
form of AQM to use a more important question than the size of the 
underlying buffer?

Explicit Network Feedback
For many years there has been considerable debate between an end-
system approach that uses only the received ACK stream to infer the 
network congestion state in the data forwarding direction from a 
packet loss signal (Figure 5), and an approach that uses some form 
of explicit signalling from the network that can directly inform the 
source of the network state. Very early efforts in such direct sig-
nalling through Internet Control Message Protocol (ICMP) Source 
Quench messages were quickly discounted because of the various 
issues related to its potential for Denial-of-Service (DoS) attacks and 
its inability to authenticate the messages. 

The Explicit Congestion Notification (ECN) proposal[6] tried to 
address the most obvious failing of the earlier approach by placing  
the congestion signal inside the end-to-end IP packet exchange. 
Switching elements that were experiencing the onset of local con-
gestion load in their buffers were expected to set a Congestion 
Experienced bit in the IP packet header of packets that were con-
tributing to this load condition. Receivers were expected to translate 
this bit into the ACK packet header, so that the sender received an 
explicit congestion signal rather than having to infer congestion  
from an ACK signal that reflects packet loss (Figure 6).
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Figure 5: Loss-Based Congestion-Control Behaviour
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Figure 6: ECN Marking
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The advantage of ECN is that the sender is not placed in the position 
of being informed of a congestion condition well after the condition 
has occurred. Explicit notification allows the sender to be informed 
of a condition as it is forming, so that it can take action while there 
is still a coherent ACK pacing signal coming back from the receiver 
(that is, before packet loss occurs). This measure mimics the intention 
of delay-based flow systems, but with increased precision assuming 
that all switches were to perform this congestion marking.

However, ECN is only a single bit marking. Is that enough? Would a 
richer marking framework facilitate a more precise sender response? 
What if we had a marking regime that marks based on the dis-
tance from the current rate to a desired fair-efficient rate? Or use 
a larger vector to record the congestion state in multiple queues on  
the path? 

Network Buffers continued



The Internet Protocol Journal
11

The conclusion from one presentation is that the single-bit marking, 
while coarse and non-specific, is probably sufficient to moderate self-
clocking TCP flows such that they do not place pressure on network 
buffers, leaving the buffers to deal with short-term bursts from 
unconstrained sources. 

Another presentation at the workshop explored a network-level 
direct-feedback message, analogous to the ICMP Packet Too Big  
messages in Path MTU Discovery (PMTUD). To short-circuit the 
delays associated with completing the entire round trip, this approach 
envisages the switch experiencing the onset of congestion to explic-
itly message the source of this congestion condition (Figure 7).

Figure 7: Network-Congestion Signalling
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Another presentation looked at the attachment of a detailed telemetry 
log to each packet in a data-centre application. In the High-Precision 
Congestion Control (HPCC) framework each switch attaches the time, 
queue length, byte count, and link bandwidth to the data packet. The 
receiver takes this data and attaches it to the corresponding ACK, so 
that the sender can form a detailed model of the recent state of path 
capability. HPCC allows the sender to calculate a fair sending rate and 
then rapidly converge to this rate, while at the same time bounding 
the formatting of queues and bounding queuing delays. The domain 
of application of this approach appears to be the data centre, and the 
objective is to achieve high speed with bounded delay for Remote 
Direct Memory Access (RDMA)-style applications (Figure 8).

There is a degree of debate between congestion-based TCP con-
trol and delay-based mechanisms. On the one hand, we hear that 
delay-based mechanisms can operate the flows at the onset of queue 
formation in the network. On the other hand, we hear that attempt-
ing to set the flow to a fixed delay and operating with fairness to 
other flows is intrinsically impossible and that we need to operate 
flows with congestion moderation.



The Internet Protocol Journal
12

Figure 8: High-Precision Congestion Control
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Near and Far Buffers
What is the cost/power trade-off of buffers on-chip and off-chip? And 
if we are considering off-chip, what do we actually mean, because 
there are different implementation approaches to off-chip memory. 
As a general observation, the performance of off-chip memory is not 
remotely close to what is required by a high-capacity, high-speed 
switch. This performance is not improving over time because memory 
speed is not scaling at the same rate as transmission or switch speeds, 
so the gap in performance between transmission and switching and 
memory speed is only getting larger over time.

One switch chip fabricator, Broadcom, implements both deep and 
shallow buffers. On its switch fabric chip Broadcom uses small, fast 
buffers and wraps the switch fabric with everything it can to reduce 
the dependency on deep buffers. 

Recent operational data at Intel suggests that shallow buffers may 
be “good enough,” but because of limitations in instrumenting 
technologies there is insufficient confidence in these results to 
allow switch chip designs to completely discount external memory 
interfaces and a local cache and use on-chip memory exclusively. 
Current switch designs use between 10% and 50% of chip area on 
memory management. This observation applies to high-capacity, 
high-speed switches, because at lower capacity and lower speeds 
there is no such constraint and you can use large pools of off-chip 
memory (relative to transmission speeds), although some constraint 
in the amount of memory will likely produce a better outcome in 
these contexts as well.

The question of future requirements is always present in chip design, 
given the long times between phrasing requirements and deploy-
ment into networks. Where is this situation heading? Memory 
buffers are not growing as fast as chip bandwidth. Clock speeds  
are not increasing, and scaling chip bandwidth is currently achiev- 
ing parallelism rather than increasing the chip clock speed. 

Network Buffers continued
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While doubling switch capacity may be feasible, contemplating an 
increase in capacity by factors of 20, 50, or even 100 seem like par-
ticularly tough challenges. 

Today packet rates are typically achieved with multiple parallel 
pipelines, and orchestrating such highly parallel mechanisms creates 
its own complexity in design. No one is yet prepared to call an end 
to the prodigious outcomes of Moore’s Law in the semiconductor 
realm, but it looks like clock speeds are not keeping up, and pin 
density and even increasing gate density are becoming challenging. 
Is doubling the number of ports on a switch chip good enough? If a 
chip has twice the switch bandwidth, does it need twice the on-chip 
memory capacity? Or less? The answer lies in external factors such as 
congestion-control algorithms, queue-management disciplines, and 
delay management.

Hop-by-Hop Flow Control
Hop-by-Hop Flow Control represents a revival of a very early attri-
bute of packet-switched networks, where an end-to-end path is 
composed of a sequence of flow-controlled hops. Each switching ele-
ment sends at its line rate into the buffer of the next switch. When a 
queue forms at the receiver, the hop flow control can pause the flow 
coming from the adjacent switch and resume it when the queue is 
cleared. Yes, this process sounds very reminiscent of X.25 and the 
Digital Data Communications Message Protocol (DDCMP) compo-
nent of DECnet, and it’s the opposite of the intent of the end-to-end 
approach. However, the approach can produce direct back pressure 
on a bursting source with no packet drop and yield highly efficient use 
without extensive buffer-induced delays. Essentially the self-clock-
ing nature of the flow is replaced with a network clocking function 
(Figure 9). Admittedly, this approach is not universally applicable, 
and it appears to offer a potential match to the intra-data-centre 
environment where traffic patterns are highly bursty, propagation 
times are low, paths are short, and volumes and speeds are intense.

Figure 9: Hop-by-Hop Flow Control

Closed Loop Closed Loop Closed LoopSender Receiver

Flow-Aware Buffer Management
It appears that the move towards shorter buffers relative to the link 
speed is inevitable. But how to manage the feedback systems to allow 
self-clocking data sources to adjust to the shortened buffer space is 
still an outstanding issue. 



The Internet Protocol Journal
14

One approach starts with a basic traffic characterisation of a rel-
atively small proportion of “elephant flows” (high volume, long 
duration) mixed with a far higher count of “mice” flows (low vol-
ume, short duration). While elephant flows are highly susceptible to 
congestion signalling, mice flows are not.

