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According to Wikipedia, the Border Gateway Protocol (BGP) “...is a 
standardized exterior gateway protocol designed to exchange routing 
and reachability information among Autonomous Systems (ASs) on 
the Internet. BGP is classified as a path-vector routing protocol, and 
it makes routing decisions based on paths, network policies, or rule-
sets configured by a network administrator.” We’ve covered numerous 
aspects of BGP in this journal, most recently in our two-part article by 
Geoff Huston entitled “A Survey on Securing Inter-Domain Routing.” 
In this issue, a team of engineers from Juniper Networks describes a 
method for running BGP processing in parallel using a concept known 
as sharding.

In our second article, Geoff Huston takes a closer look at the trans-
port and network functions in today’s ever-changing Internet. Many 
network elements such as firewalls and Network Address Translators 
(NATs) use the transport protocol header to make decisions on how to 
handle traffic, but concerns about pervasive monitoring and informa-
tion leakage have led to various forms of encryption-based solutions 
and an ongoing debate within the Internet technical community and 
beyond.

Using the Internet for teleconferencing or telephony is not a particu-
larly new idea. I fondly remember taking part in experiments between 
the Norwegian Defence Research Establishment (NDRE), MIT’s 
Lincoln Laboratories, University of Southern California’s Information 
Sciences Institute (USC-ISI), and University College London (UCL) as 
early as 1977 when I was doing my military service at NDRE. You can 
find out more about these early developments by searching for the arti-
cle “Linear Predictive Coding and the Internet Protocol.” Voice over 
IP (VoIP) as we know it today became a reality in 2002 with the pub-
lication of RFC 3261, which describes the Session Initiation Protocol 
(SIP). In our final article, Jonathan Rosenberg gives a retrospective on 
20 years of SIP.

Publication of The Internet Protocol Journal is made possible by the 
generous support of numerous individuals and organizations. Please 
consider making a donation or getting your company to sign up for a 
sponsorship. As always, we welcome your feedback and suggestions on 
anything you read in this journal. Letters to the Editor may be edited 
for clarity and length and can be sent to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher 
ole@protocoljournal.org
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Parallel BGP Protocol Processing

by Sanjay Khanna, Jaihari Loganathan, and Ashutosh Grewal, Juniper Networks

M anaging large inter- and intra-Border Gateway Protocol 
(BGP) domains places a large computational load on the 
CPU of a router, adversely affecting its performance and 

increasing the BGP convergence time. To address these problems,  
we have architected a solution that splits a BGP Routing Information 
Base (RIB) across concurrently running BGP threads. These parallel 
running threads run the same code on multiple CPU cores concur-
rently. Each of these threads maintains a RIB shard, a subset of the 
RIB. This parallel BGP processing improves the read-side performance 
of processing incoming UPDATE messages. A set of parallel running I/O 
threads generate outbound UPDATE messages and improve the write-
side performance of BGP. This entire design uses a lockless mechanism 
to allow parallel processing on each CPU core independently. A tes-
tbed representing a Tier 1 service provider Route Reflector network 
was used to verify and quantify the performance of the implementa-
tion. BGP in this topology receives several copies of the global Internet 
routing table (~800,000 routes). Our results show that performance 
improves as parallelism and scale are increased. The speedup we can 
attain gets better as more CPU cores are available for RIB sharding. 
These gains are bounded by the extent to which the BGP update pro-
cessing can run in parallel. 

Terms and Definitions 
The BGP RIB conceptually consists of four parts:

•	 Adj-RIBs-In: Stores unprocessed routing information that has been 
learned from BGP updates received from peers. The routes con-
tained in Adj-RIBs-In are considered feasible routes.

•	 Loc-RIB: Contains the routes that the BGP speaker has selected by 
applying the decision process (route selection, import policy) to the 
routes contained in Adj-RIBs-In. These routes populate the routing 
table (RIB) along with routes that other routing protocols discover. 

•	 Adj-RIBs-Out: Contains the routes that the BGP speaker advertises 
to its peers in BGP UPDATE messages. Export routing policies deter-
mine what routes are placed in Adj-RIBs-Out.

•	 Outbound Route Tuple is a route in Adj-RIBs-Out. Every tuple 
consists of a prefix, associated BGP metrics, and information about 
peers in a peer group that will be sent to this tuple in an UPDATE 
message. 

BGP Update Processing Pipeline
Figure 1 illustrates the BGP[1] UPDATE message processing pipeline. 
This pipeline can be further subdivided into the Read-Side Pipeline 
to identify the inbound processing of an UPDATE message, and the 
Write-Side Pipeline, which concerns generation of outbound UPDATE 
messages to be sent to peers. 
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Figure 1: BGP Pipeline
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The read-side pipeline consists of the following stages:

•	 Receive Update: Routes are advertised between BGP speakers in an 
UPDATE message. Multiple routes that have the same PATH attri-
butes are advertised in a single UPDATE message. This message is 
received over an established Transmission Control Protocol (TCP) 
socket. 

•	 Parse Update: A BGP UPDATE message is parsed for prefixes, and 
PATH attributes are canonicalized into a local state after validating 
the data in Protocol Data Units (PDUs).

•	 Apply Import Policy and Create Route: BGP stores routing infor-
mation learned from the inbound UPDATE messages in a RIB called 
Adj-RIB-In. BGP applies the import policy on incoming BGP routes 
and—if permitted by policy—performs a best-route selection. The 
best routes are used to populate the local RIB, called Loc-RIB. 
These routes are then used to program a Forwarding Information 
Base (FIB) and generate outbound updates to BGP peers. 

•	 Next-hop Resolution: BGP uses a local routing table to find the 
reachability information for a BGP next-hop, which may be several 
hops away. For example, Interior Gateway Protocol (IGP) metric, 
intermediate address, and outgoing interface are parts of resolving 
reachability for the BGP next-hop. BGP may have several routes to 
the same IP destination that have different degrees of preference. 
Although all accepted routes are installed in Loc-RIB, BGP may 
choose one route or multiple routes (BGP multipath case) as active 
routes.

The write-side pipeline consists of the following stages:

•	 Apply Export Policy and Queue Outbound Route Tuple: BGP 
applies export policy to routes in Loc-RIB and generates outbound 
RIBs called ADJ-RIBs-Out. Adj-RIB-Out stores information that 
BGP uses to generate an outbound route tuple. Generally, several 
peers with the same policies are grouped into a peer group, and a 
single outbound route tuple is generated for each peer group. 
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•	 Generate Update: Route information in the outbound route tuple is 
converted into an UPDATE message. Destination prefixes that share 
the same PATH attributes are packed in a single message. This prefix 
packing reduces the number of UPDATE messages sent over TCP. 
Sending fewer messages improves local performance and does not 
impose extra work on the peer BGP routers.

•	 Transmit Update: UPDATE messages that were generated in a prior 
stage are sent over a TCP socket to a remote BGP peer. The same 
BGP UPDATE message is sent to multiple BGP peering sessions 
that share a common export policy, thereby amortizing the cost of 
UPDATE message generation.

BGP convergence time is the time taken by the router to process the 
incoming BGP UPDATE messages, passing them through the read pipe-
line in Figure 1, and distributing the results by generating UPDATE 
messages to its peers. As networks scale up in the number of peers, the 
number of parallel inbound feeds, and the size of the network in terms 
of the number of prefixes, this convergence time can become very 
high. The result can be slower convergence of the entire network when 
device and link failures occur. The slower convergence generally leads 
to traffic loss and a traffic black-hole in the network. Most operators 
of large networks want a faster convergence to reduce these down-
times. To help improve the convergence time of a router, and to exploit 
multi-core CPUs available on routing engines, we decided to run the 
previously mentioned pipeline functions in parallel. We encountered 
several hurdles to running BGP update processing in parallel:

•	 RIBs are generally a shared collection of routes, and concurrent 
updates to RIBs need locks.

