
August 2022	 Volume 25, Number 2

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

F r o m T h e E d i t o r

According to Wikipedia, the Border Gateway Protocol (BGP) “...is a
standardized exterior gateway protocol designed to exchange routing
and reachability information among Autonomous Systems (ASs) on
the Internet. BGP is classified as a path-vector routing protocol, and
it makes routing decisions based on paths, network policies, or rule-
sets configured by a network administrator.” We’ve covered numerous
aspects of BGP in this journal, most recently in our two-part article by
Geoff Huston entitled “A Survey on Securing Inter-Domain Routing.”
In this issue, a team of engineers from Juniper Networks describes a
method for running BGP processing in parallel using a concept known
as sharding.

In our second article, Geoff Huston takes a closer look at the trans-
port and network functions in today’s ever-changing Internet. Many
network elements such as firewalls and Network Address Translators
(NATs) use the transport protocol header to make decisions on how to
handle traffic, but concerns about pervasive monitoring and informa-
tion leakage have led to various forms of encryption-based solutions
and an ongoing debate within the Internet technical community and
beyond.

Using the Internet for teleconferencing or telephony is not a particu-
larly new idea. I fondly remember taking part in experiments between
the Norwegian Defence Research Establishment (NDRE), MIT’s
Lincoln Laboratories, University of Southern California’s Information
Sciences Institute (USC-ISI), and University College London (UCL) as
early as 1977 when I was doing my military service at NDRE. You can
find out more about these early developments by searching for the arti-
cle “Linear Predictive Coding and the Internet Protocol.” Voice over
IP (VoIP) as we know it today became a reality in 2002 with the pub-
lication of RFC 3261, which describes the Session Initiation Protocol
(SIP). In our final article, Jonathan Rosenberg gives a retrospective on
20 years of SIP.

Publication of The Internet Protocol Journal is made possible by the
generous support of numerous individuals and organizations. Please
consider making a donation or getting your company to sign up for a
sponsorship. As always, we welcome your feedback and suggestions on
anything you read in this journal. Letters to the Editor may be edited
for clarity and length and can be sent to ipj@protocoljournal.org

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor....................... 1

Parallel BGP Processing........... 2

Transport Versus Network.... 15

20 Years of SIP...................... 25

Fragments.............................. 31

Thank You!........................... 32

Call for Papers....................... 34

Supporters and Sponsors....... 35

http://www.protocoljournal.org
mailto:ipj%40protocoljournal.org?subject=
mailto:ole%40protocoljournal.org%20?subject=

THE INTERNET PROTOCOL JOURNAL

2

Parallel BGP Protocol Processing

by Sanjay Khanna, Jaihari Loganathan, and Ashutosh Grewal, Juniper Networks

M anaging large inter- and intra-Border Gateway Protocol
(BGP) domains places a large computational load on the
CPU of a router, adversely affecting its performance and

increasing the BGP convergence time. To address these problems,
we have architected a solution that splits a BGP Routing Information
Base (RIB) across concurrently running BGP threads. These parallel
running threads run the same code on multiple CPU cores concur-
rently. Each of these threads maintains a RIB shard, a subset of the
RIB. This parallel BGP processing improves the read-side performance
of processing incoming UPDATE messages. A set of parallel running I/O
threads generate outbound UPDATE messages and improve the write-
side performance of BGP. This entire design uses a lockless mechanism
to allow parallel processing on each CPU core independently. A tes-
tbed representing a Tier 1 service provider Route Reflector network
was used to verify and quantify the performance of the implementa-
tion. BGP in this topology receives several copies of the global Internet
routing table (~800,000 routes). Our results show that performance
improves as parallelism and scale are increased. The speedup we can
attain gets better as more CPU cores are available for RIB sharding.
These gains are bounded by the extent to which the BGP update pro-
cessing can run in parallel.

Terms and Definitions
The BGP RIB conceptually consists of four parts:

•	 Adj-RIBs-In: Stores unprocessed routing information that has been
learned from BGP updates received from peers. The routes con-
tained in Adj-RIBs-In are considered feasible routes.

•	 Loc-RIB: Contains the routes that the BGP speaker has selected by
applying the decision process (route selection, import policy) to the
routes contained in Adj-RIBs-In. These routes populate the routing
table (RIB) along with routes that other routing protocols discover.

•	 Adj-RIBs-Out: Contains the routes that the BGP speaker advertises
to its peers in BGP UPDATE messages. Export routing policies deter-
mine what routes are placed in Adj-RIBs-Out.

•	 Outbound Route Tuple is a route in Adj-RIBs-Out. Every tuple
consists of a prefix, associated BGP metrics, and information about
peers in a peer group that will be sent to this tuple in an UPDATE
message.

BGP Update Processing Pipeline
Figure 1 illustrates the BGP[1] UPDATE message processing pipeline.
This pipeline can be further subdivided into the Read-Side Pipeline
to identify the inbound processing of an UPDATE message, and the
Write-Side Pipeline, which concerns generation of outbound UPDATE
messages to be sent to peers.

THE INTERNET PROTOCOL JOURNAL

3

Figure 1: BGP Pipeline

Receive
Update

BGP Read Pipeline BGP WritePipeline

BGP UPDATE Pipeline

Parse
Update

Apply Policy
Create Route

Next-Hop
Resolution

Apply Policy
Queue Route

Tuple

Generate
Update

Transmit
Update

The read-side pipeline consists of the following stages:

•	 Receive Update: Routes are advertised between BGP speakers in an
UPDATE message. Multiple routes that have the same PATH attri-
butes are advertised in a single UPDATE message. This message is
received over an established Transmission Control Protocol (TCP)
socket.

•	 Parse Update: A BGP UPDATE message is parsed for prefixes, and
PATH attributes are canonicalized into a local state after validating
the data in Protocol Data Units (PDUs).

•	 Apply Import Policy and Create Route: BGP stores routing infor-
mation learned from the inbound UPDATE messages in a RIB called
Adj-RIB-In. BGP applies the import policy on incoming BGP routes
and—if permitted by policy—performs a best-route selection. The
best routes are used to populate the local RIB, called Loc-RIB.
These routes are then used to program a Forwarding Information
Base (FIB) and generate outbound updates to BGP peers.

•	 Next-hop Resolution: BGP uses a local routing table to find the
reachability information for a BGP next-hop, which may be several
hops away. For example, Interior Gateway Protocol (IGP) metric,
intermediate address, and outgoing interface are parts of resolving
reachability for the BGP next-hop. BGP may have several routes to
the same IP destination that have different degrees of preference.
Although all accepted routes are installed in Loc-RIB, BGP may
choose one route or multiple routes (BGP multipath case) as active
routes.

The write-side pipeline consists of the following stages:

•	 Apply Export Policy and Queue Outbound Route Tuple: BGP
applies export policy to routes in Loc-RIB and generates outbound
RIBs called ADJ-RIBs-Out. Adj-RIB-Out stores information that
BGP uses to generate an outbound route tuple. Generally, several
peers with the same policies are grouped into a peer group, and a
single outbound route tuple is generated for each peer group.

THE INTERNET PROTOCOL JOURNAL

4

•	 Generate Update: Route information in the outbound route tuple is
converted into an UPDATE message. Destination prefixes that share
the same PATH attributes are packed in a single message. This prefix
packing reduces the number of UPDATE messages sent over TCP.
Sending fewer messages improves local performance and does not
impose extra work on the peer BGP routers.

•	 Transmit Update: UPDATE messages that were generated in a prior
stage are sent over a TCP socket to a remote BGP peer. The same
BGP UPDATE message is sent to multiple BGP peering sessions
that share a common export policy, thereby amortizing the cost of
UPDATE message generation.

BGP convergence time is the time taken by the router to process the
incoming BGP UPDATE messages, passing them through the read pipe-
line in Figure 1, and distributing the results by generating UPDATE
messages to its peers. As networks scale up in the number of peers, the
number of parallel inbound feeds, and the size of the network in terms
of the number of prefixes, this convergence time can become very
high. The result can be slower convergence of the entire network when
device and link failures occur. The slower convergence generally leads
to traffic loss and a traffic black-hole in the network. Most operators
of large networks want a faster convergence to reduce these down-
times. To help improve the convergence time of a router, and to exploit
multi-core CPUs available on routing engines, we decided to run the
previously mentioned pipeline functions in parallel. We encountered
several hurdles to running BGP update processing in parallel:

•	 RIBs are generally a shared collection of routes, and concurrent
updates to RIBs need locks.

•	 Locking in general reduces concurrency and increases complexity.

•	 BGP next-hop resolution is a shared function and requires synchro-
nization between parallel running threads.

•	 Prefix packing in outgoing UPDATE messages deteriorates because
each concurrent pipeline produces more frequent and smaller
UPDATE messages with fewer prefixes.

•	 Other protocols in an IP router need active BGP routes to imple-
ment other useful functions like Layer 3 Virtual Private Network
(L3VPN) and programming the FIB.