If the network could classify all currently active flows into either 
elephants or mice, then the network could use different queuing 
regimes for each traffic class. This sorting adds to the cost and 
complexity of packet switches, and if scaling pressures are a factor 
in switch design, then it’s not clear that the additional cost of switch 
complexity would be offset by a far superior efficiency outcome in 
the switching function. 

Assuming that such a flow classification could be achieved dyna-
mically, we can consider differential responses. For short flows, there 
is little benefit to be gained by any form of explicit congestion control 
other than placing all such flows into their own queuing regime. For 
long-lived large flows, we could contemplate an explicit network-
congestion signal. It could take the form of an explicit packet back 
to the network-generated source. The advantage of this approach is 
that the feedback of excessive sending rate is faster than a full RTT 
interval, allowing the sender to give a timely response. However, this 
idea does seem like a reprise of the ill-fated ICMP Source Quench 
message, and all that was problematical with ICMP Source Quench is 
probably still an issue in this form of network-congestion notification.

We can exploit this concept of the use of various queue regimes for 
different flow types in a different way by using a short buffer for 
long flows in the expectation that the implicit congestion signal of 
packet drop would allow the long-duration flow to stabilise into the 
available network resource, while short unregulated bursts could 
have access to a deeper buffer, allowing effective use of the buffer as 
a rate-adaptation tool to mitigate the burst. 

This concept is taken even further in one project, which used the 
observation that if a buffer is too deep, then the flow-rate reduction 
following packet drop will leave a standing queue in the buffer, and 
if the buffer is too shallow, then the rate reduction will leave a period 
of an empty queue and an idle transmission system. This observation 
means that a flow-aware buffer manager could adjust its buffer size 
following observation of the post-reduction behaviour, reducing 
the buffer if standing queues form and increasing it if the queue is 
idle. It’s an interesting approach to fair-queuing flow management, 
treating the per-flow buffer as an elastic resource that can resize itself 
to adapt to the congestion-management discipline of the flow.

ISP Network Buffer Profile
P4 is a language used to program the data plane of network devices. 
The language can express how a switch should process packets (“P4” 
itself comes from the original paper that introduced the language, 
Programming Protocol-independent Packet Processors[7].) 

Network Buffers continued
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Barefoot’s Tofino is an example of a new class of programmable 
Ethernet packet switches that are controlled through P4 constructs, 
and these units can currently handle aggregate capacity of some 12.8 
Tbps of data-plane capacity. This capability allows for a measure-
ment regime that can expose packet characteristics at a nanosecond 
level of granularity. By tapping the packet flow of a high-speed trunk 
transmission system into and out of a switching element in the net-
work and attaching the taps to a P4 switch unit, it is possible to 
match the times of ingress and egress of individual packets and gener-
ate a per-packet record of queuing delay within the switching element 
at a nanosecond level of granularity.

This capability provides a new level of insight into burst behaviour in 
high-speed carriage systems Internet Service Providers (ISPs) use. The 
major observation from an exercise conducted on a large ISP network 
was that network buffers are lightly used except for “microbursts,” 
bursts of some 100 microseconds or so, where the queue adds a delay 
element of more than 10 ms on a 10 GigE port. Further analysis 
reveals an estimate of packet drop rates if the network buffers 
were reduced in size, and for this case the analysis revealed that an 
18-msec buffer would be able to sustain a packet drop rate of less 
than 0.005%. 

If buffer-congestion behaviours in such ISP networks are, in fact, 
microbursts, then network measurement tools that operate at the 
per-minute or even at the per-second level of granularity are simply 
too crude. P4-based measurements that can resolve behaviours at 
the nanosecond level offer new insights into buffer behaviours in 
networks that carry a large volume of diverse flows. Even though 
the per-flow control cycle of the data-plane flows is of the scale of 
some milliseconds and longer, the microburst behaviour is that of a 
load model that exhibits sub-millisecond burstiness. The timescale 
of end-to-end congestion control operates at a far coarser level than 
the observed behaviour of congestion within a switch running a 
conventional traffic load. 

This discussion leads to the observation that large-scale systems are 
creating extremely rapid queue size fluctuations, and it is unrealistic 
to expect that end-to-end control algorithms can control the queue 
size. It might be that at best these control algorithms can contribute 
to influencing the distribution of queue sizes.

Sender Pacing
The Internet can be seen as a process of statistical multiplexing of a 
collection of self-clocked packet flows where the flows exhibit a high 
degree of variance and a low level of stability. The reaction to this 
unconstrained input condition so far is to use large buffers that can 
absorb the variations in traffic. How large is “large enough” becomes 
the critical question in such an environment. The work on buffer 
sizing as being in proportion to the bandwidth-delay product of the 
transmission elements is an outcome of a process that measures the 
properties of the control algorithm for traffic flows. 
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It then derives estimates of buffer sizes that should be capable of car-
rying such a volume of traffic that it will efficiently and fairly load 
the transmission system. 

The exercise assumes that the buffer dimension is a free parameter 
in network design, and control algorithms are fixed. Buffer speed 
inside the network has to double at a cycle of some 2 years, and 
the buffer size has to double in a similar timeframe. The product of 
size and speed is a quadrupling every 2 years. The current tactical 
response to this escalation of buffer requirements due to transmission 
capacity increases has been to reduce the size of the buffers relative 
to the transmission capacity. However, this response is not a long-
term sustainable solution because such under-provisioned network 
buffers will impair overall network efficiency in these self-clocking 
flow regimes.

The future prospects for self-clocked traffic flows are not looking 
all that bright given that the growth demands for network buffer-
based mitigation of unconstrained sender behaviours appears to 
be in excess of what can be satisfied within constraints of constant 
unit cost of network infrastructure. Without overall economies of 
scale where larger service-delivery systems achieve lower unit costs 
of service delivery, the management of traffic and content assumes a 
different trajectory that tends to drive towards greater distribution 
and dispersal rather than continued aggregation and amalgamation. 
For the large hyper-scaled content enterprises in today’s Internet, this 
outcome is certainly not optimal.

It is a potentially fruitful thought process to consider this topic from 
an inverted perspective and look at the desirable control-algorithm 
behaviour that efficiently uses the network transmission resources 
when the available buffering is highly restricted. This thought 
process leads to the consideration of “pacing,” where the server uses 
high-precision timers to smooth data flows as they leave the server, 
attempting to create a stable traffic flow that matches bottleneck 
capacity on the path. The more accurate this estimation of bottleneck 
bandwidth, the lower the demand for buffer capacity due to burst 
adaptation. Residual buffer demand is presumably based on the 
demands of statistical multiplexing of disjoint flows. Given that 
the senders are under the control of the service-delivery platforms 
and there are orders of magnitude fewer high-volume senders than 
receivers, this form of change is actually far less than the change 
required by, say, the IPv6 transition.

It is this thinking that lies behind the Bottleneck Bandwidth and 
Round-trip Propagation Time (BBR) protocol work. The send-
er’s flow-control algorithm generates an estimate of the bottleneck 
bandwidth and the minimum RTT interval, and then paces packet 
delivery so as to feed traffic into the bottleneck at exactly the bottle-
neck capacity, which should not involve the formation of a queue at 
the bottleneck. 

Network Buffers continued
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The BBR control algorithm periodically probes up to revise its pre-
vious bandwidth estimate, and probes down to revise its previous 
minimum RTT, and accounts for other congestion-formation signals, 
such as ECN. This probing up and down, or dithering, is not pre-
cisely specified in the core BBR algorithm, and these parameters are 
being revised in the light of deployment experience to determine dith-
ering settings that are both efficient and fair. The expectation is that 
BBR will not drive the formation of standing queues in the network 
and will pace the flow at the maximal rate that the network path can 
fairly sustain.

However, BBR is not the only way to perform flow pacing, and a 
large number of outstanding questions remain. How does pacing 
at the sender affect the queue management at the edge close to the  
client? What are the cross impacts of burst traffic with pacing? How 
should a pacing-control algorithm react to packet loss? Or to out-
of-order packet delivery? Can strict flow pinning still be required  
for Equal Cost Multiple Path (ECMP) routing or does pacing relax 
such requirements for strict path pinning? Are pacing or self-clocking 
the only options, or are there other approaches? 