•	 Locking in general reduces concurrency and increases complexity.

•	 BGP next-hop resolution is a shared function and requires synchro-
nization between parallel running threads.

•	 Prefix packing in outgoing UPDATE messages deteriorates because 
each concurrent pipeline produces more frequent and smaller 
UPDATE messages with fewer prefixes. 

•	 Other protocols in an IP router need active BGP routes to imple-
ment other useful functions like Layer 3 Virtual Private Network 
(L3VPN) and programming the FIB.

•	 Interface state (like links and IP addresses) is a shared collection too, 
and concurrent threads meant more locking across concurrently 
running threads.

The BGP software architecture described in the following sections 
addresses these concurrency limitations and improves the BGP con-
vergence time at very high scales. This solution performs better when 
input scale increases and the required number of concurrent pipelines 
increases. 

Parallel BGP Processing continued
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Parallel BGP Protocol Processing
Figure 2 illustrates the high-level architecture of parallel BGP process-
ing. The pipeline is broken into three logical parts running concurrently 
on two kinds of threads of execution: “Shard(S)” and “Update-IO(U)” 
threads. Shard threads process a subset of UPDATE message prefixes, 
execute most of the BGP read pipeline, and generate a tuple for an 
Update-IO thread. An Update-IO thread processes a tuple for a set of 
BGP peers in a peer group. Update-IO threads also receive the UPDATE 
message from peers (over TCP sockets) and distribute the messages to 
shard threads. These threads process tuples from shard threads and 
generate UPDATE messages to transmit to peers. 

Figure 2: Parallel Processing of BGP UPDATE Messages
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•	 Update-IO Rx Processing: Running in an update-IO thread, this 
stage receives update messages from peers, sanity checks the mes-
sages, and computes a hash on every prefix in the message to 
determine which shards will receive the message. In the best possible 
scenario a single shard gets the entire message, and in the worst-case 
scenario the same message is shared with every shard thread. 

•	 Shard Processing: A shard thread receives a copy of the message and 
processes prefixes that it owns (ignoring the ones that it doesn’t). 
The ownership of a prefix is decided by computing the hash on the 
prefix. Thereafter each shard will follow the entire read pipeline on 
its prefixes and generate tuples for the Update-IO thread matching 
the peer group.

•	 Update-IO Tx Processing: An Update-IO thread receives tuples 
and processes them into BGP UPDATE messages. These messages are 
sent towards the peer via TCP sockets. This stage is responsible for 
packing tuples from several shard threads into UPDATE messages to 
improve the packing of prefixes. 
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This architecture exploits the Single Program Multiple Data (SPMD) 
model of parallelism to do concurrent read and write pipeline process-
ing. Concurrently executing threads do not share any state with each 
other, thereby eliminating any need for locks. Shards and Update-IO 
threads maintain a parallel ecosystem of collections of objects (like 
BGP peers, peer groups, RIBs, interfaces, configuration, etc.). Wherever 
needed, message passing is used to achieve eventual consistency of the 
routing state in the system. At any point of time, concurrently exe-
cuting functions running at different rates may be in different states. 
However, all these functions executing on different cores will even-
tually reach the same final state as if there were a single executing 
pipeline. Reaching eventual consistency quickly is an important out-
come of this architecture.

Sharding Several Kinds of BGP RIBs
This architecture requires all routes (BGP and otherwise) with the 
same IP address to always be assigned to the same shard so that the 
best active route calculation for all routes matching an IP address is 
handled in a single shard. This requirement guarantees the correctness 
of the active route selection algorithm. Multiprotocol BGP (MP-BGP) 
extensions[2] allow BGP to carry routing information for multiple net-
work layers and address families. BGP routes for each of these address 
families are saved in several RIBs, and each RIB has its own network 
prefix in a route. For example, the IPv4 Unicast RIB has the IPv4 
address and prefix mask length as the route destination. The L3VPN 
RIB has the IP address, route distinguisher, and mask length as the 
route destination. For shard assignment, the hash is computed only on 
the address and prefix length part of the route destination, and the rest 
is ignored. 

Next-Hop Resolver 
The main job of the resolver is to translate protocol next-hops into 
forwarding next-hops using helper routes. A protocol next-hop is an 
IP address of a remote BGP peer, most commonly an Interior BGP 
(IBGP) peer. A protocol next-hop, by itself, is insufficient to make a 
forwarding decision. To forward a packet, a router needs to know the 
directly connected next-hop. This information is derived from helper 
routes that provide reachability information for the protocol next-hop. 
Since the resolver is a central function and the concurrent shard threads 
also need the services of this resolution, a mechanism is needed to dis-
tribute resolver information to shard threads. One way to achieve this 
distribution is to run the resolver as a service and all shard threads to 
register next-hop IP addresses for resolution. BGP in each shard gets 
reachability notifications for registered IP addresses. These notifica-
tions populate the local BGP neighbor reachability information of the 
shard and trigger routing updates local to a shard. These updates can 
activate a BGP route when a next-hop is reachable, change the BGP 
route if reachability changes, and inactivate the BGP route if a next-
hop is unreachable. 

Parallel BGP Processing continued
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VPN and Sharding
You can apply sharding to Virtual Route Forwarding (VRF) and Virtual 
Private Network (VPN)[3] routing tables also. Each shard thread hosts 
a slice of the VPN and VRF RIB table as determined by the hash. The 
Route Distinguisher (RD) of VPN routes is excluded from hash calcu-
lations to allow routes with the same prefixes but different RDs to be 
correctly processed in the associated shard. VPN label allocation is a 
central service because a single pool of Multiprotocol Label Switching 
(MPLS) labels is generally available to send out. A shard thread that 
wants an MPLS label for a VPN route requests this centralized service 
for labels. Target routes—needed for VPN processing—are stored in 
a separate RIB. Since this RIB is smaller, it is duplicated in all shard 
threads.

Large Peer Groups and Update-IO Parallelism
A peer group is usually assigned to an Update-IO thread that manages 
packing and generation of updates for that group. Multiple groups 
get assigned to different update threads for parallelism. In certain use 
cases, one or more large peer groups can include a very large number 
of BGP peers, and as a result we would not be able to distribute the 
load of such peer groups over several Update-IO threads effectively. To 
handle such a special case, we split such configured peer groups into 
several logically split peer groups. Each split group is allocated a subset 
of peers from a large peer group and assigned to an Update-IO thread. 

BGP Graceful Restart Handling with RIB Sharding
BGP Graceful Restart (GR)[4] processing requires sending of an End-
of-Rib (EOR) notification after initial download of routes to a peer 
that is coming up after a failure. Shard threads contribute to the initial 
download of routes to a peer independently and in parallel. But the 
EOR message is sent in a coordinated fashion from the main thread 
after all shard threads complete the initial download of their slices of 
RIB to the peer. Likewise, consumption of an inbound EOR requires 
coordination from shard threads. The inbound EOR message is sent 
to all shard threads.