•	 Interface state (like links and IP addresses) is a shared collection too,
and concurrent threads meant more locking across concurrently
running threads.

The BGP software architecture described in the following sections
addresses these concurrency limitations and improves the BGP con-
vergence time at very high scales. This solution performs better when
input scale increases and the required number of concurrent pipelines
increases.

Parallel BGP Processing continued

THE INTERNET PROTOCOL JOURNAL

5

Parallel BGP Protocol Processing
Figure 2 illustrates the high-level architecture of parallel BGP process-
ing. The pipeline is broken into three logical parts running concurrently
on two kinds of threads of execution: “Shard(S)” and “Update-IO(U)”
threads. Shard threads process a subset of UPDATE message prefixes,
execute most of the BGP read pipeline, and generate a tuple for an
Update-IO thread. An Update-IO thread processes a tuple for a set of
BGP peers in a peer group. Update-IO threads also receive the UPDATE
message from peers (over TCP sockets) and distribute the messages to
shard threads. These threads process tuples from shard threads and
generate UPDATE messages to transmit to peers.

Figure 2: Parallel Processing of BGP UPDATE Messages

Update-IO Rx Update-IO Tx

U(1)

U(0)

U(1)

Shard S(3)

Shard S(0)

U(0)

Receive
Update

Transmit
Update

Generate
Update

Parse
Update

Apply Policy
Queue RTO

Next-Hop
Resolution

Apply Policy
Create
Route

RX
Tuple

Hash &
Distribute

Receive
Update

Transmit
Update

Generate
Update

RX
Tuple

Hash &
Distribute

Parse
Update

Apply Policy
Queue RTO

Next-Hop
Resolution

Apply Policy
Create
Route

Parse
Update

Apply Policy
Queue RTO

Next-Hop
Resolution

Apply Policy
Create
Route

Parse
Update

Apply Policy
Queue RTO

Next-Hop
Resolution

Apply Policy
Create
Route

•	 Update-IO Rx Processing: Running in an update-IO thread, this
stage receives update messages from peers, sanity checks the mes-
sages, and computes a hash on every prefix in the message to
determine which shards will receive the message. In the best possible
scenario a single shard gets the entire message, and in the worst-case
scenario the same message is shared with every shard thread.

•	 Shard Processing: A shard thread receives a copy of the message and
processes prefixes that it owns (ignoring the ones that it doesn’t).
The ownership of a prefix is decided by computing the hash on the
prefix. Thereafter each shard will follow the entire read pipeline on
its prefixes and generate tuples for the Update-IO thread matching
the peer group.

•	 Update-IO Tx Processing: An Update-IO thread receives tuples
and processes them into BGP UPDATE messages. These messages are
sent towards the peer via TCP sockets. This stage is responsible for
packing tuples from several shard threads into UPDATE messages to
improve the packing of prefixes.

THE INTERNET PROTOCOL JOURNAL

6

This architecture exploits the Single Program Multiple Data (SPMD)
model of parallelism to do concurrent read and write pipeline process-
ing. Concurrently executing threads do not share any state with each
other, thereby eliminating any need for locks. Shards and Update-IO
threads maintain a parallel ecosystem of collections of objects (like
BGP peers, peer groups, RIBs, interfaces, configuration, etc.). Wherever
needed, message passing is used to achieve eventual consistency of the
routing state in the system. At any point of time, concurrently exe-
cuting functions running at different rates may be in different states.
However, all these functions executing on different cores will even-
tually reach the same final state as if there were a single executing
pipeline. Reaching eventual consistency quickly is an important out-
come of this architecture.

Sharding Several Kinds of BGP RIBs
This architecture requires all routes (BGP and otherwise) with the
same IP address to always be assigned to the same shard so that the
best active route calculation for all routes matching an IP address is
handled in a single shard. This requirement guarantees the correctness
of the active route selection algorithm. Multiprotocol BGP (MP-BGP)
extensions[2] allow BGP to carry routing information for multiple net-
work layers and address families. BGP routes for each of these address
families are saved in several RIBs, and each RIB has its own network
prefix in a route. For example, the IPv4 Unicast RIB has the IPv4
address and prefix mask length as the route destination. The L3VPN
RIB has the IP address, route distinguisher, and mask length as the
route destination. For shard assignment, the hash is computed only on
the address and prefix length part of the route destination, and the rest
is ignored.

Next-Hop Resolver
The main job of the resolver is to translate protocol next-hops into
forwarding next-hops using helper routes. A protocol next-hop is an
IP address of a remote BGP peer, most commonly an Interior BGP
(IBGP) peer. A protocol next-hop, by itself, is insufficient to make a
forwarding decision. To forward a packet, a router needs to know the
directly connected next-hop. This information is derived from helper
routes that provide reachability information for the protocol next-hop.
Since the resolver is a central function and the concurrent shard threads
also need the services of this resolution, a mechanism is needed to dis-
tribute resolver information to shard threads. One way to achieve this
distribution is to run the resolver as a service and all shard threads to
register next-hop IP addresses for resolution. BGP in each shard gets
reachability notifications for registered IP addresses. These notifica-
tions populate the local BGP neighbor reachability information of the
shard and trigger routing updates local to a shard. These updates can
activate a BGP route when a next-hop is reachable, change the BGP
route if reachability changes, and inactivate the BGP route if a next-
hop is unreachable.

Parallel BGP Processing continued

THE INTERNET PROTOCOL JOURNAL

7

VPN and Sharding
You can apply sharding to Virtual Route Forwarding (VRF) and Virtual
Private Network (VPN)[3] routing tables also. Each shard thread hosts
a slice of the VPN and VRF RIB table as determined by the hash. The
Route Distinguisher (RD) of VPN routes is excluded from hash calcu-
lations to allow routes with the same prefixes but different RDs to be
correctly processed in the associated shard. VPN label allocation is a
central service because a single pool of Multiprotocol Label Switching
(MPLS) labels is generally available to send out. A shard thread that
wants an MPLS label for a VPN route requests this centralized service
for labels. Target routes—needed for VPN processing—are stored in
a separate RIB. Since this RIB is smaller, it is duplicated in all shard
threads.

Large Peer Groups and Update-IO Parallelism
A peer group is usually assigned to an Update-IO thread that manages
packing and generation of updates for that group. Multiple groups
get assigned to different update threads for parallelism. In certain use
cases, one or more large peer groups can include a very large number
of BGP peers, and as a result we would not be able to distribute the
load of such peer groups over several Update-IO threads effectively. To
handle such a special case, we split such configured peer groups into
several logically split peer groups. Each split group is allocated a subset
of peers from a large peer group and assigned to an Update-IO thread.

BGP Graceful Restart Handling with RIB Sharding
BGP Graceful Restart (GR)[4] processing requires sending of an End-
of-Rib (EOR) notification after initial download of routes to a peer
that is coming up after a failure. Shard threads contribute to the initial
download of routes to a peer independently and in parallel. But the
EOR message is sent in a coordinated fashion from the main thread
after all shard threads complete the initial download of their slices of
RIB to the peer. Likewise, consumption of an inbound EOR requires
coordination from shard threads. The inbound EOR message is sent
to all shard threads.

BGP Optimal Route Reflection and Sharding
You can configure BGP Optimal Route Reflection (ORR)[5] with Inter-
mediate System-to-Intermediate System (IS–IS) and Open Shortest
Path First (OSPF) on a Route Reflector to advertise the best path to
the BGP ORR client groups. Configuration is done by using the IGP
metric after calculating the Shortest Path First (SPF) from a client’s
perspective. For BGP ORR to work in a Route Reflector, BGP requires
assistance from an IGP implementation to calculate an IGP metric for
a prefix from a client’s perspective. In a sharded BGP architecture,
ORR must be built as a service like a resolver. Shard threads regis-
ter ORR reachability to this service, and in turn receive notifications
about reachability of the registered prefixes.

THE INTERNET PROTOCOL JOURNAL

8

Configuration, CLI Show Commands, Telemetry, SNMP, and Sharding
The shard architecture requires that each shard thread processes con-
figuration independently of other shard threads. This way each shard
has its own configuration state to work with. To present a consistent
view to the user, some of the show commands in a router must collate
information about RIBs from all shard threads and present a system
view of the RIBs to the user. The same is true about telemetry stream-
ing and the Simple Network Management Protocol (SNMP) get/walk
of tables in a shard. For debugging purposes, we also implemented a
view into the RIBs of each shard thread.

Routing and BGP RIB Sharding
Figure 3a illustrates an approximate high-level view of how rout-
ing protocols were implemented in the JUNOS Routing Protocols
Daemon (RPD) before BGP RIB sharding was implemented. It shows
a single thread that runs all routing protocols (including BGP), and
INFRA, which includes interfaces, routing tables, next-hop tables,
route resolution, and FIB programming. When BGP RIB sharding and
Update-IO are configured, then additional threads are spawned, as
shown in Figure 3b.