One perspective is that we are sitting between two constraint sets. 
Escalating volume and speed in the core parts of the network implies 
that bandwidth-delay product model buffer sizing is an unsustainable 
approach. The scaling back of buffer sizes in the network means that 
self-clocked protocols will potentially become more unstable and 
compromise achievable network efficiency and fairness. From this 
perspective sender pacing looks to be a promising direction to pursue.

Is There a Buffer Sizing Problem?
In the Internet we are currently seeing a diversity of responses to 
network provisioning. Some network operators use equipment with 
generous buffers. These buffers are overly generous according to the 
buffer-bloat argument. Other network operators field equipment with  
scant buffers that run the risk of starving data sources while leaving 
idle network capacity. 

There is a mix of congestion-control algorithms (CUBIC, NewReno, 
BBR, Low Extra Delay Background Transport [LEDBAT], etc.) and 
a mix of queue-management regimes (Controlled Delay [CoDel], 
Random Early Detection [RED], Weighted Random Early Detection 
[WRED])[8]. A diversity of deployment environments exists, includ-
ing mobile networks, Wi-Fi, wired access systems, LANs, and data 
centres. And there is a mix of parameters of the desired objective 
here, whether it is some form of fairness, loss, jitter, start-up speed, 
steady-state throughput, stability, efficiency, or any combination of 
these factors. It is little wonder that it’s challenging to formulate a 
clear picture of common objectives and to determine what actions 
are needed to achieve whatever we might want!
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There is the assumption that large network buffers absorb impreci-
sion in clocking (timing “slop”) and allow simpler coarse rate-control 
algorithms to operate effectively without needing high-precision tun-
ing. Small network buffers provide little leeway and tolerance for 
such approximate approaches. This mistrust of the level of preci-
sion of control that end systems exercise is a pervasive view within 
the networking community, and it could even be characterized as an 
entrenched view. So entrenched is this view that probably no experi-
mental result could convince the community as a whole that network 
buffers can be far smaller than they are today, all other factors being 
equal. This fact is true despite the overwhelming evidence that overly 
large buffers compromise network performance, a position that has 
been described as “buffer bloat.” There are other reasons why large 
buffers are a problem for networks and users. As we scale up the 
size and speed of the network, large very-high-speed buffers are also 
increasing in cost. If we are going to admit compromises and trade-
offs in network design, is reducing the relative size of the buffer an 
acceptable trade-off?

And if we want to reduce buffer size and maintain efficient and fair 
performance, how can we achieve it? One view is that sender pacing 
can remove much of the pressure on buffers, and self-clocking flows 
can stabilise without emitting transient bursts that buffers will need 
to absorb. Another view, one that does not necessarily contradict 
the first, is that the self-clocking algorithm can operate with higher 
precision if there were some form of feedback from the network on 
the state of the network path. This feedback can be as simple as a 
single bit (ECN) or a complete trace of path element queue state 
(HPCC). 

This topic remains a rich area of unanswered questions. What does 
it imply when the timescale of buffer-congestion events are orders of 
magnitude smaller than the timescale of self-clocking flows? Are flows 
overly reliant on loss signals and too insensitive to delay variation? 
Can paced delay-based algorithms like BBR coexist with loss-based 
oscillating algorithms such as CUBIC and NewReno? Would the 
general adoption of sender pacing change the picture of buffer sizing 
in the Internet? 

How big should buffers be in the network? Or perhaps the opposite 
is the more practical question: How small can we provision buffers 
in an increasingly faster and larger network and still achieve efficient 
and fair outcomes in a variety of deployment environments? 

All of these questions are good and legitimate for further research, 
experimentation, and measurement.

Network Buffers continued
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Mail Security with DMARC and ARC
by John Levine

E lectronic mail is both one of the most useful services of the 
Internet and the most frustrating. The best thing about mail 
is that anyone can send a message to anyone else without pre 

arrangement, while the worst thing about mail is that anyone can 
send a message to anyone else without prearrangement. As mail 
became ever more ubiquitous in the 1990s and 2000s, an increas-
ing fraction of it was mail the recipients didn’t want. In 2005, Dave 
Crocker[1] and John Klensin[2] wrote articles in this journal about 
the spam problem. Since then, several of the anti-spam techniques 
described in Crocker’s article have become ubiquitous as the spam 
problem has become worse.

One can distinguish between spam, unsolicited mail sent in bulk, and 
phishing, mail sent to trick the recipient into revealing account cre-
dentials or other private information. (Some phishes are sent in bulk, 
some are sent to specific victims, known as Spear Phishing.) Starting 
in 2007, PayPal, which had long been among the biggest phishing 
targets, started working with some large consumer mail systems to 
keep PayPal phishes out of recipient mailboxes. The idea was that 
the recipient systems could identify genuine e-mail from PayPal, and 
reject anything else purporting to be from PayPal. In 2012 an indus-
try group started the DMARC project to generalize this technique. 
In 2015 the Domain-based Message Authentication, Reporting & 
Conformance (DMARC) specification was published as an indepen-
dent track RFC[3], and now it is ubiquitous in large mail systems.

DMARC works by tying the address in the RFC 5322[4] From: 
header of a message to mail authentication, and letting a domain 
offer policy advice to mail recipients. If a message is successfully vali-
dated by Sender Policy Framework (SPF) or DomainKeys Identified 
Mail (DKIM), and the domain in that validation matches the one in 
the From: header, the message is DMARC “aligned.” Sending mail 
systems can publish DMARC policy records in the Domain Name 
System (DNS) requesting recipient systems to quarantine (send to the 
spam folder) or reject unaligned mail. This system works quite well 
for the original intended application of DMARC, business-to-con-
sumer mail, where the sending organization generally has full control 
over all mail sent from its domain. It works particularly well for 
PayPal, where all the mail is some variation of “log into your account 
to see what’s new,” so if a few messages are accidentally lost because 
DMARC miscategorizes a legitimate message it’s not a big problem.

Underlying and Previous Work
DMARC depends on two existing mail authentication schemes, 
Sender Policy Framework (SPF)[5] and DKIM[6]. SPF does path valida-
tion of the domain in the RFC 5321[7] MAIL FROM: address. A domain 
can publish an SPF record that uses a complex syntax to specify a set 
of IP addresses. 
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If the message was sent from one of those addresses, SPF validation 
passes. (This description is oversimplified; see [5] for the full details.) 
SPF has the virtue of being easy to implement because it requires no 
changes to outgoing messages and a single DNS record to imple-
ment, but it can describe only a limited subset of the ways that mail is 
delivered. For the most part it can handle only mail sent directly from 
sender to recipient, without any forwarding or remailing, and does 
not deal well with mail sent by third parties on the sender’s behalf. 
While SPF provides a -all code that advises recipients to reject mail 
from the domain if SPF validation fails, most mail systems disregard 
the advice because the false positive rate is so high.

DKIM does message content validation by adding cryptographic 
signature headers to a message that the recipient can check using 
a key in the DNS. Each signature is stored in a DKIM-Signature 
header field that contains several subfields, including the name of the 
domain that added the signature. If a DKIM signature validates, it 
means both that the message hasn’t been modified since it was signed 
and that the domain in the signature takes responsibility for the mes-
sage. Since DKIM validates the contents of the message rather than 
the path, it is unaffected by forwarding. 

DKIM is considerably harder to implement than SPF because it 
requires modifications to mail software to add the signature headers 
to each outgoing message. It also requires the signing system to cre-
ate public/private key pairs, publish the public key in the DNS, and 
configure the private key into the signing software. DKIM validation 
fails when a message is modified in transit, such as when a mailing 
list adds a subject tag or a message footer, and sometimes simply 
because a Message Transfer Agent (MTA) hasn’t been configured to 
add the signature in the first place. (In large enterprises it can be 
remarkably hard to track down all of the computers sending mail. 
DMARC helps address this problem, as we will see later.)