BGP Optimal Route Reflection and Sharding
You can configure BGP Optimal Route Reflection (ORR)[5] with Inter-
mediate System-to-Intermediate System (IS–IS) and Open Shortest  
Path First (OSPF) on a Route Reflector to advertise the best path to 
the BGP ORR client groups. Configuration is done by using the IGP 
metric after calculating the Shortest Path First (SPF) from a client’s 
perspective. For BGP ORR to work in a Route Reflector, BGP requires 
assistance from an IGP implementation to calculate an IGP metric for 
a prefix from a client’s perspective. In a sharded BGP architecture, 
ORR must be built as a service like a resolver. Shard threads regis-
ter ORR reachability to this service, and in turn receive notifications 
about reachability of the registered prefixes. 
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Configuration, CLI Show Commands, Telemetry, SNMP, and Sharding
The shard architecture requires that each shard thread processes con-
figuration independently of other shard threads. This way each shard 
has its own configuration state to work with. To present a consistent 
view to the user, some of the show commands in a router must collate 
information about RIBs from all shard threads and present a system 
view of the RIBs to the user. The same is true about telemetry stream-
ing and the Simple Network Management Protocol (SNMP) get/walk 
of tables in a shard. For debugging purposes, we also implemented a 
view into the RIBs of each shard thread.

Routing and BGP RIB Sharding
Figure 3a illustrates an approximate high-level view of how rout-
ing protocols were implemented in the JUNOS Routing Protocols 
Daemon (RPD) before BGP RIB sharding was implemented. It shows 
a single thread that runs all routing protocols (including BGP), and 
INFRA, which includes interfaces, routing tables, next-hop tables, 
route resolution, and FIB programming. When BGP RIB sharding and 
Update-IO are configured, then additional threads are spawned, as 
shown in Figure 3b. 

Figure 3a: Single Threaded Routing 
Protocol Daemon
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Figure 3b: Shard Routing Protocol Daemon
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Parallel BGP Processing continued
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Main thread shards and Update-IO threads do not share any mutable 
state, and as a result no locks or critical sections are executing between 
these threads. As explained earlier, shard threads do the read-side 
processing of incoming messages in parallel and Update-IO threads 
do write-side processing of outgoing messages in parallel. Shard and 
Update-IO threads like the main thread process the routing configura-
tion independently in a lockless manner. Coordination of peer state, 
interface state, and RIB routes and counters between main and other 
threads is done via Interprocess Communication (IPC) messages. These 
messages are sent over an IPC channel consisting of a pair of lockless 
First-In, First-Out (FIFO) queues. To allow for state compression, IPC 
channel queue depths are kept small. Socket read/write readiness is 
used for IPC channel back pressure between threads. Overall, all mes-
sage passing between threads is very fast and efficient. 

The following message types are sent from the main thread to the 
shard threads:

•	 Interface state, such as link information, address families config-
ured, IP address, and state of the links is used by routing tables code 
and the BGP protocol. As a result, each shard has its own copy of 
interface state information. 

•	 Route messages for non-BGP routes are distributed to a shard that is 
found via hash computation on the IP prefix of the route. Also, the 
entire route target RIB is sent as route messages to all shard threads.

•	 Configuration indications are sent as messages to signal availability 
of the updated configuration database.

•	 When show commands, SNMP get requests, and telemetry requests 
are sent, responses from shards are sent to the main thread to service 
the Command-Line Interface (CLI), SNMP requests, and telemetry 
streaming.

•	 BGP peer state transition messages are sent from the main thread 
to the shard threads. A handler in shard threads takes appropriate 
actions on BGP peer objects local to the shard.

•	 Next-hop resolution messages are sent from the resolver service in 
the main thread to shard threads. Shard threads register with this 
service for a BGP next-hop.

•	 VPN label messages are sent to shard threads whenever the main 
thread receives a request from a shard. 

BGP in the main thread also shares state with Update-IO threads via 
IPC messages. These messages follow:

•	 The BGP peer Finite State Machine (FSM) in the main thread sends 
peer state messages to Update-IO threads. Such messages result in 
state changes for BGP peer objects in the Update-IO threads.

•	 Route tuple messages: Outbound BGP route messages are sent from 
the main thread to one of the Update-IO threads. Update-IO threads 
consume these messages to generate BGP UPDATE messages for a set 
of peers.
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Shard threads send the following messages to the main and Update-IO 
threads:

•	 Route messages are sent from the shard to send active BGP-only 
routes to the main thread. The main thread adds these received 
routes to its RIB.

•	 Shards send show, SNMP, and telemetry responses to the main 
thread to assist in supporting these administrative functions.

•	 Shards send resolver registration requests for BGP next-hops, and 
they get resolver responses from the main thread.

•	 VPN label requests are sent to the main thread to get a pool of labels 
to support VPN functions in the shard threads.

•	 Outbound route tuples are sent to Update-IO threads per peer group.

When a shard thread receives UPDATE messages, it does the PDU pro-
cessing on the prefixes that it owns and ignores those it does not. This 
processing uses the same hashing scheme that Update-IO threads use 
for distributing inbound prefixes. As a result, BGP routes are added to 
the RIBs of a shard thread. If the active route for a prefix in a shard is a 
BGP route, then it must be added to the FIB. Queueing points are used 
on the shard send side (before the IPC) to dampen the route churns due 
to link and peer flaps. The active route is added to the queue and then 
distributed (via IPC) to the main thread. 

The main thread can program the FIB. Any subsequent state changes 
associated with BGP prefixes in shard threads may result in changes to 
the current active route in the shard. When this active route changes or 
is deleted in a shard, a new message is queued to be sent to the main 
thread. 

The main thread centralizes answering BGP next-hop resolution, and 
it also programs the FIB. Any changes in the next-hop reachability are 
announced to shard threads. Shard threads react to such announce-
ments and cause the necessary state changes in the Update-IO threads 
and the active route redistribution to the main threads. Update-IO 
threads generate outbound UPDATE messages and announce the prefix 
changes to their neighbors. In the end all threads, the FIB, and the net-
work will have the consistent view of any prefix. 

When a shard thread has run the BGP export policy and decided which 
BGP peers across all peer groups will receive a route, a new set of IBGP 
route announcement tuple messages (tuples) are queued for Update-IO 
threads. Shard threads multiplex several tuples back to an Update-IO 
thread. These tuples carry state about the BGP PATH attributes and 
prefixes. These PATH attributes are assumed immutable and are shared 
in a reference-counted manner between threads. 

Parallel BGP Processing continued
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The Update-IO thread puts many tuples with the same BGP PATH 
attributes in a single BGP UPDATE message for transmission. Packing 
helps ensure that the number of BGP UPDATE messages is limited to 
prevent flooding of the local TCP/IP stack with too many send calls. 
Also, packing ensures that downstream BGP routers are not flooded 
with excessive messages. It ensures that gains from concurrent read 
processing in the shard threads to CPU overhead are not lost by han-
dling more I/O messages. 

Various queueing points are present in the main, shard, and Update-IO 
threads in our routing implementation. As these routes are learned and 
selected to distribute, the queueing points help us compress fast occur-
ring state changes and reduce the churn from spreading from a source 
to the consumers. This churn reduction is very important when operat-
ing at scale and with several producers and consumers. Shard threads 
compress route changes for prefixes being redistributed to the main 
thread. For example, a route addition followed by a route deletion nul-
lifies both. The main thread has a similar queueing logic to compress 
state churn when downloading routes to the FIB. Shard threads have 
a queue towards Update-IO threads to dampen the tuple churn in the 
BGP. Similarly, the Update-IO threads also use tuple queues to pack 
and suppress state before final state is disseminated to the peers. 

Performance Measurements
To measure the gains of the approach described previously, we used 
a testbed where the Device Under Test (DUT) is a scaled BGP Route 
Reflector (Figure 4).