Figure 3a: Single Threaded Routing
Protocol Daemon

INFRA (Routing Tables, FIB Programming, Next-Hop Resolution)

ISIS

OPSF

RIPPIM

LDP

RSVP

xVPN

BGP

 

Figure 3b: Shard Routing Protocol Daemon

UPDIO

UPDIO

BGP

INFRA

BGP

INFRA

BGP

INFRA

INFRA (Routing Tables, FIB Programming, Next-Hop Resolution)

ISIS

OPSF

RIPPIM

LDP

RSVP

xVPN

BGP

Main Thread

Shard Threads

Update-IO Threads

Lockless FIFO
 Q

Lockless FIFO Q

Parallel BGP Processing continued

THE INTERNET PROTOCOL JOURNAL

9

Main thread shards and Update-IO threads do not share any mutable
state, and as a result no locks or critical sections are executing between
these threads. As explained earlier, shard threads do the read-side
processing of incoming messages in parallel and Update-IO threads
do write-side processing of outgoing messages in parallel. Shard and
Update-IO threads like the main thread process the routing configura-
tion independently in a lockless manner. Coordination of peer state,
interface state, and RIB routes and counters between main and other
threads is done via Interprocess Communication (IPC) messages. These
messages are sent over an IPC channel consisting of a pair of lockless
First-In, First-Out (FIFO) queues. To allow for state compression, IPC
channel queue depths are kept small. Socket read/write readiness is
used for IPC channel back pressure between threads. Overall, all mes-
sage passing between threads is very fast and efficient.

The following message types are sent from the main thread to the
shard threads:

•	 Interface state, such as link information, address families config-
ured, IP address, and state of the links is used by routing tables code
and the BGP protocol. As a result, each shard has its own copy of
interface state information.

•	 Route messages for non-BGP routes are distributed to a shard that is
found via hash computation on the IP prefix of the route. Also, the
entire route target RIB is sent as route messages to all shard threads.

•	 Configuration indications are sent as messages to signal availability
of the updated configuration database.

•	 When show commands, SNMP get requests, and telemetry requests
are sent, responses from shards are sent to the main thread to service
the Command-Line Interface (CLI), SNMP requests, and telemetry
streaming.

•	 BGP peer state transition messages are sent from the main thread
to the shard threads. A handler in shard threads takes appropriate
actions on BGP peer objects local to the shard.

•	 Next-hop resolution messages are sent from the resolver service in
the main thread to shard threads. Shard threads register with this
service for a BGP next-hop.

•	 VPN label messages are sent to shard threads whenever the main
thread receives a request from a shard.

BGP in the main thread also shares state with Update-IO threads via
IPC messages. These messages follow:

•	 The BGP peer Finite State Machine (FSM) in the main thread sends
peer state messages to Update-IO threads. Such messages result in
state changes for BGP peer objects in the Update-IO threads.

•	 Route tuple messages: Outbound BGP route messages are sent from
the main thread to one of the Update-IO threads. Update-IO threads
consume these messages to generate BGP UPDATE messages for a set
of peers.

THE INTERNET PROTOCOL JOURNAL

10

Shard threads send the following messages to the main and Update-IO
threads:

•	 Route messages are sent from the shard to send active BGP-only
routes to the main thread. The main thread adds these received
routes to its RIB.

•	 Shards send show, SNMP, and telemetry responses to the main
thread to assist in supporting these administrative functions.

•	 Shards send resolver registration requests for BGP next-hops, and
they get resolver responses from the main thread.

•	 VPN label requests are sent to the main thread to get a pool of labels
to support VPN functions in the shard threads.

•	 Outbound route tuples are sent to Update-IO threads per peer group.

When a shard thread receives UPDATE messages, it does the PDU pro-
cessing on the prefixes that it owns and ignores those it does not. This
processing uses the same hashing scheme that Update-IO threads use
for distributing inbound prefixes. As a result, BGP routes are added to
the RIBs of a shard thread. If the active route for a prefix in a shard is a
BGP route, then it must be added to the FIB. Queueing points are used
on the shard send side (before the IPC) to dampen the route churns due
to link and peer flaps. The active route is added to the queue and then
distributed (via IPC) to the main thread.

The main thread can program the FIB. Any subsequent state changes
associated with BGP prefixes in shard threads may result in changes to
the current active route in the shard. When this active route changes or
is deleted in a shard, a new message is queued to be sent to the main
thread.

The main thread centralizes answering BGP next-hop resolution, and
it also programs the FIB. Any changes in the next-hop reachability are
announced to shard threads. Shard threads react to such announce-
ments and cause the necessary state changes in the Update-IO threads
and the active route redistribution to the main threads. Update-IO
threads generate outbound UPDATE messages and announce the prefix
changes to their neighbors. In the end all threads, the FIB, and the net-
work will have the consistent view of any prefix.

When a shard thread has run the BGP export policy and decided which
BGP peers across all peer groups will receive a route, a new set of IBGP
route announcement tuple messages (tuples) are queued for Update-IO
threads. Shard threads multiplex several tuples back to an Update-IO
thread. These tuples carry state about the BGP PATH attributes and
prefixes. These PATH attributes are assumed immutable and are shared
in a reference-counted manner between threads.

Parallel BGP Processing continued

THE INTERNET PROTOCOL JOURNAL

11

The Update-IO thread puts many tuples with the same BGP PATH
attributes in a single BGP UPDATE message for transmission. Packing
helps ensure that the number of BGP UPDATE messages is limited to
prevent flooding of the local TCP/IP stack with too many send calls.
Also, packing ensures that downstream BGP routers are not flooded
with excessive messages. It ensures that gains from concurrent read
processing in the shard threads to CPU overhead are not lost by han-
dling more I/O messages.

Various queueing points are present in the main, shard, and Update-IO
threads in our routing implementation. As these routes are learned and
selected to distribute, the queueing points help us compress fast occur-
ring state changes and reduce the churn from spreading from a source
to the consumers. This churn reduction is very important when operat-
ing at scale and with several producers and consumers. Shard threads
compress route changes for prefixes being redistributed to the main
thread. For example, a route addition followed by a route deletion nul-
lifies both. The main thread has a similar queueing logic to compress
state churn when downloading routes to the FIB. Shard threads have
a queue towards Update-IO threads to dampen the tuple churn in the
BGP. Similarly, the Update-IO threads also use tuple queues to pack
and suppress state before final state is disseminated to the peers.

Performance Measurements
To measure the gains of the approach described previously, we used
a testbed where the Device Under Test (DUT) is a scaled BGP Route
Reflector (Figure 4).

Figure 4: Route Reflector Topology

BGP
Route Reflector
11 Peer Groups

BGP Peer Group G11

IBGP Peer Group G1

10 or 20 Internet Feeds

n=10, 20

IBGP Peer Group G10

. . .

. . .

. . .

E2

En

E1

DUT

I(1) I(100)

I(901) I(1000)

The RR receives several Internet feeds (800,000+ routes per feed) from
an External BGP (EBGP) peer group of 10 BGP peers and reflects the
best path for each destination towards 1,000 BGP client peers divided
among 10 peer groups. Thus, a total of 11 BGP peer groups are in this
testbed.

THE INTERNET PROTOCOL JOURNAL

12

This setup represents a high scale of incoming UPDATE messages, and
even higher scale of outbound UPDATE message generation. We used
Internet feed instead of canned routes from a protocol tester like IXIA
to mimic the real-world scenario where routes have variable PATH
attributes. The DUT is a Linux Ubuntu with 18 servers with 8 cores
(Xeon CPU E5-2640 v3 @ 2.6 GHz) and hyperthreading is turned off.
The RR server on the DUT runs in a Linux Docker Container. The RR
clients were also running our BGP implementation, where these clients
drop all incoming PDUs after checking them for validity. This modi-
fication was done to ensure these 1,000 clients are never a bottleneck
when receiving UPDATE messages from the DUT.

Table 1. Read-Side Performance Measurements

Number of Shard Threads Convergence Time
(Seconds) Scale Up (S)

0 73 1.00

1 76 0.96

2 42 1.74

3 31 2.35

4 26 2.81

5 20 3.65

6 18 4.06

Table 2. BGP Write-Side Performance (4 Shards)

Number of Update-IO Threads Convergence Time
(Seconds) Scale Up (S)

0 352 1.00

1 259 1.36

2 141 2.50

5 67 5.25

10 54 6.52

Table 3. BGP Full Pipeline Performance (4 Shards)

Number of Update-IO Threads Convergence Time
(Seconds) Scale Up (S)

0 347 1.00

1 282 1.23

2 161 2.16

5 93 3.73

10 77 4.51

11 78 4.45

Parallel BGP Processing continued

THE INTERNET PROTOCOL JOURNAL

13

The testbed was run in three modes:

•	 Add a discard export policy to the DUT to ensure that no tuples to
Update-IO threads are generated and we can get the measurements
of the read side of the BGP pipeline. Table 1 shows the performance
numbers for this mode of measurement. We noticed a maximum
scale-up of 4x on six shards, and beyond six shards our gains were
not beyond 4x.