DKIM had an optional add-on called Author Domain Signing Practices 
(ADSP)[8], which was sort of a proto-DMARC. A domain could pub-
lish an ADSP record in the DNS saying that if a message with the 
domain in the From: header didn’t have a valid DKIM signature from 
the same domain, recipients should discard the message. ADSP was 
never deployed beyond experiments, and the Internet Engineering 
Task Force (IETF) has since made it an historic specification.

DMARC Deployment
One of the reasons that previous sender policy approaches like SPF 
-all and ADSP failed is that there is no way to test them other than 
turning them on to see what happens. For a small domain with one 
or two mail servers that might be possible, but for a large organi-
zation the risk is impossibly high since they rarely have complete 
knowledge of all of the systems sending their mail and how those 
systems are configured. 

DMARC and ARC  continued
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DMARC offers a variety of features to check the alignment of the 
mail of a domain before publishing any policy advice. It has powerful 
reporting features that let a domain owner ask other systems to send 
reports about the mail purporting to be from the domain. Domains 
invariably ask for reports before publishing any policies, so they can 
see what mail they send is and isn’t aligned. This information lets 
them fix alignment issues before they do publish policies.

DMARC Validation
When a message arrives, DMARC validation involves first finding a 
DMARC policy record for the From: header domain, then validating 
SPF and the DKIM signature(s) on the message, and then perhaps 
doing something to the message. The first step is to find the policy 
record for the From: domain of the message, a DNS TXT record. If 
that domain is marketing.mybiz.example, the first place to look 
is _dmarc.marketing.mybiz.example. If there is a TXT record in 
DMARC syntax, for example, it starts with v=DMARC1; that’s the 
policy record. If not, it looks for a policy record in the “organiza-
tional domain.” 

The DMARC specification is deliberately vague about how to find 
the organizational domain, but in practice everyone uses the Mozilla 
Public Suffix List (PSL)[9] where the organizational domain is the 
superdomain just below the public suffix. In this case if the domain 
were a typical Top-Level Domain (TLD) that accepts registrations at 
the second level, the organization domain would be mybiz.example, 
so it would look for a TXT record at _dmarc.mybiz.example. If 
there is a TXT record in DMARC syntax, that’s the policy record; 
otherwise there is no policy record for this domain.

The DMARC record is a list of key=value pairs, with rules for check-
ing alignment, what to do with unaligned mail, and where to send 
aggregate and failure reports. A typical record might be:

v=DMARC1; p=none; rua=mailto:dmarc-a@example.net; 
ri=3600; ruf=mailto:dmarc-f@example.net

There is no policy (none), abuse and failure reports are mailed to 
the given addresses (rua and ruf), and the requested report inter-
val is an hour (ri is 3,600 seconds.) The point of the second check 
for the organizational domain is twofold. First, the second check 
makes it easier to deploy DMARC across a large enterprise, since 
one DMARC organizational record can cover all of an organization’s 
subdomains. The other is that it covers non-existent subdomains of 
the organizational domain, for when hostile or buggy mailers send 
mail purporting to be from such a subdomain.

The next step in validation is to check whether the From: header 
domain is aligned with the SPF identity of the message. The SPF val-
idation process can produce a result of None, Neutral, Pass, Fail, 
Softfail, Temperror, or Permerror. For DMARC alignment, only a 
Pass result is acceptable. 
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The DMARC policy record can require strict SPF alignment, meaning 
the From: domain and SPF identity have to be the same, or relaxed 
SPF alignment, meaning they need only be in the same organiza-
tional domain. In the previous example, if the From: domain were  
marketing.mybiz.example, an SPF identity of mail.mybiz.exam-
ple or just mybiz.example would be sufficient for relaxed SPF 
alignment. Relaxed alignment is the default.

Next, the validator checks for DKIM alignment. For each valid 
DKIM signature on the message, the validator compares the From: 
domain to the d= domain of the signature. The policy record can 
specify strict or relaxed DKIM alignment, again requiring either an 
identical signature domain or just one in the same organizational 
domain. If at least one valid DKIM signature is aligned, the message 
is DKIM aligned. If the message is either SPF or DKIM aligned, it is 
DMARC aligned.

If the message is aligned, we’re done other than perhaps saving some 
statistics for later reporting. If it’s not aligned, the situation is poten-
tially much more complex if the recipient system opts to follow the 
policy advice, as most mail systems (at least by mail volume) now do.

The policy record can specify policy advice of none, quarantine, or 
reject. It can also specify an optional percentage of how often to 
apply the policy. Advice of none means to do whatever the recipient 
would have done with the message anyway. Advice of quarantine 
means to treat the message extra skeptically, perhaps by filing it 
in a spam folder or marking it as suspicious. Advice of reject asks 
the recipient to reject the message at the end of the Simple Mail 
Transfer Protocol (SMTP) session and not handle it further. If the 
percentage is less than 100, the advice is to treat that percentage of 
unaligned mail from the domain according to the advice, and the rest 
one step less. For example, if the advice were reject and the percent 
was 25, one-fourth of unaligned mail would be rejected and the other 
three-quarters would be quarantined. (The percent has no effect if 
the policy is none.)

As noted previously, the point of the percentage is to allow domain 
owners to enable policies gradually, see what happens, and limit the 
damage from misconfigurations.

DMARC Reporting
DMARC has two powerful reporting features. A domain can ask for 
daily aggregate reports of what IP addresses have sent mail with the 
domain in the From: header, with details about DMARC alignment 
and DKIM and SPF validation. Many large mail systems including 
Google, Yahoo/AOL, Comcast, and Fastmail send aggregate reports.

DMARC and ARC  continued
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It is also possible to request copies of messages that fail DMARC 
validation, but for privacy reasons very few systems do. The only sig-
nificant mail system in the U.S. that sends failure reports is LinkedIn.

Even for a site that has no plans to publish a DMARC policy, the 
reports are useful and interesting. They can provide insight into 
where your mail is actually going, and who else might be sending 
mail purporting to be from you.

To request each kind of report, the domain policy record includes a 
tag with a list of mailto: Uniform Resource Identifiers (URIs), each 
with an optional size limit of the maximum message report size the 
system can handle. The default aggregate report interval is once a 
day.

Aggregate reports constitute an Extensible Markup Language (XML) 
file attached to an e-mail message in gzip or ZIP compressed form. 
The XML file includes a section (a “record”) for each sending IP 
address, with subsections (a “row”) for each combination of authen-
tication results. For example, here’s a section of a report Google sent 
to my Smail system describing mail it received from two IP addresses:

 <record>
    <row>
      <source_ip>2001:470:1f07:1126:0:43:6f73:7461</source_ip>
      <count>1</count>
      <policy_evaluated>
        <disposition>none</disposition>
        <dkim>pass</dkim>
        <spf>pass</spf>
      </policy_evaluated>
    </row>
    <identifiers>
      <header_from>taugh.com</header_from>
    </identifiers>
    <auth_results>
      <dkim>
        <domain>iecc.com</domain>
        <result>pass</result>
        <selector>k1912</selector>
      </dkim>
      <dkim>
        <domain>taugh.com</domain>
        <result>pass</result>
        <selector>k1912</selector>
      </dkim>
      <spf>
        <domain>taugh.com</domain>
        <result>pass</result>
      </spf>
    </auth_results>
 </record>
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 <record>
    <row>
      <source_ip>209.85.220.55</source_ip>
      <count>4</count>
      <policy_evaluated>
        <disposition>none</disposition>
        <dkim>fail</dkim>
        <spf>fail</spf>
      </policy_evaluated>
    </row>
    <identifiers>
      <header_from>taugh.com</header_from>
    </identifiers>
    <auth_results>
      <dkim>
        <domain>googlegroups.com</domain>
        <result>pass</result>
        <selector>20161025</selector>
      </dkim>
      <spf>
        <domain>googlegroups.com</domain>
        <result>pass</result>
      </spf>
    </auth_results>
 </record>

 
The first record for the IPv6 address reports on a message sent from 
my mail server. It has a valid SPF and two valid DKIM signatures, 
one with the From: header domain and one for the server domain, 
so it was DMARC aligned. The second record describes four mes-
sages with valid SPF and DKIM signatures, but with SPF and DKIM 
domains that don’t match the From: header, so they wouldn’t have 
been DMARC aligned. Since the second group of messages have 
googlegroups.com authentication identifiers, they’re probably the 
same message, modified and remailed to a Google Groups mailing 
list. [Since I know I sent only one message to the list that day, this 
message leaks the number of Gmail subscribers to the list. I’ve seen 
similar leakage for much larger lists; for example, like the one oper-
ated by the North American Network Operators’ Group (NANOG).]