Figure 4: Route Reflector Topology
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The RR receives several Internet feeds (800,000+ routes per feed) from 
an External BGP (EBGP) peer group of 10 BGP peers and reflects the 
best path for each destination towards 1,000 BGP client peers divided 
among 10 peer groups. Thus, a total of 11 BGP peer groups are in this 
testbed. 



THE INTERNET PROTOCOL JOURNAL

12

This setup represents a high scale of incoming UPDATE messages, and 
even higher scale of outbound UPDATE message generation. We used 
Internet feed instead of canned routes from a protocol tester like IXIA 
to mimic the real-world scenario where routes have variable PATH 
attributes. The DUT is a Linux Ubuntu with 18 servers with 8 cores 
(Xeon CPU E5-2640 v3 @ 2.6 GHz) and hyperthreading is turned off. 
The RR server on the DUT runs in a Linux Docker Container. The RR 
clients were also running our BGP implementation, where these clients 
drop all incoming PDUs after checking them for validity. This modi-
fication was done to ensure these 1,000 clients are never a bottleneck 
when receiving UPDATE messages from the DUT.

Table 1. Read-Side Performance Measurements

Number of Shard Threads Convergence Time 
(Seconds) Scale Up (S)

0 73 1.00

1 76 0.96

2 42 1.74

3 31 2.35

4 26 2.81

5 20 3.65

6 18 4.06

 
Table 2. BGP Write-Side Performance (4 Shards)

Number of Update-IO Threads Convergence Time 
(Seconds) Scale Up (S)

0 352 1.00

1 259 1.36

2 141 2.50

5 67 5.25

10 54 6.52

 
Table 3. BGP Full Pipeline Performance (4 Shards)

Number of Update-IO Threads Convergence Time 
(Seconds) Scale Up (S)

0 347 1.00

1 282 1.23

2 161 2.16

5 93 3.73

10 77 4.51

11 78 4.45

Parallel BGP Processing continued
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The testbed was run in three modes:

•	 Add a discard export policy to the DUT to ensure that no tuples to 
Update-IO threads are generated and we can get the measurements 
of the read side of the BGP pipeline. Table 1 shows the performance 
numbers for this mode of measurement. We noticed a maximum 
scale-up of 4x on six shards, and beyond six shards our gains were 
not beyond 4x. 

•	 After the DUT has all the inbound Internet feeds and the RIBs have 
settled down, we delete the discard export policy, and this deletion 
triggers generation of tuples towards Update-IO threads and update 
messages start streaming toward the 1,000 peers. This step emu-
lates the write side of the BGP pipeline and helps us measure that 
performance. Table 2 presents the measurements for this mode with 
4 shard threads. The numbers of Update-IO threads were chosen 
to ensure 10 peer groups map to an even number of threads. We 
noticed gains linearly increasing as the number of threads increased.

•	 To measure the full pipeline performance, we repeated the previous 
2 modes of testing without any discard export policy. We ran tests 
with 4 shard threads and up to 11 Update-IO threads. As expected, 
we noticed several fold improvements in the performance of BGP 
convergence time as we increased the number of I/O threads, as 
shown in Table 3.

Conclusions
Sharding in databases, web servers, and parallel computing concepts 
of SPMD have been used many times in the industry. This article is the 
first one where both concepts are used with BGP. We have designed 
and implemented a solution of splitting BGP into read and write pipe-
lines and data (the RIBs). Our technique of sharing nothing among 
threads implementing BGP read and BGP write pipelines yields signifi-
cant gains in scale and performance without impacting the convergence 
properties of the BGP protocol. This design also maintains BGP prefix 
packing and reduces the impact on local and remote routers. Lastly, 
we have implemented a design that keeps providing performance gains 
as parallelism increases, but the gains are limited by Amdahl’s Law[6]. 
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Transport Versus Network

by Geoff Huston, APNIC

O ne of the basic tools in network design is the so-called “stacked” 
protocol model. This model was developed in the late 1970s 
as part of a broader effort to develop general standards 

and methods of networking. In 1983, the efforts of the Consultative 
Committee for International Telephony and Telegraphy (CCITT) 
and International Organization for Standardization (ISO) merged to 
form The Basic Reference Model for Open Systems Interconnection, 
usually referred to as the Open Systems Interconnection Reference 
Model, or the “OSI Model”[0]. This model included a seven-layer 
abstract model of networking that defined standard behaviours of 
both the overall network functions and the various components of the 
network (Figure 1). 

Figure 1: OSI Reference Model
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The model segmented functions into two parts: 

•	 The Media Layers handle the encoding of binary data into the phys-
ical transmission media, the data link layer describes the data frames 
used between two inter-connected “nodes,” and the network layer 
manages a multi-node network, including addressing and routing 
behaviours that manage the transmission of data between attached 
hosts.

•	 The Host Layers concern functions on end hosts. These layers 
encompass the transport layer that performs data segmentation into 
packets, end-to-end flow control, packet loss recovery, and multi-
plexing. The layers above the transport layer in the OSI model are 
the session layer, the presentation layer, and the application itself.

In a model of a network as a collection of interior nodes and a set of 
attached hosts, the interior nodes use only the network layer to make 
forwarding decisions for each packet that it handles, while the hosts 
use the transport layer to manage the data flow between communicat-
ing hosts.
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The implication of this model is that there is a delineation between node 
and host functions and a clear delineation of the data that they need 
to perform their functions. Nodes do not need to have any knowledge 
of the settings used at the transport level, and, similarly, hosts have no 
need to access the network layer (Figure 2).

Figure 2: Host and Node Functions
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In the context of the Internet Protocol Suite, the network-layer function 
is encoded as the IP header of a data packet, and the transport-layer 
function is encoded as the transport header, conventionally as either a 
Transmission Control Protocol (TCP) or a User Datagram Protocol 
(UDP) header (although IP also defines other headers). In terms of  
the Internet architectural model, a packet should be deliverable  
through the Internet no matter what transport header it may have 
attached to it. 

Therefore, it should not matter in the slightest what value you put in 
the IP Protocol field in IP packet headers. It’s really none of the net-
work’s business! 

The same almost applies to the Extension Header fields in IPv6, 
although this area is one where, inexplicably, IPv6 scrambled the egg 
and some extension headers are addressed to network elements, namely 
the Hop-by-Hop and Routing Extension Headers, while the remainder 
are ostensibly addressed to the destination host. If Extension Headers 
were defined exclusively as host (or destination) extensions, then the 
IPv6 networks should ignore them, while if they were intended to be 
network options, then hosts should ignore them. Perhaps it’s another 
of those areas where theory and practice just don’t align well.

Transport Versus Network continued
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In a strict sense the Protocol field in the IPv4 packet header need never 
have been placed in the IPv4 header in the first place. The particular 
transport protocol that the communicating hosts use is none of the 
network’s business, in theory, meaning that if the two communicating 
hosts decide to deliberately obscure the transport protocol control set-
tings from the network, then that should not matter in the slightest to 
the network.

In today’s public Internet it appears to matter a lot that the transport 
protocol header is visible to the network. In fact, not only should the 
transport protocol be visible to the network, but the particular trans-
port protocol that the hosts select also matters to the network. That 
is because many elements of today’s network not only peek into the 
transport headers of the packets that they carry, but they also rely on 
the information in this transport header. Firewalls are a classic exam-
ple of this reliance, but there are also Network Address Translators, 
Equal-Cost Multi-Path Load Balancers, and Quality-of-Service Policy 
Engines, to name a few. These network functions make assumptions 
about the visibility of transport headers in the IP packet in order to 
make consistent decisions about packet handling for all packets within 
a single transport flow. Often these network functions take it one step 
further and they process packets with the well-known transport head-
ers (typically restricted to just TCP and UDP) and discard all else. It’s 
even gone further than that, and we have reached the point that today’s 
generally accepted rule is that unfragmented IP packets that contain 
a TCP transport header that includes one end using Port 443, and 
unfragmented IP packets that contain a UDP transport header where 
one end uses Port 53 stand the best chance of getting their data pay-
load through to the intended destination. Every effort to augment this 
remarkably constrained set of packet profiles increases the probability 
of network-based disruption of communication.