•	 After the DUT has all the inbound Internet feeds and the RIBs have
settled down, we delete the discard export policy, and this deletion
triggers generation of tuples towards Update-IO threads and update
messages start streaming toward the 1,000 peers. This step emu-
lates the write side of the BGP pipeline and helps us measure that
performance. Table 2 presents the measurements for this mode with
4 shard threads. The numbers of Update-IO threads were chosen
to ensure 10 peer groups map to an even number of threads. We
noticed gains linearly increasing as the number of threads increased.

•	 To measure the full pipeline performance, we repeated the previous
2 modes of testing without any discard export policy. We ran tests
with 4 shard threads and up to 11 Update-IO threads. As expected,
we noticed several fold improvements in the performance of BGP
convergence time as we increased the number of I/O threads, as
shown in Table 3.

Conclusions
Sharding in databases, web servers, and parallel computing concepts
of SPMD have been used many times in the industry. This article is the
first one where both concepts are used with BGP. We have designed
and implemented a solution of splitting BGP into read and write pipe-
lines and data (the RIBs). Our technique of sharing nothing among
threads implementing BGP read and BGP write pipelines yields signifi-
cant gains in scale and performance without impacting the convergence
properties of the BGP protocol. This design also maintains BGP prefix
packing and reduces the impact on local and remote routers. Lastly,
we have implemented a design that keeps providing performance gains
as parallelism increases, but the gains are limited by Amdahl’s Law[6].

References and Further Reading
	 [1]	 Yakov Rekhter, Susan Hares, and Tony Li, “A Border Gateway

Protocol 4 (BGP-4),” RFC 4271, January 2006.

	 [2]	 Tony Bates, Ravi Chandra, David Katz, and Yakov Rekhter,
“Multiprotocol Extensions for BGP-4,” RFC 4760, January
2007.

	 [3]	 Eric Rosen and Yakov Rekhter, “BGP/MPLS IP Virtual Private
Networks (VPNs),” RFC 4364, February 2006.

	 [4]	 Srihari R. Sangli, Enke Chen, Rex Fernando, John Scudder, and
Yakov Rekhter, “Graceful Restart Mechanism for BGP,” RFC
4724, January 2007.

https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc4760
https://tools.ietf.org/html/rfc4364
https://tools.ietf.org/html/rfc4724
https://tools.ietf.org/html/rfc4724

THE INTERNET PROTOCOL JOURNAL

14

	 [5]	 Robert Raszuk, Bruno Decraene, Christian Cassar, Erik Aman,
and Kevin Wang, “BGP Optimal Route Reflection (BGP ORR),”
RFC 9107, August 2021.

	 [6]	 Amdahl, Gene M., “Validity of the Single Processor Approach
to Achieving Large-Scale Computing Capabilities,” AFIPS
Conference Proceedings (30): 483–485, 1967.

SANJAY KHANNA holds a B.E. from Delhi University, a M.S., and a Ph.D. from Old
Dominion University. Since 1993 he has worked in several IP networking-related jobs
at IBM, Ericsson, Extreme Networks, and Juniper Networks. For the last several years
he has been working on modernizing Juniper’s routing stack. He is a member of ACM.
He can be reached at: skhanna@juniper.net

JAIHARI LOGANATHAN has been working in the networking industry since the
early 1990s. He has a bachelor’s degree in computer science. He has worked on a
variety of networking equipment and solutions from access modems, switches,
security gateways, data center fabric, to core routers. His career spans several net-
working and cloud startups. He is a subject matter expert in many things networking.
He has also helped start companies in search and networking space. He is currently
working as a Distinguished Engineer at Juniper networks. He can be reached at:
jlogan@juniper.net.

ASHUTOSH GREWAL holds a B.Tech. from the National Institute of Technology
Durgapur and an M.S. from North Carolina State University. Since 2012, he has
worked in the JUNOS routing protocols group at Juniper Networks as a Software
Engineer on a variety of BGP, routing, and networking-related projects. He can be
reached at: agrewal@juniper.net

Check your Subscription Details!
If you have a print subscription to this journal, you will find an expi-
ration date printed on the back cover. For several years, we have
“auto-renewed” your subscription, but now we ask you to log in
to our subscription system and perform this simple task yourself.
Make sure that both your postal and e-mail addresses are up-to-date
since these are the only methods by which we can contact you. If
you see the words “Invalid E-mail” on your copy this means that we
have been unable to contact you through the e-mail address on file.
If this is the case, please contact us at ipj@protocoljournal.org
with your new information. The subscription portal is located here:
https://www.ipjsubscription.org/

Parallel BGP Processing continued

https://tools.ietf.org/html/rfc9107
mailto:skhanna%40juniper.net?subject=
mailto:jlogan%40juniper.net?subject=
mailto:agrewal%40juniper.net?subject=
mailto:ipj%40protocoljournal.org?subject=
https://www.ipjsubscription.org/

THE INTERNET PROTOCOL JOURNAL

15

Transport Versus Network

by Geoff Huston, APNIC

O ne of the basic tools in network design is the so-called “stacked”
protocol model. This model was developed in the late 1970s
as part of a broader effort to develop general standards

and methods of networking. In 1983, the efforts of the Consultative
Committee for International Telephony and Telegraphy (CCITT)
and International Organization for Standardization (ISO) merged to
form The Basic Reference Model for Open Systems Interconnection,
usually referred to as the Open Systems Interconnection Reference
Model, or the “OSI Model”[0]. This model included a seven-layer
abstract model of networking that defined standard behaviours of
both the overall network functions and the various components of the
network (Figure 1).

Figure 1: OSI Reference Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

H
os

t L
ay

er
s

M
ed

ia
 L

ay
er

s

The model segmented functions into two parts:

•	 The Media Layers handle the encoding of binary data into the phys-
ical transmission media, the data link layer describes the data frames
used between two inter-connected “nodes,” and the network layer
manages a multi-node network, including addressing and routing
behaviours that manage the transmission of data between attached
hosts.

•	 The Host Layers concern functions on end hosts. These layers
encompass the transport layer that performs data segmentation into
packets, end-to-end flow control, packet loss recovery, and multi-
plexing. The layers above the transport layer in the OSI model are
the session layer, the presentation layer, and the application itself.

In a model of a network as a collection of interior nodes and a set of
attached hosts, the interior nodes use only the network layer to make
forwarding decisions for each packet that it handles, while the hosts
use the transport layer to manage the data flow between communicat-
ing hosts.

THE INTERNET PROTOCOL JOURNAL

16

The implication of this model is that there is a delineation between node
and host functions and a clear delineation of the data that they need
to perform their functions. Nodes do not need to have any knowledge
of the settings used at the transport level, and, similarly, hosts have no
need to access the network layer (Figure 2).

Figure 2: Host and Node Functions

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

In the context of the Internet Protocol Suite, the network-layer function
is encoded as the IP header of a data packet, and the transport-layer
function is encoded as the transport header, conventionally as either a
Transmission Control Protocol (TCP) or a User Datagram Protocol
(UDP) header (although IP also defines other headers). In terms of
the Internet architectural model, a packet should be deliverable
through the Internet no matter what transport header it may have
attached to it.

Therefore, it should not matter in the slightest what value you put in
the IP Protocol field in IP packet headers. It’s really none of the net-
work’s business!

The same almost applies to the Extension Header fields in IPv6,
although this area is one where, inexplicably, IPv6 scrambled the egg
and some extension headers are addressed to network elements, namely
the Hop-by-Hop and Routing Extension Headers, while the remainder
are ostensibly addressed to the destination host. If Extension Headers
were defined exclusively as host (or destination) extensions, then the
IPv6 networks should ignore them, while if they were intended to be
network options, then hosts should ignore them. Perhaps it’s another
of those areas where theory and practice just don’t align well.

Transport Versus Network continued

THE INTERNET PROTOCOL JOURNAL

17

In a strict sense the Protocol field in the IPv4 packet header need never
have been placed in the IPv4 header in the first place. The particular
transport protocol that the communicating hosts use is none of the
network’s business, in theory, meaning that if the two communicating
hosts decide to deliberately obscure the transport protocol control set-
tings from the network, then that should not matter in the slightest to
the network.