Larger mail systems receive reports with larger numbers of messages 
and more report sections. The reports are intended to be mechan-
ically handled. Some open source software is available to analyze 
reports and put summaries in a database[10]. More often the reports 
are sent directly to specialist services like Dmarcian[11] or Agari[12] 

that offer freemium report analysis services, simple analysis for free, 
or more sophisticated analysis and remediation advice for a fee.

The other kind of report is a failure report. When a message arrives 
that has the domain address in the From: header and fails DMARC 
validation, the recipient system may (but usually doesn’t) send the 
message back in a failure report. The report is a multipart/report 
e-mail message containing a structured report section and a full or 
partial copy of the failing message.

DMARC and ARC  continued
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A typical report section follows:

Feedback-Type: auth-failure
User-Agent: Lua/1.0
Version: 1.0
Original-Mail-From: nanog-bounces@nanog.org
Original-Rcpt-To: xxx@linkedin.com
Arrival-Date: Thu, 26 Dec 2019 19:22:54 +0000
Message-ID: <20191226191849.6BBF111BA67D@ary.qy>
Authentication-Results: dmarc=fail (p=none; dis=none)header.from=iecc.com
Source-IP: 50.31.151.76
Delivery-Result: delivered
Auth-Failure: dmarc
Reported-Domain: iecc.com

 
The message in a failure report might be a legitimate one that was 
unaligned when sent, or modified on the way to become unaligned. 
Or it might be a fraudulent one, either an attempted phish, or just a 
random spam message where the spamware happened to pick your 
domain for the fake return address. For this particular report, it’s 
obviously a real message relayed through the NANOG mailing list. 

The original failure report included the full address of the recipient, 
meaning that by looking at the failure reports, anyone who posts 
to NANOG can see who subscribes to LinkedIn. This kind of data 
leakage explains why most sites don’t send failure reports at all,  
and most of the ones that do limit what they send, typically includ-
ing only the headers of a failing message and redacting recipient 
address details.

Using DMARC Reporting to Prepare for Policy Publication
Before publishing a DMARC policy of quarantine or reject, 
domain operators should be confident that as close as possible to 
100% of the mail they send is DMARC aligned. They might send 
unaligned mail if SPF records of a domain do not cover all of the IP 
addresses that send valid mail, causing SPF validation to fail. Some 
outgoing Mail Transfer/Transfer Agents (MTAs) might have DKIM 
configured incorrectly or not at all, so there’s no aligned DKIM  
signature. Large organizations often can have MTAs sending mail 
that the network managers didn’t know about; for example, if a 
department set up its own local server, or contracted with a third-
party mail sender.

The data from DMARC reports tells the operator what IP addresses 
are sending unaligned mail, and generally makes it straightforward 
to figure out why it’s unaligned. Mitigation might involve updating 
the domain SPF records to include missing MTAs, fixing the DKIM 
signing configuration in MTAs, or enforcing rules about unapproved 
mail servers or third-party mail senders. (Many third parties can do 
DKIM signing with a client’s domain, but that requires either sharing 
the private signing keys(s) or delegating a DNS subtree that the third 
party can manage.)
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After the operator has the mail sufficiently under control, it can 
gradually turn on sending policies. DMARC provides the quarantine 
policy as an intermediate step between no policy and reject so there 
is a chance for recipients to retrieve miscategorized mail. It can also 
use the percentage parameter in the policy record to apply policies 
gradually and limit the damage if mistakes occur.

DMARC vs. Discussion Lists
DMARC was originally intended for domains at organizations like 
banks that send primarily business-to-business and business-to-
customer mail, and little or no person-to-person mail. When the 
organization considers when to publish a DMARC policy, and what 
policy to publish, it should remember that some fraction of its legiti-
mate mail will arrive unaligned because of intermediate processing 
that DMARC cannot describe. Since the organization presumably 
knows what mail it sends, it can weigh the benefits of less phishing 
versus the cost of lost mail and make a decision that is reasonable for 
the organization.

In 2014, AOL and Yahoo, two large consumer mail systems, had 
separate security breaches in which intruders stole copies of millions 
of their users’ address books. The stolen data was quickly sold to 
spammers, who used it to send spam to AOL and Yahoo users that 
appeared to be from the recipients’ friends. This situation caused an 
expensive support problem at AOL and Yahoo as users complained 
about the spam and asked why their friends were spamming them. 
First AOL, and then Yahoo, “solved” the problem by quickly pub-
lishing DMARC p=reject policies that told every mail system that 
implements DMARC to reject any AOL or Yahoo mail that didn’t 
come directly from AOL or Yahoo. This decision was very different 
from the ones made by organizations described previously. In this 
case the benefit of the policy was to mitigate the cost of an opera-
tional failure, with little if any benefit for most of their users, while 
creating major problems for their discussion list users.

A small but important part of the mail from users of any consumer 
mail system is unaligned yet legitimate mail that recipients want. 
That happens typically because the mail is routed indirectly from 
the sending user to the ultimate recipients. A particular point of 
contention is e-mail discussion lists where the normal actions of list 
managers make most of the mail unaligned. This situation can cause 
non-receipt of mail sent to subscribers on mail systems that enforce 
DMARC policies on incoming mail, and it can also cause removal of 
subscribers from lists because of bounces caused by DMARC failures. 
(Yahoo was aware of the mailing list issues but decided to publish 
p=reject anyway, according to someone who was there at the time.) 
Another source of unaligned mail is third-party mailing services. A 
small organization like an athletic club or scout troop often has an 
announcement list where the return address on the announcements 
is the personal address of the organization’s secretary, who may use 
AOL or Yahoo.

DMARC and ARC  continued
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A variety of proposed workarounds have been made for the 
problems that DMARC causes to mailing lists, none of which are 
very satisfactory. Initially, the easiest approach was to tell people 
sending mail from addresses with DMARC policies to subscribe from 
another address. That approach stopped being practical when AOL 
and Yahoo flipped the switch.

Since then, mailing list software has taken a range of approaches 
to ensure that the messages the list sends out are aligned. In a few 
cases, lists tried to turn off any features that would modify messages 
in ways that would invalidate DKIM signatures, hoping that DKIM 
signatures on incoming messages would remain valid when resent 
from the list. This idea didn’t work very well, partly because remailed 
messages weren’t SPF aligned (the list uses its own envelope address 
for bounce management), and users want the changes that lists make, 
such as adding subject line tags to identify the list.

Mailing lists have settled on two general anti-DMARC approaches[13]. 
The most common is to put the list address into the From: header so 
the list can add a DKIM signature with its own domain and make 
the message DMARC aligned. For example, if the incoming message 
included:

From: Steve C <steve@aol.com>
To: nodule@lists.example.com

 
The list might rewrite it as:

From: Steve C via the nodule list <nodule@lists.example.com>
To: somelist@lists.example.com
Reply-To: Steve <steve@aol.com>

 
The rewritten From: header usually includes the author’s address 
comment and the list name. The author’s actual address is placed 
in a Reply-To: header, or occasionally a Cc: header. This approach 
allows DMARC alignment, since the list can add a lists.example.com 
DKIM signature, but makes mail from the list harder to handle. Mail 
user agents treat Reply-To: in different ways, leading to confusion 
about whether someone is replying to the author of a message, or 
to the list, or both. Adding to the confusion, some lists only rewrite 
the headers for messages in author domains that publish a DMARC 
policy, so messages from the same list have different headers.