Encrypted Transport Headers
If it is a self-limiting action to use a novel transport protocol in the 
public Internet, then why are we even considering the option of 
encrypting transport protocols to make all transport headers opaque 
to the network?

One answer is “Edward Snowden.” When Snowden made his perva-
sive monitoring revelations[1], the Internet Engineering Task Force 
(IETF) responded in what could be called a “like-for-like” reaction 
and came to a consensus position that “Pervasive Monitoring Is an 
Attack”[2]. The general response to this form of insidious attack was 
to increase the level of encryption of Internet traffic to lift the degree 
of difficulty in carrying out network-based surveillance. Not only does 
this IETF response encompass the use of Transport Layer Security 
(TLS) to encrypt session payloads on the Internet wherever possible 
and shift the application behaviour profiles to make this the default 
action, but it also shifted our attention to other areas of Internet com-
munication where compromise of the trust model was thought to be 
an issue. 
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The actions of the Domain Name System (DNS) protocol have been 
drawn into this IETF universal obfuscation effort, as has the transmis-
sion of transport protocol headers. We are long past the time when 
hosts were ill-equipped to perform encryption functions, and now 
robust encryption is not a luxury option with limited use, but rather 
something every user should reasonably expect to use as a minimum 
requirement. If the objective is to limit the information leakage in all 
aspects of the communications environment on the Internet, then the 
control meta-data is as important as the data itself. Applying confiden-
tiality to transport header fields can certainly improve users’ privacy 
and can help mitigate certain attacks or manipulation of packets by 
devices on the network path[3].

However, I suspect that this privacy argument is only one part of the 
story, and while these measures to encrypt Internet traffic play to a pop-
ular concern of the surveillance state operating in a largely unchecked 
manner, they may not lie at the heart of why obscuring host functions 
from the network is a path that some parts of the Internet ecosystem 
vigorously pursue today with transport header encryption. 

It’s not clear that the objective is here, and as with all interdependent 
complex systems, deliberately obscuring one aspect of the system from 
another typically offers both benefits and downsides. In April 2019, the 
Internet Architecture Board (IAB) published RFC 8546, titled “The 
Wire Image of a Network Protocol”[4]. It’s a short document (9 pages) 
by today’s RFC standards, but brevity does not necessarily imply clar-
ity. This document appears to have cloaked its message in such a dense 
level of abstract terminology that it managed to say very little of prac-
tical use! The IAB document appears to have been prompted by the 
protracted debate in the QUIC Working Group over the use of the 
visible spin bit in the QUIC transport protocol[5], and I suspect that it 
started as an effort to argue for some levels of transport behaviour vis-
ibility to the network, but the IAB’s prognostications on the topic have 
offered little useful or informative comment apart from illustrating the 
level of collective angst that this issue has generated! The IAB is not the 
most prolific of commentators, and any matter that provokes an IAB 
response, no matter how cryptic that response may be, does illustrate 
that the topic is one of general concern rather than being just a rather 
esoteric tussle buried deep down in the design of a particular protocol.

This topic of encrypted transport headers is a transport topic, so it is 
natural to ask whether the IETF’s Transport Area can do any better 
than the IAB in providing a clear and informed exposition of the issues 
here. The Transport Area Working Group of the IETF has completed 
an RFC on this topic, “Considerations around Transport Header Con- 
fidentiality, Network Operations, and the Evolution of Internet 
Transport Protocols”[6]. To quote from its abstract: “This document 
discusses the possible impact when network traffic uses a protocol 
with an encrypted transport header. It suggests issues to consider when 
designing new transport protocols or features.” 

Transport Versus Network continued
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This document strikes me as an effort to produce a slightly more prac-
tically focused commentary on header encryption than the earlier IAB 
effort. At 49 pages it certainly cannot be considered a brief document, 
but does this extended commentary do any better in terms of clarity of 
the arguments being considered?

The document first looks at some rationales for the use of informa-
tion on the network contained in headers. It cites the situation of link 
aggregation, and the problem of packet re-ordering in such scenarios. 
The common response to re-ordering is for the network to peer down 
into the transport header to gain a more granular view of a traffic flow 
than that which can be derived from source and destination IP address 
pairs. It is the IPv4 proxy for the IPv6 Flow Label. (Although the IPv6 
Flow Label is so confused as to its intended role it’s hard to understand 
how the IPv6 Flow Label field is useful in any case whatsoever!)  

The document references differential service efforts that attempt to 
perform selective damage on traffic flows under the guise of “Quality 
of Service.” (That “Quality” label always seems to me to have an 
Orwellian connotation, and a more honest label would be “Selective 
Service Degradation,” or even just “Carriage Standover Services”). 
The document also enumerates the ways network operators can per-
form network analysis of using transport-level information, including 
traffic profile analysis, latency, and jitter and packet loss. However, 
the document strikes me as presenting a somewhat disingenuous set of 
rationales. For me, it is akin to a voice telephony operator justifying its 
eavesdropping on phone conversations on the basis of a baseless asser-
tion that the information gathered by such wiretapping, or in other 
words knowledge of what people are saying to each over a telephone 
connection, can be used to make the telephone network better! The 
document also uses the last recourse of the desperate, by invoking a 
nebulous concept of “security,” claiming that if network operators 
were no longer able to eavesdrop on the transport parameters of active 
sessions, then somehow the operator’s ability to run a secure network 
would be compromised in some unspecified way. 

Obviously, none of the rationales presented in this document can with-
stand much in the way of close scrutiny.

It also appears to take a privacy-oriented stance in its analysis, and it 
seems to me that the privacy argument is largely an overt excuse for a 
more substantial difference of opinion between content and carriage. 
To a large extent, the issue from the perspective of the application is 
that the efforts of network operators to perform “traffic grooming” 
through transport header manipulation amounts to little more than 
inflicting damage on application data flows, and thereby pushes the 
network to a lower level of carriage efficiency. And this issue of the use 
of networks to selectively degrade transport performance in the name 
of network service quality is perhaps where we should look for the real 
tensions between networks and hosts in today’s Internet. 
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Transport Protocol Meddling
To look down this path we might want to start with the tensions 
between hosts and networks on the Internet. 

In the telephone world, the network operator controlled all traffic. 
What you leased from the network was either a virtual circuit capable 
of passing a real-time voice conversation, or a fixed-capacity chan-
nel between two end points. If you used one of these channels, you 
couldn’t go any faster than the contracted speed, and if you went 
slower, you did not release common capacity for anyone else to use. 
Obviously, the network charged more for leases of higher capacity. 
Packet networks changed all that. The network had no enforcement, 
and various applications (or traffic flows) competed with each other 
for the common transmission resource. Networks that wanted to con-
trol the allocation of shared common communications resources to 
clients had a problem. 

This allocation control was the motive for a large body of work on the 
Internet during the 1990s and 2000s over what was called Quality of 
Service (QoS)[7]. The network operator wanted to offer (no doubt for 
some premium) a “higher-quality” service to some clients and some 
traffic profiles. But if a network has a fixed-capacity offering a larger 
slice of the network resources to some clients, inevitably it will offer 
less capacity to the others. One common theme of much of this work 
was that while it was possible for the network to disrupt a communi-
cation session in various ways to make it go slower, it was a lot more 
challenging (or even impossible in many ways) to make a session go 
faster. 