In today’s public Internet it appears to matter a lot that the transport
protocol header is visible to the network. In fact, not only should the
transport protocol be visible to the network, but the particular trans-
port protocol that the hosts select also matters to the network. That
is because many elements of today’s network not only peek into the
transport headers of the packets that they carry, but they also rely on
the information in this transport header. Firewalls are a classic exam-
ple of this reliance, but there are also Network Address Translators,
Equal-Cost Multi-Path Load Balancers, and Quality-of-Service Policy
Engines, to name a few. These network functions make assumptions
about the visibility of transport headers in the IP packet in order to
make consistent decisions about packet handling for all packets within
a single transport flow. Often these network functions take it one step
further and they process packets with the well-known transport head-
ers (typically restricted to just TCP and UDP) and discard all else. It’s
even gone further than that, and we have reached the point that today’s
generally accepted rule is that unfragmented IP packets that contain
a TCP transport header that includes one end using Port 443, and
unfragmented IP packets that contain a UDP transport header where
one end uses Port 53 stand the best chance of getting their data pay-
load through to the intended destination. Every effort to augment this
remarkably constrained set of packet profiles increases the probability
of network-based disruption of communication.

Encrypted Transport Headers
If it is a self-limiting action to use a novel transport protocol in the
public Internet, then why are we even considering the option of
encrypting transport protocols to make all transport headers opaque
to the network?

One answer is “Edward Snowden.” When Snowden made his perva-
sive monitoring revelations[1], the Internet Engineering Task Force
(IETF) responded in what could be called a “like-for-like” reaction
and came to a consensus position that “Pervasive Monitoring Is an
Attack”[2]. The general response to this form of insidious attack was
to increase the level of encryption of Internet traffic to lift the degree
of difficulty in carrying out network-based surveillance. Not only does
this IETF response encompass the use of Transport Layer Security
(TLS) to encrypt session payloads on the Internet wherever possible
and shift the application behaviour profiles to make this the default
action, but it also shifted our attention to other areas of Internet com-
munication where compromise of the trust model was thought to be
an issue.

THE INTERNET PROTOCOL JOURNAL

18

The actions of the Domain Name System (DNS) protocol have been
drawn into this IETF universal obfuscation effort, as has the transmis-
sion of transport protocol headers. We are long past the time when
hosts were ill-equipped to perform encryption functions, and now
robust encryption is not a luxury option with limited use, but rather
something every user should reasonably expect to use as a minimum
requirement. If the objective is to limit the information leakage in all
aspects of the communications environment on the Internet, then the
control meta-data is as important as the data itself. Applying confiden-
tiality to transport header fields can certainly improve users’ privacy
and can help mitigate certain attacks or manipulation of packets by
devices on the network path[3].

However, I suspect that this privacy argument is only one part of the
story, and while these measures to encrypt Internet traffic play to a pop-
ular concern of the surveillance state operating in a largely unchecked
manner, they may not lie at the heart of why obscuring host functions
from the network is a path that some parts of the Internet ecosystem
vigorously pursue today with transport header encryption.

It’s not clear that the objective is here, and as with all interdependent
complex systems, deliberately obscuring one aspect of the system from
another typically offers both benefits and downsides. In April 2019, the
Internet Architecture Board (IAB) published RFC 8546, titled “The
Wire Image of a Network Protocol”[4]. It’s a short document (9 pages)
by today’s RFC standards, but brevity does not necessarily imply clar-
ity. This document appears to have cloaked its message in such a dense
level of abstract terminology that it managed to say very little of prac-
tical use! The IAB document appears to have been prompted by the
protracted debate in the QUIC Working Group over the use of the
visible spin bit in the QUIC transport protocol[5], and I suspect that it
started as an effort to argue for some levels of transport behaviour vis-
ibility to the network, but the IAB’s prognostications on the topic have
offered little useful or informative comment apart from illustrating the
level of collective angst that this issue has generated! The IAB is not the
most prolific of commentators, and any matter that provokes an IAB
response, no matter how cryptic that response may be, does illustrate
that the topic is one of general concern rather than being just a rather
esoteric tussle buried deep down in the design of a particular protocol.

This topic of encrypted transport headers is a transport topic, so it is
natural to ask whether the IETF’s Transport Area can do any better
than the IAB in providing a clear and informed exposition of the issues
here. The Transport Area Working Group of the IETF has completed
an RFC on this topic, “Considerations around Transport Header Con-
fidentiality, Network Operations, and the Evolution of Internet
Transport Protocols”[6]. To quote from its abstract: “This document
discusses the possible impact when network traffic uses a protocol
with an encrypted transport header. It suggests issues to consider when
designing new transport protocols or features.”

Transport Versus Network continued

THE INTERNET PROTOCOL JOURNAL

19

This document strikes me as an effort to produce a slightly more prac-
tically focused commentary on header encryption than the earlier IAB
effort. At 49 pages it certainly cannot be considered a brief document,
but does this extended commentary do any better in terms of clarity of
the arguments being considered?

The document first looks at some rationales for the use of informa-
tion on the network contained in headers. It cites the situation of link
aggregation, and the problem of packet re-ordering in such scenarios.
The common response to re-ordering is for the network to peer down
into the transport header to gain a more granular view of a traffic flow
than that which can be derived from source and destination IP address
pairs. It is the IPv4 proxy for the IPv6 Flow Label. (Although the IPv6
Flow Label is so confused as to its intended role it’s hard to understand
how the IPv6 Flow Label field is useful in any case whatsoever!)  

The document references differential service efforts that attempt to
perform selective damage on traffic flows under the guise of “Quality
of Service.” (That “Quality” label always seems to me to have an
Orwellian connotation, and a more honest label would be “Selective
Service Degradation,” or even just “Carriage Standover Services”).
The document also enumerates the ways network operators can per-
form network analysis of using transport-level information, including
traffic profile analysis, latency, and jitter and packet loss. However,
the document strikes me as presenting a somewhat disingenuous set of
rationales. For me, it is akin to a voice telephony operator justifying its
eavesdropping on phone conversations on the basis of a baseless asser-
tion that the information gathered by such wiretapping, or in other
words knowledge of what people are saying to each over a telephone
connection, can be used to make the telephone network better! The
document also uses the last recourse of the desperate, by invoking a
nebulous concept of “security,” claiming that if network operators
were no longer able to eavesdrop on the transport parameters of active
sessions, then somehow the operator’s ability to run a secure network
would be compromised in some unspecified way.

Obviously, none of the rationales presented in this document can with-
stand much in the way of close scrutiny.

It also appears to take a privacy-oriented stance in its analysis, and it
seems to me that the privacy argument is largely an overt excuse for a
more substantial difference of opinion between content and carriage.
To a large extent, the issue from the perspective of the application is
that the efforts of network operators to perform “traffic grooming”
through transport header manipulation amounts to little more than
inflicting damage on application data flows, and thereby pushes the
network to a lower level of carriage efficiency. And this issue of the use
of networks to selectively degrade transport performance in the name
of network service quality is perhaps where we should look for the real
tensions between networks and hosts in today’s Internet.

THE INTERNET PROTOCOL JOURNAL

20

Transport Protocol Meddling
To look down this path we might want to start with the tensions
between hosts and networks on the Internet.

In the telephone world, the network operator controlled all traffic.
What you leased from the network was either a virtual circuit capable
of passing a real-time voice conversation, or a fixed-capacity chan-
nel between two end points. If you used one of these channels, you
couldn’t go any faster than the contracted speed, and if you went
slower, you did not release common capacity for anyone else to use.
Obviously, the network charged more for leases of higher capacity.
Packet networks changed all that. The network had no enforcement,
and various applications (or traffic flows) competed with each other
for the common transmission resource. Networks that wanted to con-
trol the allocation of shared common communications resources to
clients had a problem.

This allocation control was the motive for a large body of work on the
Internet during the 1990s and 2000s over what was called Quality of
Service (QoS)[7]. The network operator wanted to offer (no doubt for
some premium) a “higher-quality” service to some clients and some
traffic profiles. But if a network has a fixed-capacity offering a larger
slice of the network resources to some clients, inevitably it will offer
less capacity to the others. One common theme of much of this work
was that while it was possible for the network to disrupt a communi-
cation session in various ways to make it go slower, it was a lot more
challenging (or even impossible in many ways) to make a session go
faster.

Thus, in order to offer preferential treatment to a class of traffic flows,
a good way was to make all the other flows go slower! The intended
effect was to clear some space for sessions that were intended to be
favoured to expand their sending windows and occupy this cleared
network space. So-called Performance-Enhancing Proxies were not
really able to make the selected TCP sessions go faster per se, but
they were able to make other concurrent TCP sessions go slower, and
thereby make some space for the selected sessions to have a lower
packet-loss probability and hence achieve a higher data-throughput
rate. One way of using this form is session throttling to drop pack-
ets. A subtler way, but also very effective, is to alter the TCP control
parameters. If the offered TCP window size parameter is reduced, then
senders will conveniently throttle their sending rate accordingly.

Pretty obviously, this selective behaviour of throttling active TCP ses-
sions by networks was not something that applications viewed as a
sympathetic act, and there have been two major responses from the
application side. One is the use of a different congestion-control algo-
rithm that is a lot less sensitive to packet loss and more sensitive to
changes in the end-to-end bandwidth delay product across network
paths. This method is called the Bottleneck Bandwidth and Round-
trip (BBR) TCP control protocol, which is a relatively new TCP
sender-side control algorithm.