Another approach is to rewrite the From: header to replace the prob-
lematic author address with one that is DMARC aligned but still 
represents the author. For example, my mailing lists would rewrite 
the headers in the previous example like this, changing the author 
address only by adding a local domain suffix:

From: Steve C <steve@aol.com.dmarc.fail>
To: nodule@lists.example.com
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The domain dmarc.fail is a real domain I registered. (It was avail-
able.) I publish an MX record for *.dmarc.fail, to catch any mail 
sent to rewritten addresses. The rewritten message as sent by the 
mailing lists has a dmarc.fail DKIM signature, so it’s properly 
DMARC aligned. When the list software rewrites an address, it cre-
ates a forwarding entry for the rewritten address that redirects back 
to the original address. The forwarding entries are deleted after a few 
days so that replies to the author sent shortly after the original mes-
sage go back to the author, but the forwarding is limited, so it’s not a 
useful vector to relay third-party spam.

This technique works fairly well. Since only the From: header is 
changed, there’s no effect on Reply-To: or other mail behavior, and 
the author’s identity is easy to recognize. Other systems have imple-
mented the same idea in perhaps less passive-aggressive ways. The 
IETF’s working mailing lists rewrite the address into the local part; 
for example:

From: Steve C <steve=40aol.com@lists.ietf.org>
 
The commercial LISTSERV mailing list service rewrites the address 
into an opaque local address and puts the real address in Reply-To:

From: Steve C <00000006b01fa96f-dmarc-request@lists.example.com>
Reply-To: Steve C <steve@aol.com>, Nodule list <nodule@lists.example.com>

 
The primary disadvantage of the address rewriting is that it requires 
access to the local mail system of the list to manage the set of tem-
porary forwarding addresses, rather than doing it entirely inside the 
list software. 

The other anti-DMARC approach that some lists take is message 
wrapping, enclosing the message as a Multi-Purpose Internet Mail 
Extensions (MIME) part within an outer message from the list. Most 
mailing lists have a MIME digest option, to send the day’s messages 
as a set of MIME parts within a single daily message, so this process 
in effect turns each message into a one-message digest. The outer 
message typically has the list address in the From: header, while the 
inner message is unmodified.

Technically, this approach should work well, because it uses exist-
ing well-standardized features of RFC 5322 mail. Having done some 
experiments to see how workable it is, I found that in practice it 
works very badly because mail user agents treat MIME attached 
messages as an afterthought. While the inner message is typically dis-
played legibly, it is often not possible to reply to the inner message 
without clumsy extra steps, or in some cases at all, and multipart 
messages or those with attachments are handled inconsistently. The 
IETF experimented with several varieties of MIME wrapping before 
deciding that rewriting the From: header was the best of a bad lot.

While all of these approaches allow mailing lists to send DMARC-
aligned mail, none of them are very satisfactory, and none let mailing 
lists work as well as they did before DMARC.

DMARC and ARC  continued
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ARC
While the amount of mail that large providers get from mailing lists 
is small, on the order of 1% to 2% of the non-spam total, it is mail 
that the recipients care about deeply. After years of complaints, sev-
eral large mail providers developed Authenticated Received Chain 
(ARC) to help them handle wanted but unaligned user mail.

An obvious way to handle unaligned mail from mailing lists would 
be to whitelist them. Large mail systems have a pretty good idea 
of where the lists are (the number of mailing list hosts worldwide 
is probably only about 10,000), so they could just accept the mail 
from the lists that they know their users want. The problem with 
this concept is that mailing lists don’t do a very good job of spam 
filtering, and spam leaks through them all the time. 

In particular, most lists check only that the address in the From: 
header is subscribed to the list before forwarding a message. If a 
subscriber’s account is compromised and starts sending spam, any 
message sent to a list will generally get forwarded to the list. Even 
without an account being compromised, if a stolen address book 
happens to contain your address and the address of a list to which 
you subscribe, spamware can forge mail from you to the list, and 
again the list will forward it. I’ve seen this happen multiple times, and 
it is quite frustrating since the person whose address is being forged 
can’t do anything about it. 

The goal of ARC is to add a “chain of custody” to a message that 
shows what happened to it each time it was forwarded. This tech-
nique lets the ultimate recipient system retroactively make spam 
filtering decisions based on what happened to the message at the for-
warding systems.

ARC builds on existing mail technology. It adapts the Authentication-
Results (A-R) header[14] that many mail systems apply to incoming 
messages that records the authentication status of the message at the 
time an MTA received the message. Here is a typical A-R header that 
my MTA applied to an incoming message from Apple’s me.com:

Authentication-Results: iecc.com; spf=pass spf.mailfrom=xxx@me.com
    spf.helo=mr85p00im-hyfv06011401.me.com smtp.remote-ip="17.58.23.191";
    dkim=pass header.d=me.com header.s=1a1hai header.a=rsa-sha256;
    dmarc=pass header.from=me.com (p=quarantine, pct=100)

 
The first field is the name of the system that added the header, fol-
lowed by groups of authentication results, in this case for SPF, DKIM, 
and DMARC. Each group includes the result and relevant items like 
the envelope MAIL FROM and sending IP for SPF. All of the fields are 
optional other than the system name, and they are added only for the 
kinds of authentication the system checked. ARC combines a modi-
fied A-R header and two DKIM-like signature headers into an ARC 
seal, which is intended to describe the passage of a message through a 
system such as a mailing list manager. A single message may have mul-
tiple ARC seals if it has passed through multiple forwarding systems. 
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Each seal is numbered, starting with 1 for the first seal applied. Each 
header in an ARC seal has an i= clause to indicate which seal it’s 
part of.

The headers in an ARC seal look like this:

ARC-Message-Signature: i=1; a=rsa-sha256; d=microsoft.com; s=abcd; h=From:Date:...
ARC-Authentication-Results: i=1; mx.microsoft.com 1; spf=pass …; dkim=pass …
ARC-Seal: i=1; a=rsa-sha256; s=abcd; d=microsoft.com; cv=none; b=j7M/jt9eVP…

 
The ARC-Message-Signature (AMS) is almost identical to a DKIM 
signature, with the added i= field. It is intended to cover the usual 
headers and body of the message, at the time the message was sent 
from the signing system. If the system makes changes to the message, 
the AMS is applied after those changes. When a message is received, 
the most recent AMS signature will be valid unless an inter-mediate 
system has modified the message since the ARC seal was applied and 
not added a seal of its own. 

The ARC-Authentication-Results (AAR) header reports the authenti-
cation status at the time the sealing system received the message; that 
is, before any modifications reflected in the AMS.

The ARC-Seal header is a DKIM-like signature that covers only the 
three headers in the ARC seal, to validate the seal itself. It also indi-
cates whether the chain of ARC seals in the message was intact when 
the message was sealed, using the cv= (chain value) field. If this seal 
is the first one, the chain value is “none” for no previous seal. For 
any subsequent seal, the chain value is “pass” if the previous seal was 
valid (the DKIM-like signatures validated) and the previous seal had 
cv=none or cv=pass. Otherwise the chain value is “fail.”