Thus, in order to offer preferential treatment to a class of traffic flows, 
a good way was to make all the other flows go slower! The intended 
effect was to clear some space for sessions that were intended to be 
favoured to expand their sending windows and occupy this cleared 
network space. So-called Performance-Enhancing Proxies were not 
really able to make the selected TCP sessions go faster per se, but 
they were able to make other concurrent TCP sessions go slower, and 
thereby make some space for the selected sessions to have a lower 
packet-loss probability and hence achieve a higher data-throughput 
rate. One way of using this form is session throttling to drop pack-
ets. A subtler way, but also very effective, is to alter the TCP control 
parameters. If the offered TCP window size parameter is reduced, then 
senders will conveniently throttle their sending rate accordingly.

Pretty obviously, this selective behaviour of throttling active TCP ses-
sions by networks was not something that applications viewed as a 
sympathetic act, and there have been two major responses from the 
application side. One is the use of a different congestion-control algo-
rithm that is a lot less sensitive to packet loss and more sensitive to 
changes in the end-to-end bandwidth delay product across network 
paths. This method is called the Bottleneck Bandwidth and Round-
trip (BBR) TCP control protocol, which is a relatively new TCP 
sender-side control algorithm. 

Transport Versus Network continued
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But BBR is still susceptible to on-path manipulation of the TCP window 
size, and protecting the session from this form of network interference 
is where encrypted transport headers emerged and became an impor-
tant objective. This response is the second one, executed by obscuring 
where the TCP control information is actually carried in the packet.

As we’ve already noted, you just can’t remove a visible transport 
header from IP packets in the Public Internet, and even encrypting the 
TCP header would probably incur the same drop response from the 
network. But hosts have the option to ignore these transport header 
settings. So, while the host can’t remove a visible transport header, they 
can make the headers meaningless.

One option is to use a “dummy” outer TCP wrapper as fodder for 
networks that want to peek at the transport layer and manipulate the 
session settings while hiding the real TCP control header inside an 
encrypted payload. There would be little in the way of a visible net-
work signature that this manipulation is happening, apart from the 
observation that the TCP end hosts would appear to be unresponsive 
to manipulation of their window parameters. 

However, the problem with this approach is that these days the appli-
cation is actually trying not only to take control over its transport 
session parameters from a meddling network, but also to assert the 
same control over the platform in which the application is hosted. In 
theory, the application could use “raw IP” interfaces into the platform 
I/O routines, but in practice in deployed systems it is close to impos-
sible. Platforms used in production systems tend to treat applications 
with suspicion. (Given the proliferation of malware, this level of para-
noia on the part of the platform is probably warranted.) It is quite a 
challenge to disable all forms of how the platform handles the trans-
port protocols and pass control of the transport protocol from the 
kernel into the applications space. 

For this reason, it is logical to take the approach QUIC uses, where 
the shim wrapper of QUIC uses UDP as a visible transport header 
and pushes the TCP header into the encrypted payload part of the IP 
packet. UDP is close to ideal in this case as there are no transport con-
trols in the protocol, just the local port numbers. QUIC looks to the 
network a lot like a UDP session that uses a TLS-like session encryp-
tion because in so many ways it is a UDP session that uses TLS. The 
change is that the end-to-end TCP flow control is now truly an end-to-
end flow because only the two applications at the “ends” of the QUIC 
transport can see end-to-end transport-control parameters that are 
embedded in the end-to-end encrypted UDP payload. The host plat-
form control over UDP packets is perfunctory, and the application is 
then allowed to assume complete control over the transport behaviour 
of the session.
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Transport Versus Network continued

Content Versus Carriage
Perhaps this shift to opaque transport headers goes a little further 
than just a desire for greater levels of protected autonomous control 
by applications. The shift that QUIC represents could be seen as the 
counter move by content providers to another round of a somewhat 
tired old game play by network operators to extract a tax from content 
providers by holding their content traffic to ransom, or, as it came to 
be known, a tussle over Network Neutrality. 

There have been times when network operators have implemented 
measures to throttle certain forms of traffic that they asserted was using 
their network in some vaguely unspecified manner that was “unfair” 
in some way. The vagueness of all this discussion is probably attribut-
able to a baser desire on the part of the carriage operator, which was 
to extort a carriage toll from content providers in a crude form of basic 
blackmail: “My network, my rules. You customer, you pay!” 

I suspect that many carriage providers in this industry, who are wit-
nessing the content providers take all the money off the table, believe 
that they are the victims here. Their efforts to restore some of their 
lost revenue base has meant that they are looking to restore a “fair 
share” of revenue in forcing the giants of the content space to pay for 
their share of carriage costs. However, if the enforcement mechanism 
of this extortion pressure is through playing with the transport-control 
parameters of the traffic that transits the carriage network (or, in other 
words, holding the traffic to ransom), then the obvious response is to 
push the transport controls under the same encryption veil as the con-
tent itself to prevent such real-time manipulation of the traffic profile. 
And this explanation of why QUIC is so important is perhaps a more 
compelling one.

If this situation is a tussle for primacy in the tensions between car-
riage and content, then it looks like the content folks are gaining the 
upper hand. Through encryption at every level in the host part of the 
protocol stack, including at the transport layer, the content folks are 
withholding information from the carriage providers that would allow 
the carriage providers to selectively discriminate and play content pro-
viders off against each other. If all that the network can do is limited 
to fully encrypted UDP packet streams, then one stream looks much 
like another, and selective discrimination is just not feasible. And if 
that’s not enough, then padding and deliberate packet variation can 
blur most efforts at traffic profiling. 

But when I say “content” I really mean “apps,” and when I say “apps” 
I actually mean “browsers,” so in reality I am really talking about 
Chrome, and when I say Chrome, I mean Google.

The massive dominance of mobile traffic in the industry and the mas-
sive dominance of Android in the mobile device environment tilts this 
space to an extraordinary degree. 
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Given this inherent level of control of all mobile devices, coupled with 
control of the majority browser platform in this space, it is hard to con-
ceive how Google could possibly lose in this tussle. However, it is likely 
that if Google wins this particular battle with the carriage providers, 
there will be further battles to come. It is highly likely that the carriage 
industry will follow the lead from traditional print media and head 
to politicians with the case that Google’s destruction of the business 
model for the provision of national communications infrastructure is 
counter to national interests, and political intervention is necessary to 
restore some balance into the market and allow the market for carriage 
to be a viable investment vehicle. Or, to put in more crudely, if Google 
has destroyed the residual value of the contained carriage market, then 
Google should now pay carriage operators to restore its viability. 

At this point all technical considerations of encryption and informa-
tion leakage, and even all market considerations of the viability of 
various business models, just walk out the door, and in their place 
comes a bevy of lawyers and politicians. Strategic national interest is 
always a strong argument to make, and when we get over the vari-
ous nebulous threats by actors to quit national markets, we then get 
down to the real question of: “What is a tenable business relationship 
between carriage and content?” 

In such a politically charged space the choices at that point are either 
that the various market players will compromise and reach some 
outcome that they can all live with, or the politicians will attempt to 
impose an outcome that will in all likelihood be far more disagreeable 
for all! 