Transport Versus Network continued

THE INTERNET PROTOCOL JOURNAL

21

But BBR is still susceptible to on-path manipulation of the TCP window
size, and protecting the session from this form of network interference
is where encrypted transport headers emerged and became an impor-
tant objective. This response is the second one, executed by obscuring
where the TCP control information is actually carried in the packet.

As we’ve already noted, you just can’t remove a visible transport
header from IP packets in the Public Internet, and even encrypting the
TCP header would probably incur the same drop response from the
network. But hosts have the option to ignore these transport header
settings. So, while the host can’t remove a visible transport header, they
can make the headers meaningless.

One option is to use a “dummy” outer TCP wrapper as fodder for
networks that want to peek at the transport layer and manipulate the
session settings while hiding the real TCP control header inside an
encrypted payload. There would be little in the way of a visible net-
work signature that this manipulation is happening, apart from the
observation that the TCP end hosts would appear to be unresponsive
to manipulation of their window parameters.

However, the problem with this approach is that these days the appli-
cation is actually trying not only to take control over its transport
session parameters from a meddling network, but also to assert the
same control over the platform in which the application is hosted. In
theory, the application could use “raw IP” interfaces into the platform
I/O routines, but in practice in deployed systems it is close to impos-
sible. Platforms used in production systems tend to treat applications
with suspicion. (Given the proliferation of malware, this level of para-
noia on the part of the platform is probably warranted.) It is quite a
challenge to disable all forms of how the platform handles the trans-
port protocols and pass control of the transport protocol from the
kernel into the applications space.

For this reason, it is logical to take the approach QUIC uses, where
the shim wrapper of QUIC uses UDP as a visible transport header
and pushes the TCP header into the encrypted payload part of the IP
packet. UDP is close to ideal in this case as there are no transport con-
trols in the protocol, just the local port numbers. QUIC looks to the
network a lot like a UDP session that uses a TLS-like session encryp-
tion because in so many ways it is a UDP session that uses TLS. The
change is that the end-to-end TCP flow control is now truly an end-to-
end flow because only the two applications at the “ends” of the QUIC
transport can see end-to-end transport-control parameters that are
embedded in the end-to-end encrypted UDP payload. The host plat-
form control over UDP packets is perfunctory, and the application is
then allowed to assume complete control over the transport behaviour
of the session.

THE INTERNET PROTOCOL JOURNAL

22

Transport Versus Network continued

Content Versus Carriage
Perhaps this shift to opaque transport headers goes a little further
than just a desire for greater levels of protected autonomous control
by applications. The shift that QUIC represents could be seen as the
counter move by content providers to another round of a somewhat
tired old game play by network operators to extract a tax from content
providers by holding their content traffic to ransom, or, as it came to
be known, a tussle over Network Neutrality.

There have been times when network operators have implemented
measures to throttle certain forms of traffic that they asserted was using
their network in some vaguely unspecified manner that was “unfair”
in some way. The vagueness of all this discussion is probably attribut-
able to a baser desire on the part of the carriage operator, which was
to extort a carriage toll from content providers in a crude form of basic
blackmail: “My network, my rules. You customer, you pay!”

I suspect that many carriage providers in this industry, who are wit-
nessing the content providers take all the money off the table, believe
that they are the victims here. Their efforts to restore some of their
lost revenue base has meant that they are looking to restore a “fair
share” of revenue in forcing the giants of the content space to pay for
their share of carriage costs. However, if the enforcement mechanism
of this extortion pressure is through playing with the transport-control
parameters of the traffic that transits the carriage network (or, in other
words, holding the traffic to ransom), then the obvious response is to
push the transport controls under the same encryption veil as the con-
tent itself to prevent such real-time manipulation of the traffic profile.
And this explanation of why QUIC is so important is perhaps a more
compelling one.

If this situation is a tussle for primacy in the tensions between car-
riage and content, then it looks like the content folks are gaining the
upper hand. Through encryption at every level in the host part of the
protocol stack, including at the transport layer, the content folks are
withholding information from the carriage providers that would allow
the carriage providers to selectively discriminate and play content pro-
viders off against each other. If all that the network can do is limited
to fully encrypted UDP packet streams, then one stream looks much
like another, and selective discrimination is just not feasible. And if
that’s not enough, then padding and deliberate packet variation can
blur most efforts at traffic profiling.

But when I say “content” I really mean “apps,” and when I say “apps”
I actually mean “browsers,” so in reality I am really talking about
Chrome, and when I say Chrome, I mean Google.

The massive dominance of mobile traffic in the industry and the mas-
sive dominance of Android in the mobile device environment tilts this
space to an extraordinary degree.

THE INTERNET PROTOCOL JOURNAL

23

Given this inherent level of control of all mobile devices, coupled with
control of the majority browser platform in this space, it is hard to con-
ceive how Google could possibly lose in this tussle. However, it is likely
that if Google wins this particular battle with the carriage providers,
there will be further battles to come. It is highly likely that the carriage
industry will follow the lead from traditional print media and head
to politicians with the case that Google’s destruction of the business
model for the provision of national communications infrastructure is
counter to national interests, and political intervention is necessary to
restore some balance into the market and allow the market for carriage
to be a viable investment vehicle. Or, to put in more crudely, if Google
has destroyed the residual value of the contained carriage market, then
Google should now pay carriage operators to restore its viability.

At this point all technical considerations of encryption and informa-
tion leakage, and even all market considerations of the viability of
various business models, just walk out the door, and in their place
comes a bevy of lawyers and politicians. Strategic national interest is
always a strong argument to make, and when we get over the vari-
ous nebulous threats by actors to quit national markets, we then get
down to the real question of: “What is a tenable business relationship
between carriage and content?”

In such a politically charged space the choices at that point are either
that the various market players will compromise and reach some
outcome that they can all live with, or the politicians will attempt to
impose an outcome that will in all likelihood be far more disagreeable
for all!

Whatever the outcome in the next few years, it should be fun to watch
this drama play out. Don’t forget to bring popcorn!

References and Further Reading
	 [0]	 Wikipedia, “OSI model,”
		 https://en.wikipedia.org/wiki/OSI_model

	 [1]	 Cullen Jennings, Brian Trammell, Christian Huitema, Bruce
Schneier, Ted Hardie, Richard Barnes, and Daniel Borkmann,
“Confidentiality in the Face of Pervasive Surveillance: A Threat
Model and Problem Statement,” RFC 7624, August 2015.

	 [2]	 Stephen Farrell and Hannes Tschofenig, “Pervasive Monitoring
Is an Attack,” RFC 7258, May 2014.

	 [3]	 Al Morton and Kathleen Moriarty, “Effects of Pervasive
Encryption on Operators,” RFC 8404, July 2018.

	 [4]	 Brian Trammell, “The Wire Image of a Network Protocol,” RFC
8546, April 2019.

	 [5]	 Geoff Huston, “Just One Bit,” The ISP Column, March 2018.
		 https://www.potaroo.net/ispcol/2018-03/onebit.html

https://en.wikipedia.org/wiki/OSI_model
https://tools.ietf.org/html/rfc7624
https://tools.ietf.org/html/rfc7258
https://tools.ietf.org/html/rfc8404
https://tools.ietf.org/html/rfc8546
https://tools.ietf.org/html/rfc8546
https://www.potaroo.net/ispcol/2018-03/onebit.html

THE INTERNET PROTOCOL JOURNAL

24

	 [6]	 Godred Fairhurst and Colin Perkins, “Considerations around
Transport Header Confidentiality, Network Operations, and
the Evolution of Internet Transport Protocols,” RFC 9065, July
2021.

	 [7]	 Geoff Huston, “QoS — Fact or Fiction?” The Internet Protocol
Journal, Volume 3, No. 1, March 2000.

	 [8]	 Geoff Huston, “A Quick Look at QUIC,” The Internet Protocol
Journal, Volume 22, No. 1, March 2019.

	 [9]	 Geoff Huston, “Anatomy: Inside Network Address Translators,”
The Internet Protocol Journal, Volume 7, No. 3, September
2004.

	[10]	 Dave Oran, “Considerations in the Development of a QoS
Architecture for CCNx-Like Information-Centric Networking
Protocols,” RFC 9064, June 2021.