If a mail system receives a message from a trustworthy source with 
a valid ARC chain, it can use the information in the ARC seals to 
make exceptions to its DMARC policy. As a simple example, assume 
a message that is not DMARC aligned arrives, but it has a valid 
chain of ARC seals. In one of the seals, an AAR header shows that 
the message was DMARC aligned (dmarc=pass) and the header.
from domain was the same as the one currently in the message. That 
means the lack of alignment is due to changes made by the forward-
ing system. If the forwarding system is considered trustworthy, for 
example, a host that hosts discussion lists, the receiving system can 
decide to deliver the message. More complicated analysis is possible, 
but I expect this sort of analysis looking for typical mailing list opera-
tions is likely to be the most common. Since malicious systems can 
add fake ARC seals, this analysis makes sense only for mail from 
trust-worthy sources. Identifying sources trustworthy enough to 
apply ARC exceptions may be a problem for mail systems too small 
to develop reliable data on hosts that send mail to them. There are 
some efforts to provide shared lists of reputable mailing list hosts 
that will likely be good enough, since the number of active list hosts 
is not large and changes slowly.

DMARC and ARC  continued
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At this point the implementation of ARC has started, but it is not yet 
common enough to let mailing lists stop doing anti-DMARC header 
munging. Python and Perl libraries for DKIM have both added ARC 
support[15]. The Sympa 6.2 mailing list manager has ARC support, as 
does GNU Mailman 3.1, but not Mailman 2.x.

Large mail systems including Google’s Gmail and Microsoft’s  
outlook.com have some ARC support, and both Gmail and  
outlook.com put ARC seals on forwarded and mailing list mail,  
but neither is yet using it for mail filtering other than experimen-
tally. Few mailing lists yet add ARC seals, partly because of the  
lack of ARC support in the list software they currently use, and partly 
because the list managers are unaware of ARC.

Conclusions
DMARC started as a relatively simple technique to deter phish-
ing of high-profile commercial domains such as those of banks and 
payment providers. Consumer mail systems AOL and Yahoo then 
repurposed it to deal with spam forging their users’ addresses. While 
this repurposing largely solved the spam forgery problem of mail sys-
tems, it caused severe collateral damage to e-mail discussion lists. 
While many lists have tried to work around the DMARC problems, 
all of the workarounds have drawbacks that make them ultimately 
unsatisfactory. To help undo the DMARC damage, a group of large 
mail providers invented ARC, which makes it somewhat possible to 
examine the history of a message and see how a message that is not 
DMARC aligned got that way.

The ongoing evolution of DMARC, mailing lists, and ARC is yet 
another round of security measures with unexpected consequences. 
With any luck, ARC will be the end of this sequence of effect, side-
effect, and counter-effect, but we won’t know until ARC is more 
widely deployed, hopefully in a few years.
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Letter to the Editor 

Ole,

I enjoyed reading Geoff Huston’s article “MSS Values of TCP,” 
(The Internet Protocol Journal, Volume 22, No. 3, December 2019).  
I had not been familiar with the variation of Maximum Segment Size 
(MSS) values that are used in the broad Internet.

I have never run into a client or server device that has been unable to 
operate with greater than a 576-byte Maximum Transmission Unit 
(MTU). Even the early Intel 8088-based MS DOS PCs in the 1980s 
with 3Com 3c501 Network Interface Cards (NICs) could handle 
1500-byte MTU. In modern times only a tiny fraction of our tens of 
thousands of connected hosts are capable of Ethernet Jumbo packets 
(SAN nodes replicating data between data centers; our routers along 
just those paths are configured for 9,216-byte MTU).

Geoff touched only briefly on encapsulation influencing resulting TCP 
MSS values. Our Wide-Area Network (WAN) connections between 
our office locations use Internet Protocol Security (IPsec) tunnels, and 
we also use IPsec tunnels between our office locations and our virtual 
routers inside the Amazon Virtual Private Cloud (VPC). In addition 
to those, we have some Generic Routing Encapsulation (GRE) tunnel 
connections with some information providers and partners (Zscaler 
is an example). With the recent availability of low-cost high-speed 
Layer 2 connections between some sites, we have been implementing 
Media Access Control security [MACsec] (lower router resource con-
sumption than IPsec). We also are beginning to use Virtual Extensible 
LAN (VXLAN) between our two data centers. With all of these 
encapsulations in our network, we’ve been avoiding IP fragmenta-
tion of TCP packets by configuring TCP adjust-mss on our Cisco 
routers. We also use adjust-mss on our Wireless LAN Controllers.

We still face plenty of User Datagram Protocol (UDP) packets from 
video devices that would need to be fragmented if attached with 
default configuration. When our IT group controls such devices, we 
configure their MTU to fit within our IPsec tunnels.

Regards,  —Richard Berke, Richard.Berke@troweprice.com

 
Richard,

Thanks for your comments about MSS sizes and the related topic of 
MTU selection. 

We need to go back to the 1970s to find some variation from the 
current ubiquity of the 1,500-octet MTU that dominates today’s 
communications, and very little of that early network environment 
has survived. However, we can piece together some of the thinking 
behind the original design of the Internet Protocol and the selection 
of MTU and MSS values.

The author responds:
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Smaller packet sizes made packets less susceptible to bit-error-rate 
corruption and could reduce jitter (which was a major consideration 
behind the design of Asynchronous Transfer Mode (ATM) cells), but 
at the same time smaller packets had a reduced payload efficiency. 
Various mainframe vendors tuned their network products to match 
their intended deployment environment, including the choice of sup-
ported packet sizes. 

As a “network of networks,” the Internet was envisaged to work 
across various permutations of networks, all with differing MTU 
sizes. The fragmentation model of IP Version 4 came from this 
approach, where an IP router was permitted to fragment a packet if 
it was too large for the next network.

IP Version 4 permitted IP packets between 20 and 65,535 octets  
in size. While in a strict sense the minimum MTU is 20 octets, that  
is without any payload at all. A 21-octet MTU would make some 
level of progress in sending a payload, albeit extremely inefficiently.

Where does 576 octets come from? IP hosts were not required to 
accept the entire protocol-permitted range of packet sizes. The speci-
fication required IP hosts to reassemble and accept IP packets up 
to 576 octets in size. Why 576? It is such an odd number. I could 
understand a value of 532, 542, 572, or even 592 octets, all based on 
a 512-octet payload and various permutations of minimum or maxi-
mum IP headers and optionally including a TCP header. However,  
I can’t get to 576 octets that way, so I don’t have any credible expla-
nation as to why this value was chosen.

By the time we were designing IPv6 in the early 1990s the think-
ing had changed, and fragmentation was frowned upon. It was slow 
and insecure, and the experts advised its avoidance wherever pos-
sible. What should the minimum unfragmented MTU be for IPv6? 
Ethernet framing was ubiquitous by this time, so a 1,500-octet MTU 
size seemed like a good first answer. But the Internet had a new aspect 
by then: it was no longer a “network of networks” but was the base 
substrate network upon which other networks were overlaid. Various 
other headers, including IP-in-IP, were being added. So, we needed 
to specify a universal minimum unfragmented IPv6 packet size that 
would be relevant in many kinds of IP-in-IP contexts. The value of 
1,280 octets as the new minimum unfragmentable packet size was 
chosen for IPv6. Why 1,280? I understand that this number was cho-
sen because it’s the sum of 1,024 and 256.

My view is that the marginal loss of payload efficiency is small enough 
that for the public Internet a 1,220-octet MTU can be used with 
some confidence that it will not encounter MTU mismatch issues.

Regards,  —Geoff Huston, gih@apnic.net

Letter to the Editor  continued
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Fragments
Keeping the DNS Secure During the Coronavirus Pandemic
The Internet’s value in bringing people together has never been more 
apparent than it is now. While most of us are under some form of 
“stay at home” order in an effort to slow the spread of the coronavi-
rus, the Internet provides us with a lifeline. It brings us information 
and entertainment, allows some of us to continue our work and edu-
cation, and brings us what we need most at times of isolation—social 
connections.