Whatever the outcome in the next few years, it should be fun to watch 
this drama play out. Don’t forget to bring popcorn!
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20 Years of SIP — A Retrospective

by Jonathan Rosenberg, Five9

J une of 2022 marked the twentieth anniversary of the publica-
tion of the Session Initiation Protocol (SIP), documented in RFC 
3261[1,2,3,4]. When it was published in June of 2002, it set records 

for the longest specification produced by the Internet Engineering Task 
Force (IETF), at 269 pages. The IETF produces the technology stan-
dards that make the Internet work. Protocols like Internet Protocol 
(IP), Transmission Control Protocol (TCP), and Hypertext Transfer 
Protocol (HTTP)—all now part of mainstream vernacular—came out 
of the IETF. It was a monumental effort to produce, involving a dedi-
cated author team that worked full time for months to ensure that the 
specifications were correct, consistent, and complete. I had the great 
fortune to be the lead author of this document, an accomplishment 
that was the defining moment for my career. 

The RFC 3261 author team included Robert Sparks, Jon Peterson, Alan 
Johnston, Allison Mankin, Jonathan Rosenberg, Gonzalo Camarillo, 
and Henning Schulzrinne.

In the 20 years (and almost countless extensions to SIP) that followed, 
it is hard to dispute that SIP has been a major success. At its core, SIP 
enabled the transformation of the telecommunications industry from 
one based on hardware to one based on software—colloquially known 
as Voice over IP (VoIP). A 20th anniversary is the ideal time for a  
retrospective, to consider both its positives and negatives. On the plus 
side, this transformation resulted in the re-engineering of the phone 
network, the creation of new markets and market categories, and the 
creation of jobs and livelihoods. On the negative side, it has exacer-
bated the scourge of robocalling. 

The Phone Network Re-Engineered 
Prior to SIP, the telephone network was built using telephone switches 
based on custom hardware. These switches were made by a small set 
of vendors and were a completely verticalized solution from the physi-
cal networking layer to the application layer software.

With the mainstream adoption of IP networks, it became possible to 
replace that hardware with general-purpose computers running SIP-
based software applications. This replacement resulted in a dramatic 
reduction of cost compared to the prior generation. SIP further reduced 
this cost by enabling these software applications to run on machines in 
a small number of data centers that might be far away from the people 
talking to each other, while still keeping the audio delays to a mini-
mum. This centralization of the software was a dramatic shift in how 
the phone network worked.

This new paradigm had the most immediate impacts on the way  
corporate phone systems were built. Before SIP, businesses needed to 
put hardware-based phone systems called Private Branch Exchanges 
(PBXs) in each building and wire them up on a separate network from 
the IP network used for everything else. 
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SIP allowed enterprise IT departments to ditch this separate network 
and reuse the IP network for voice. It also allowed them to put the  
software in their data centers and eliminate the hardware in each 
building. This development represented a huge improvement in costs 
and reduction in complexity. The final “icing on the cake” was that 
SIP enabled video, instant messaging, and presence too, spawning the 
creation of desktop applications—called softphones—that allowed 
users to place calls, have video meetings, and chat. Businesses far and 
wide adopted these phones. Today, almost all business phone systems 
are based on SIP.

With its success in corporations, pressure grew for the phone com-
panies (that is, the telcos), to provide a way for businesses to connect 
their phone systems to the rest of the phone network using SIP. Prior 
to this time, businesses could use software within their corporate cam-
pus, but they needed to switch to hardware to connect to the rest of 
the world. And so, “SIP Trunking” was born, providing a way to send 
and receive calls into the traditional phone network using SIP-based 
software applications. Its adoption was rapid, and it was the first 
step in transforming the edge of the telco networks from hardware to 
software.

Around the same time, mobile phone operators were seeing an explo-
sion in usage due to smartphones. These mobile phones had two 
distinct wireless connections—an old one just for voice, and a new one 
for data. To expand capacity, they needed to reclaim the voice channel 
and use it for data. They could do it by switching the voice to VoIP, 
which would require them to replace their own voice hardware with 
SIP-based software. The wireless industry produced an expansive set 
of specifications on how to build a SIP-based replacement for mobile 
phone networks, called the Internet Multimedia Subsystem (IMS). 
IMS was finally deployed in the late 2010s. Today, most mobile phone 
calls use a SIP client built into the phone and traverse a SIP network 
deployed and operated by the mobile carriers. This change is largely 
invisible to mobile phone users, but not entirely. SIP also enabled the 
usage of higher quality wideband voice for phone calls, creating an 
audio experience that is more like listening to music, and you may 
have noticed this difference in more and more calls you make. 

In a similar fashion, wireline telco providers saw a surge in demand for 
data. To make the jump to next-generation data access technologies 
like fiber, they needed to get rid of their separate voice networks and 
move to voice over IP too. Today, if you have one of these higher speed 
data networks and still have an analog phone in your home, the ana-
log signal is converted to VoIP using a SIP client in the modem at your 
house, and then processed by a SIP network that the carrier operates.

The final piece of the of the puzzle is how carriers themselves connect 
to each other. This process has gradually migrated to SIP too, using 
carrier versions of SIP trunking. This change is now accelerating, since 
the conversion is needed to enable the deployment of Secure Telephone 
Identity Revisited and Signature-based Handling of Asserted infor-
mation using toKENs (STIR/SHAKEN), a SIP-based technology to 
combat robocalling[5,6,7].

20 Years of SIP continued
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Without a doubt, this transformation of the telecommunications tech-
nology stack—that SIP enabled—has massively impacted the world, 
enabling lower costs, more bandwidth for data, better quality for 
voice, and added video.

Market Category Creation
This transformation of the telecommunications industry also created 
entirely new markets and market categories that didn’t exist before SIP. 
To enumerate just a few of them:

•	 IP PBX: The IP Private Branch Exchange (PBX) provides phone  
services for businesses. This market was created as a direct replace-
ment for the legacy hardware-based PBX products that preceded 
it. Cisco Systems led this market, which never had a product in 
the PBX market, along with incumbents like Avaya, Siemens, and 
Nortel, many of which had legacy products along with the newer 
IP-based ones. This market is now itself shrinking, being replaced by 
Unified Communications as a Service (UCaaS).

•	 SIP Trunking: This market is estimated to be around $13B in 2021[8] 

and is a replacement for legacy hardware phone network access 
technologies.

•	 SIP Hardphones: Before SIP, the PBX vendors made their own 
phones, and a given phone could only work with their own hard-
ware. With SIP, it became possible for vendors to produce phones 
that could work with many different IP PBXs. These phones 
were often produced at low cost. Vendors include Yealink, Cisco, 
Grandstream, and Avaya.

•	 Session Border Controller (SBC): The usage of SIP trunking drove 
demand for a new category of product that could serve as a SIP fire-
wall of sorts, managing the boundary between an enterprise and a 
carrier, or between carriers. Ribbon and Oracle are the market lead-
ers, with a market size estimated at USD $709M in 2022[9].

•	 Internet Multimedia Subsystem (IMS): Market leaders include 
Ericsson, Siemens, and Nokia. The market size was USD $1.8B in 
in 2019[10]. 

•	 Communications Platform as a Service (CPaaS): This market cat-
egory is an entirely new one, enabled by the transformation of 
telecommunications to software. CPaaS vendors offer Application 
Programming Inerfaces (APIs) that allow developers to build tele-
com applications easily. These APIs allow for sending of SMSs, 
placing and receiving of phone calls, and so on. Twilio created this 
market and is still the market leader. SIP enabled the CPaaS vendors 
to gain low-cost and global access to telephone services, and with-
out SIP, the market could not have existed. The market is huge and 
growing—estimated at USD $5.2B in 2021[11], (though most of it is 
for sending Short Message Service (SMS), where SIP has been less 
impactful).