GEOFF HUSTON, B.Sc., M.Sc. A.M., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books,
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. At
various times Geoff has worked as an Internet researcher, an ISP systems architect,
and a network operator. E-mail: gih@apnic.net

Transport Versus Network continued

SIP phones have replaced traditional telephones even in the offices of The Internet
Protocol Journal.

https://tools.ietf.org/html/rfc9065
https://ipj.dreamhosters.com/wp-content/uploads/issues/2000/ipj03-1.pdf
https://ipj.dreamhosters.com/wp-content/uploads/issues/2000/ipj03-1.pdf
https://ipj.dreamhosters.com/wp-content/uploads/2019/03/ipj221-1.pdf
https://ipj.dreamhosters.com/wp-content/uploads/2019/03/ipj221-1.pdf
https://ipj.dreamhosters.com/wp-content/uploads/issues/2004/ipj07-3.pdf
https://tools.ietf.org/html/rfc9064
mailto:gih%40apnic.net?subject=

THE INTERNET PROTOCOL JOURNAL

25

20 Years of SIP — A Retrospective

by Jonathan Rosenberg, Five9

J une of 2022 marked the twentieth anniversary of the publica-
tion of the Session Initiation Protocol (SIP), documented in RFC
3261[1,2,3,4]. When it was published in June of 2002, it set records

for the longest specification produced by the Internet Engineering Task
Force (IETF), at 269 pages. The IETF produces the technology stan-
dards that make the Internet work. Protocols like Internet Protocol
(IP), Transmission Control Protocol (TCP), and Hypertext Transfer
Protocol (HTTP)—all now part of mainstream vernacular—came out
of the IETF. It was a monumental effort to produce, involving a dedi-
cated author team that worked full time for months to ensure that the
specifications were correct, consistent, and complete. I had the great
fortune to be the lead author of this document, an accomplishment
that was the defining moment for my career.

The RFC 3261 author team included Robert Sparks, Jon Peterson, Alan
Johnston, Allison Mankin, Jonathan Rosenberg, Gonzalo Camarillo,
and Henning Schulzrinne.

In the 20 years (and almost countless extensions to SIP) that followed,
it is hard to dispute that SIP has been a major success. At its core, SIP
enabled the transformation of the telecommunications industry from
one based on hardware to one based on software—colloquially known
as Voice over IP (VoIP). A 20th anniversary is the ideal time for a
retrospective, to consider both its positives and negatives. On the plus
side, this transformation resulted in the re-engineering of the phone
network, the creation of new markets and market categories, and the
creation of jobs and livelihoods. On the negative side, it has exacer-
bated the scourge of robocalling.

The Phone Network Re-Engineered
Prior to SIP, the telephone network was built using telephone switches
based on custom hardware. These switches were made by a small set
of vendors and were a completely verticalized solution from the physi-
cal networking layer to the application layer software.

With the mainstream adoption of IP networks, it became possible to
replace that hardware with general-purpose computers running SIP-
based software applications. This replacement resulted in a dramatic
reduction of cost compared to the prior generation. SIP further reduced
this cost by enabling these software applications to run on machines in
a small number of data centers that might be far away from the people
talking to each other, while still keeping the audio delays to a mini-
mum. This centralization of the software was a dramatic shift in how
the phone network worked.

This new paradigm had the most immediate impacts on the way
corporate phone systems were built. Before SIP, businesses needed to
put hardware-based phone systems called Private Branch Exchanges
(PBXs) in each building and wire them up on a separate network from
the IP network used for everything else.

THE INTERNET PROTOCOL JOURNAL

26

SIP allowed enterprise IT departments to ditch this separate network
and reuse the IP network for voice. It also allowed them to put the
software in their data centers and eliminate the hardware in each
building. This development represented a huge improvement in costs
and reduction in complexity. The final “icing on the cake” was that
SIP enabled video, instant messaging, and presence too, spawning the
creation of desktop applications—called softphones—that allowed
users to place calls, have video meetings, and chat. Businesses far and
wide adopted these phones. Today, almost all business phone systems
are based on SIP.

With its success in corporations, pressure grew for the phone com-
panies (that is, the telcos), to provide a way for businesses to connect
their phone systems to the rest of the phone network using SIP. Prior
to this time, businesses could use software within their corporate cam-
pus, but they needed to switch to hardware to connect to the rest of
the world. And so, “SIP Trunking” was born, providing a way to send
and receive calls into the traditional phone network using SIP-based
software applications. Its adoption was rapid, and it was the first
step in transforming the edge of the telco networks from hardware to
software.

Around the same time, mobile phone operators were seeing an explo-
sion in usage due to smartphones. These mobile phones had two
distinct wireless connections—an old one just for voice, and a new one
for data. To expand capacity, they needed to reclaim the voice channel
and use it for data. They could do it by switching the voice to VoIP,
which would require them to replace their own voice hardware with
SIP-based software. The wireless industry produced an expansive set
of specifications on how to build a SIP-based replacement for mobile
phone networks, called the Internet Multimedia Subsystem (IMS).
IMS was finally deployed in the late 2010s. Today, most mobile phone
calls use a SIP client built into the phone and traverse a SIP network
deployed and operated by the mobile carriers. This change is largely
invisible to mobile phone users, but not entirely. SIP also enabled the
usage of higher quality wideband voice for phone calls, creating an
audio experience that is more like listening to music, and you may
have noticed this difference in more and more calls you make.

In a similar fashion, wireline telco providers saw a surge in demand for
data. To make the jump to next-generation data access technologies
like fiber, they needed to get rid of their separate voice networks and
move to voice over IP too. Today, if you have one of these higher speed
data networks and still have an analog phone in your home, the ana-
log signal is converted to VoIP using a SIP client in the modem at your
house, and then processed by a SIP network that the carrier operates.

The final piece of the of the puzzle is how carriers themselves connect
to each other. This process has gradually migrated to SIP too, using
carrier versions of SIP trunking. This change is now accelerating, since
the conversion is needed to enable the deployment of Secure Telephone
Identity Revisited and Signature-based Handling of Asserted infor-
mation using toKENs (STIR/SHAKEN), a SIP-based technology to
combat robocalling[5,6,7].

20 Years of SIP continued

THE INTERNET PROTOCOL JOURNAL

27

Without a doubt, this transformation of the telecommunications tech-
nology stack—that SIP enabled—has massively impacted the world,
enabling lower costs, more bandwidth for data, better quality for
voice, and added video.

Market Category Creation
This transformation of the telecommunications industry also created
entirely new markets and market categories that didn’t exist before SIP.
To enumerate just a few of them:

•	 IP PBX: The IP Private Branch Exchange (PBX) provides phone
services for businesses. This market was created as a direct replace-
ment for the legacy hardware-based PBX products that preceded
it. Cisco Systems led this market, which never had a product in
the PBX market, along with incumbents like Avaya, Siemens, and
Nortel, many of which had legacy products along with the newer
IP-based ones. This market is now itself shrinking, being replaced by
Unified Communications as a Service (UCaaS).

•	 SIP Trunking: This market is estimated to be around $13B in 2021[8]

and is a replacement for legacy hardware phone network access
technologies.

•	 SIP Hardphones: Before SIP, the PBX vendors made their own
phones, and a given phone could only work with their own hard-
ware. With SIP, it became possible for vendors to produce phones
that could work with many different IP PBXs. These phones
were often produced at low cost. Vendors include Yealink, Cisco,
Grandstream, and Avaya.

•	 Session Border Controller (SBC): The usage of SIP trunking drove
demand for a new category of product that could serve as a SIP fire-
wall of sorts, managing the boundary between an enterprise and a
carrier, or between carriers. Ribbon and Oracle are the market lead-
ers, with a market size estimated at USD $709M in 2022[9].

•	 Internet Multimedia Subsystem (IMS): Market leaders include
Ericsson, Siemens, and Nokia. The market size was USD $1.8B in
in 2019[10].

•	 Communications Platform as a Service (CPaaS): This market cat-
egory is an entirely new one, enabled by the transformation of
telecommunications to software. CPaaS vendors offer Application
Programming Inerfaces (APIs) that allow developers to build tele-
com applications easily. These APIs allow for sending of SMSs,
placing and receiving of phone calls, and so on. Twilio created this
market and is still the market leader. SIP enabled the CPaaS vendors
to gain low-cost and global access to telephone services, and with-
out SIP, the market could not have existed. The market is huge and
growing—estimated at USD $5.2B in 2021[11], (though most of it is
for sending Short Message Service (SMS), where SIP has been less
impactful).

•	 Unified Communications as a Service (UCaaS) puts the IP PBX in
the cloud so businesses can consume voice and video communica-
tions services from the cloud.

THE INTERNET PROTOCOL JOURNAL

28

Market leaders include RingCentral, 8x8, Cisco Systems, Microsoft,
and Zoom. All of these vendors depend on SIP-based interconnec-
tion to the telephone network. This market is really big—estimated
to be USD $28.9B in 2021![12].

•	 Contact Center as a Service (CCaaS) enables delivery of contact
center software from the cloud, including voice response systems,
agent desktop applications, and call distribution software. Vendors
include Five9, Gensys, and NICE/InContact. Like UCaaS, these ven-
dors depend on SIP to interconnect to the telephone network. This
market was valued at USD $4.8B in 2021.[13]

When put together, SIP created or enabled these (no less than eight) dis-
tinct markets, representing approximately USD $50B in market value!