The role of the Internet Corporation for Assigned Names and 
Numbers (ICANN) community, Board, and organization in maintain-
ing a secure, stable, and unified Internet has always been important, 
but at this time, when reliance on the Internet has skyrocketed, 
our collective role has become all the more vital. ICANN’s mission 
frames our concern about cybercriminals who are exploiting the pan-
demic by perpetrating scams and victimizing Internet users. Some  
are selling phony cures, treatments, and vaccines. Some are using 
domain names as part of their efforts to prey on people at this time 
when many are experiencing anxiety, fear, and loneliness. The U.S. 
Federal Trade Commission reports that it has fielded more than 7,800  
coronavirus-related complaints. The agency noted that U.S. consum-
ers alone have collectively lost more than U.S. $5 million. 

Of course, ICANN cannot involve itself in content issues, both 
because of our Bylaws as well as practically, but that does not mean 
we are unaware or unconcerned about those who are using the 
Domain Name System (DNS) to victimize others. It is this concern 
that prompted me to contact the registries and registrars thanking 
them for their efforts and actions aimed at helping to mitigate and 
minimize the abusive domain names being used to maliciously take 
advantage of the coronavirus pandemic. For example, the Registrar 
Stakeholder Group[1] has posted a useful guide, entitled “Registrar 
approaches to the COVID-19 Crisis” that provides a number of steps 
and resources the registrar community can use in their efforts.

Many of our contracted parties already support a Framework to 
Address Abuse,[2] which deals with DNS abuse and website content 
abuse. I continue to commend them for making this commitment 
to protect the DNS from those who would maliciously exploit 
domain names. In my correspondence to the registries and regis-
trars, I expressed ICANN org’s appreciation for their work during 
the pandemic.

Additionally, I’m pleased to tell you that ICANN org has joined regis-
tries, registrars, security experts, law enforcement, Internet engineers, 
and others, in the COVID-19 Cyber Threat Coalition (CTC)[3]. The 
CTC’s mission is to, “operate the largest professional-quality threat 
lab in the history of cybersecurity out of donated cloud infrastructure 
and with rapidly assembled teams of diverse, cross-geography, cross-
industry threat researchers.”
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I am proud that so many in the Internet ecosystem are joining together 
during this crisis to stop those who prey on the desperate. We will 
continue to keep you advised of our engagement efforts to mitigate 
the misuse of domain names during these critical times.

—Göran Marby, President and Chief Executive Officer, ICANN

 [1] https://rrsg.org/
 [2] http://dnsabuseframework.org
 [3] https://www.cyberthreatcoalition.org/

Global Encryption Coalition Formed
Encryption is a critical technology that helps keep people, their infor-
mation, and communications private and secure. However, some 
governments and organisations are pushing to weaken encryption, 
which would create a dangerous precedent that compromises the 
security of billions of people around the world. Actions in one coun-
try that undermine encryption threaten us all.

As a global coalition, we call on governments and the private sector 
to reject efforts to undermine encryption and pursue policies that 
enhance, strengthen and promote use of strong encryption to pro-
tect people everywhere. We also support and encourage the efforts of 
companies to protect their customers by deploying strong encryption 
on their services and on their platforms.

The mission of the Global Encryption Coalition is to promote and 
defend encryption in key countries and multilateral gatherings where 
it is under threat. It also supports efforts by companies to offer 
encrypted services to their users.

With a steering committee led by the Center for Democracy and 
Technology (CDT), Global Partners Digital (GPD) and the Internet 
Society (ISOC), the Global Encryption Coalition is composed of 
national coalitions, civil society groups, corporations, academics, 
and technologists around the world who agree to support its found-
ing statement. 

For more information, visit: https://www.globalencryption.org/

APNIC Launches Networing from Home Events
With most Asia Pacific economies forced into various states of lock-
down to minimize COVID-19 infections, Network Operator Group 
(NOG) meetings and other technical events in the region have either 
been cancelled or postponed. NOGs are a great forum for network 
engineers to share experience with their peers, work out solutions to 
common technical problems, and build the strong relationships that 
help the Internet operate. There are 22 NOGs in the APNIC region, 
but sadly that means a lot of events have been cancelled in 2020.

Networking from Home is a new virtual event initiative to provide 
a place for technical folk in the region to share their experience and 
expertise with their peers, just like they would at a NOG event. 

Fragments  continued

https://rrsg.org/
http://dnsabuseframework.org
https://www.cyberthreatcoalition.org/
https://www.globalencryption.org/
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There will be four free online events—one each held in the time zones 
of South East Asia, South Asia, East Asia, and Oceania—and they 
will be a digestible 2.5 hours long. Presentations will be short and 
punchy and interaction is encouraged! APNIC’s Geoff Huston will 
deliver a different keynote at each event, and he will be supported by 
a range of great speakers suggested by the NOG communities.

If you have a great presentation in mind, get in touch with the 
Program Committees for the events. For more information, visit: 
https://nfh.apnic.net/

Check your Subscription Details!
If you have a print subscription to this journal, you will find an expi-
ration date printed on the back cover. For the last couple of years, we 
have “auto-renewed” your subscription, but now we ask you to log in 
to our subscription system and perform this simple task yourself. The 
subscription portal is here: https://www.ipjsubscription.org/ 
This process will ensure that we have your current contact informa-
tion, as well as delivery preference (print edition or download). For 
any questions, contact us by e-mail at: ipj@protocoljournal.org

Our Privacy Policy 
The General Data Protection Regulation (GDPR) is a regulation for 
data protection and privacy for all individual citizens of the European 
Union (EU) and the European Economic Area (EEA). Its implemen-
tation in May 2018 led many organizations worldwide to post or 
update privacy statements regarding how they handle information 
collected in the course of business. Such statements tend to be long 
and include carefully crafted legal language. We realize that we may 
need to provide similar language on our website and in the printed 
edition, but until such a statement has been developed here is an 
explanation of how we use any information you have supplied relat-
ing to your subscription: 

• The mailing list for The Internet Protocol Journal (IPJ) is entirely 
“opt in.” We never have and never will use mailing lists from other 
organizations for any purpose. 

• You may unsubscribe at any time using our online subscription 
system or by contacting us via e-mail. We will honor any request 
to remove your name and contact information from our database. 

• We will use your contact information only to communicate with 
you about your subscription; for example, to inform you that a 
new issue is available, that your subscription needs to be renewed, 
or that your printed copy has been returned to us as undeliverable 
by the postal authorities. 

• We will never use your contact information for any other purpose 
or provide the subscription list to any third party other than for the 
purpose of distributing IPJ by post or by electronic means. 

• If you make a donation in support of the journal, your name will 
be listed on our website and in print unless you tell us otherwise.

https://nfh.apnic.net/
https://www.ipjsubscription.org/ 
mailto:ipj%40protocoljournal.org?subject=
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Call for Papers
 
The Internet Protocol Journal (IPJ) is a quarterly technical publication 
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about 
all aspects of Internet technology. IPJ is not intended to promote any 
specific products or services, but rather is intended to serve as an 
informational and educational resource for engineering profession-
als involved in the design, development, and operation of public and  
private internets and intranets. In addition to feature-length articles, 
IPJ contains technical updates, book reviews, announcements, opin-
ion columns, and letters to the Editor. Topics include but are not 
limited to:

• Access and infrastructure technologies such as: Wi-Fi, Gigabit 
Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile 
wireless.

• Transport and interconnection functions such as: switching, rout-
ing, tunneling, protocol transition, multicast, and performance.

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls, 
troubleshooting, and mapping.

• Value-added systems and services such as: Virtual Private Networks, 
resource location, caching, client/server systems, distributed sys-
tems, cloud computing, and quality of service.

• Application and end-user issues such as: E-mail, Web authoring, 
server technologies and systems, electronic commerce, and appli-
cation management.

• Legal, policy, regulatory and governance topics such as: copyright, 
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please 
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at 
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons 
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either 
express or implied, including but not limited to the implied warranties of merchantability, 
fitness for a particular purpose, or non-infringement. This publication could contain technical 
inaccuracies or typographical errors. Later issues may modify or update information provided 
in this issue. Neither the publisher nor any contributor shall have any liability to any person 
for any loss or damage caused directly or indirectly by the information contained herein.
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