•	 Unified Communications as a Service (UCaaS) puts the IP PBX in 
the cloud so businesses can consume voice and video communica-
tions services from the cloud. 
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Market leaders include RingCentral, 8x8, Cisco Systems, Microsoft, 
and Zoom. All of these vendors depend on SIP-based interconnec-
tion to the telephone network. This market is really big—estimated 
to be USD $28.9B in 2021![12]. 

•	 Contact Center as a Service (CCaaS) enables delivery of contact 
center software from the cloud, including voice response systems, 
agent desktop applications, and call distribution software. Vendors 
include Five9, Gensys, and NICE/InContact. Like UCaaS, these ven-
dors depend on SIP to interconnect to the telephone network. This 
market was valued at USD $4.8B in 2021.[13]

When put together, SIP created or enabled these (no less than eight) dis-
tinct markets, representing approximately USD $50B in market value! 

Job Creation
For me, the greatest source of satisfaction from the success of SIP is 
when I hear from someone that they have built their careers and their 
livelihood around this technology. SIP is complex, and like any com-
plex technology that many vendors use in many ways in many markets, 
expertise in it becomes a marketable skill.

Many LinkedIn profiles list “SIP” as a skill. Many are software devel-
opers, but many other jobs require SIP expertise. SIP network engineers 
and technicians build, deploy, and operate SIP networks. Sales and 
marketing engineers configure and demonstrate SIP-based products. 
IT workers who manage business communications for their companies 
need to understand SIP too. A search on LinkedIn for people matching 
“SIP” yields approximately 239,000 results.

Many companies now exist that provide SIP certifications and train-
ing—for example the SIP School.[14] SIP is taught in many graduate 
classes that cover computer networking, and some even have dedi-
cated courses just on VoIP.

It’s hard to know how many jobs SIP has created, but it would not be 
unreasonable to guess it is somewhere in the ballpark of 100,000 jobs. 
If you add the folks working in technical roles across the companies in 
the markets that SIP created, along with those working in telcos or in 
IT departments providing VOIP, it is easy to see how the number could 
be that large.

The Downside: Robocalling
Almost all technologies that have brought great benefits have come 
with some drawbacks. There is no better example than the automo-
bile, which has brought countless benefits, but also caused 42,915 
deaths in 2021 due to automobile accidents. The Internet too, has 
brought countless benefits, but has also brought with it problems that 
are becoming more apparent. SIP has had far less impact as other tech-
nologies, so its drawbacks are fewer, but they do exist.

Without a doubt, the biggest drawback has been the rise of robocalling 
and the fake caller IDs that come with it. Telemarketing calls predate 
SIP for sure. However, as SIP reduced the costs of placing calls and 
made it possible to make calls using off-the-shelf software, it caused a 
sharp increase in the volume of these unwanted calls.

20 Years of SIP continued
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The problem is exacerbated by a design flaw in SIP—the lack of an 
authenticated caller ID. Without that, it is easy for callers to insert any 
phone number they want. This design defect was inherited from email, 
as SIP copied this aspect of its design from how email worked. After 
many years of failed attempts to resolve the problem, there is finally 
“light at the end of the tunnel” using a SIP-based technology called 
STIR/SHAKEN[5,6,7].

In Conclusion
It’s been the highlight of my career to have had the fortune to be the 
lead author for a technology that, 20 years later, has had a profound 
impact on the world. By enabling the transformation of telecommuni-
cations from hardware to software, SIP drove a re-engineering of both 
mobile and wired phone networks that resulted in lower cost commu-
nications services and more bandwidth available for data. It brought 
video to the enterprise, created entirely new markets and some new 
market categories, and created at least 100,000 jobs. I try and remind 
myself of that fact every time I get one of those annoying robocalls.
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Fragments
IAB Comments on FCC Notice on Secure Internet Routing
The Internet Architecture Board (IAB), which provides oversight for 
the protocols and procedures used by the Internet and also handles the 
liaison management for the Internet Engineering Task Force (IETF), 
appreciates the opportunity to submit comments in response to the 
Federal Communication Commission’s (FCC) Notice of Inquiry, 
“Secure Internet Routing”[1]. The IETF is the main organization that 
works on standards relating to Internet technology. The mission of 
the IETF is to produce relevant technical documents that influence the 
way people design, use, and manage the Internet. The IETF is an open, 
diverse, global community of developers consisting of network opera-
tors, vendors, researchers and many other stakeholders.

The IETF originally developed the Internet protocol stack, including 
the routing system based on the Border Gateway Protocol (BGP), and 
continues to be responsible for maintaining and evolving the technical 
specifications that define the Internet and its protocols. The Internet’s 
success has resulted from its flexible, modular architecture. BGP is the 
central protocol for providing global end-to-end connectivity across 
the world’s heterogeneous network domains. It is fundamental to the 
operation of the Internet.

As in any protocol development, the adoption within the industry 
of new capabilities will vary. In recent decades, occurrences of BGP-
related operational issues have increased. The existing BGP protocol 
stack is based on a design which can be extended, building on existing 
network investments. The IETF has two working groups dedicated 
to improving BGP interdomain routing, called Inter-Domain Routing 
(IDR) and Global Routing Operations (GROW). IDR is concerned 
with the correctness, robustness, and scalability of BGP. GROW is 
concerned with the operational problems associated with global rout-
ing systems, including measurement, policy, and security. The IETF 
will continue to evolve BGP to meet the needs of new network struc-
tures and applications, with a strong focus on security.

We believe in a continuous, modular, flexible evolution of the Internet 
and its protocols based on operational experience and requirements, 
where each service provider can determine their security needs based 
on their diverse requirements and in partnership with other providers. 
The success of future standardization efforts intended to increase rout-
ing security, will be highly dependent on educating BGP users about 
BGP operational issues and how well real-world deployment experi-
ence can be fed back into the multi-stakeholder standards development 
process, as opposed to a mandated top-down approach, which would 
fail to meet the diverse needs of the global community.

The FCC can support these efforts by supporting research and other 
work that help these communities to understand issues, develop solu-
tions where needed, and deploy security technology more widely. The 
IAB believes that the IETF is an important partner in these efforts.

	 [1]	 “FCC Launches Inquiry To Reduce Cyber Risks,” The Internet 
Protocol Journal, Volume 25, No. 1, April 2022, page 38.
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The Internet Protocol Journal (IPJ) is a quarterly technical publication 
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about 
all aspects of Internet technology. IPJ is not intended to promote 
any specific products or services, but rather is intended to serve as 
an informational and educational resource for engineering profession-
als involved in the design, development, and operation of public and  
private internets and intranets. In addition to feature-length articles, 
IPJ contains technical updates, book reviews, announcements, opinion 
columns, and letters to the Editor. Topics include but are not limited 
to:
•	 Access and infrastructure technologies such as: Wi-Fi, Gigabit 

Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile 
wireless.

•	 Transport and interconnection functions such as: switching, routing, 
tunneling, protocol transition, multicast, and performance.

•	 Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls, 
troubleshooting, and mapping.

•	 Value-added systems and services such as: Virtual Private Networks, 
resource location, caching, client/server systems, distributed systems, 
cloud computing, and quality of service.

•	 Application and end-user issues such as: E-mail, Web authoring, 
server technologies and systems, electronic commerce, and applica-
tion management.

•	 Legal, policy, regulatory and governance topics such as: copyright, 
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please 
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at 
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons 
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either 
express or implied, including but not limited to the implied warranties of merchantability, 
fitness for a particular purpose, or non-infringement. This publication could contain technical 
inaccuracies or typographical errors. Later issues may modify or update information provided 
in this issue. Neither the publisher nor any contributor shall have any liability to any person 
for any loss or damage caused directly or indirectly by the information contained herein.
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