Job Creation
For me, the greatest source of satisfaction from the success of SIP is
when I hear from someone that they have built their careers and their
livelihood around this technology. SIP is complex, and like any com-
plex technology that many vendors use in many ways in many markets,
expertise in it becomes a marketable skill.

Many LinkedIn profiles list “SIP” as a skill. Many are software devel-
opers, but many other jobs require SIP expertise. SIP network engineers
and technicians build, deploy, and operate SIP networks. Sales and
marketing engineers configure and demonstrate SIP-based products.
IT workers who manage business communications for their companies
need to understand SIP too. A search on LinkedIn for people matching
“SIP” yields approximately 239,000 results.

Many companies now exist that provide SIP certifications and train-
ing—for example the SIP School.[14] SIP is taught in many graduate
classes that cover computer networking, and some even have dedi-
cated courses just on VoIP.

It’s hard to know how many jobs SIP has created, but it would not be
unreasonable to guess it is somewhere in the ballpark of 100,000 jobs.
If you add the folks working in technical roles across the companies in
the markets that SIP created, along with those working in telcos or in
IT departments providing VOIP, it is easy to see how the number could
be that large.

The Downside: Robocalling
Almost all technologies that have brought great benefits have come
with some drawbacks. There is no better example than the automo-
bile, which has brought countless benefits, but also caused 42,915
deaths in 2021 due to automobile accidents. The Internet too, has
brought countless benefits, but has also brought with it problems that
are becoming more apparent. SIP has had far less impact as other tech-
nologies, so its drawbacks are fewer, but they do exist.

Without a doubt, the biggest drawback has been the rise of robocalling
and the fake caller IDs that come with it. Telemarketing calls predate
SIP for sure. However, as SIP reduced the costs of placing calls and
made it possible to make calls using off-the-shelf software, it caused a
sharp increase in the volume of these unwanted calls.

20 Years of SIP continued

THE INTERNET PROTOCOL JOURNAL

29

The problem is exacerbated by a design flaw in SIP—the lack of an
authenticated caller ID. Without that, it is easy for callers to insert any
phone number they want. This design defect was inherited from email,
as SIP copied this aspect of its design from how email worked. After
many years of failed attempts to resolve the problem, there is finally
“light at the end of the tunnel” using a SIP-based technology called
STIR/SHAKEN[5,6,7].

In Conclusion
It’s been the highlight of my career to have had the fortune to be the
lead author for a technology that, 20 years later, has had a profound
impact on the world. By enabling the transformation of telecommuni-
cations from hardware to software, SIP drove a re-engineering of both
mobile and wired phone networks that resulted in lower cost commu-
nications services and more bandwidth available for data. It brought
video to the enterprise, created entirely new markets and some new
market categories, and created at least 100,000 jobs. I try and remind
myself of that fact every time I get one of those annoying robocalls.

References and Further Reading
	 [0]	 This article was adopted from Jonathan Rosenberg’s blog:
 		 https://www.jdrosen.net/blog/20-years-of-sip-a-retrospective

	 [1]	 Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo,
Alan Johnston, Jon Peterson, Robert Sparks, Mark Handley, and
Eve Schooler, “SIP: Session Initiation Protocol,” RFC 3261, June
2002.

	 [2]	 Jonathan Rosenberg and Henning Schulzrinne, “An Offer/Answer
Model with the Session Description Protocol,” RFC 3264, June
2002.

	 [3]	 Henning Schulzrinne and Jonathan Rosenberg, “The Session
Initiation Protocol: Providing Advanced Telephony Access Across
the Internet,” Bell Labs Technical Journal, October–December
1998.

	 [4]	 William Stallings, Session Initiation Protocol, The Internet
Protocol Journal, Volume 6, No. 1, March 2003.

	 [5]	 Numeracle, “STIR/SHAKEN: Everything you need to know
about the FCC’s Call Authentication Framework,”

		 https://www.numeracle.com/resources/stir-shaken-center

	 [6]	 IETF Datatracker, “Secure Telephone Identity Revisited (stir),”
		 https://datatracker.ietf.org/wg/stir/documents/

	 [7]	 Metaswitch, “What are the STIR/SHAKEN Standards?”
		 https://www.metaswitch.com/knowledge-center/reference/

what-are-the-stir/shaken-standards

	 [8]	 The Business Research Company, “COVID-19 Impact On The
Global Session Initiation Protocol (SIP) Trunking Services Market
Outlook,” March 8, 2022.
https://www.prnewswire.co.uk/news-releases/covid-
19-impact-on-the-global-session-initiation-protocol-
sip-trunking-services-market-outlook-878809709.html

https://www.jdrosen.net/blog/20-years-of-sip-a-retrospective
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc3264
https://ipj.dreamhosters.com/wp-content/uploads/issues/2003/ipj06-1.pdf
https://www.numeracle.com/resources/stir-shaken-center
https://datatracker.ietf.org/wg/stir/documents/
https://www.metaswitch.com/knowledge-center/reference/what-are-the-stir/shaken-standards
https://www.metaswitch.com/knowledge-center/reference/what-are-the-stir/shaken-standards
https://www.prnewswire.co.uk/news-releases/covid-19-impact-on-the-global-session-initiation-protocol-sip-trunking-services-market-outlook-878809709.html
https://www.prnewswire.co.uk/news-releases/covid-19-impact-on-the-global-session-initiation-protocol-sip-trunking-services-market-outlook-878809709.html
https://www.prnewswire.co.uk/news-releases/covid-19-impact-on-the-global-session-initiation-protocol-sip-trunking-services-market-outlook-878809709.html

THE INTERNET PROTOCOL JOURNAL

30

	 [9]	 Future Market Insights, “Session Border Controller (SBC) Market
Overview (2022–2032),”

		 https://www.futuremarketinsights.com/reports/
session-border-controller-market

	[10]	 Fior Markets, “Global IP Multimedia Subsystem (IMS) Market
Size to Expand Significantly of USD 8.26 Billion by 2027,”

		 https://www.globenewswire.com/news-release/2022/
05/19/2447271/0/en/Global-IP-Multimedia-Subsystem-
IMS-Market-Size-to-Expand-Significantly-of-USD-8-26-
billion-by-2027-Fior-Markets.html

	[11]	 Future Market Insights, “Communications Platform as a Service
(CPaaS) Market Outlook (2022–2032),”

		 https://www.futuremarketinsights.com/reports/
communications-platform-as-a-service-cpaas-market

	[12]	 Fortune Business Insights, “Unified Communication as a Service
(UCaaS) Market Size, Share & COVID-19 Impact Analysis,
By Component (Telephony, Unified Messaging, Collaboration
Platforms), By Delivery Model (Managed Services, and Hosted/
Cloud Services), By Organization Size (Large Enterprises, SME’s),
By Vertical (BFSI, IT and Telecommunications, IT-enabled
Services (ITeS), Education, Retail and Consumer Goods), and
Regional Forecast, 2021–2028,”

		 https://www.fortunebusinessinsights.com/
industry-reports/toc/unified-communication-as-a-
service-ucaas-market-101934

	[13]	 Fortune Business Insights, “Contact Center as a Service (CCaaS)
Market Size, Share & COVID-19 Impact Analysis, By Function
(Interactive Voice Response (IVR), Multichannel, Automatic Call
Distribution, Computer Telephony Integration (CTI), Reporting
and Analytics, Workforce Optimization, Customer Collaboration,
and Others), By Enterprise Size (Small & Medium Enterprises and
Large Enterprises), By Industry (BFSI, IT & Telecommunications,
Government, Healthcare, Consumer Goods & Retail, Travel &
Hospitality, Media & Entertainment, and Others), and Regional
Forecast, 2022–2029,”

		 https://www.fortunebusinessinsights.com/toc/
contact-center-as-a-service-ccaas-market-104160

	[14]	 The SIP School: https://www.thesipschool.com/

	[15]	 The SIP Forum: https://www.sipforum.org/

JONATHAN ROSENBERG is the Chief Technology Officer and Head of AI for Five9.
He was previously CTO for Cisco Webex and Skype. He has been a frequent con-
tributor to the IETF, with 72 RFCs. He’s the lead author of the Session Initiation
Protocol (SIP) and related standards, such as ICE, STUN, TURN and SIMPLE.
E-mail: jdrosen@jdrosen.net

20 Years of SIP continued

https://www.futuremarketinsights.com/reports/session-border-controller-market
https://www.futuremarketinsights.com/reports/session-border-controller-market
https://www.globenewswire.com/news-release/2022/05/19/2447271/0/en/Global-IP-Multimedia-Subsystem-IMS-Market-Size-to-Expand-Significantly-of-USD-8-26-billion-by-2027-Fior-Markets.html
https://www.globenewswire.com/news-release/2022/05/19/2447271/0/en/Global-IP-Multimedia-Subsystem-IMS-Market-Size-to-Expand-Significantly-of-USD-8-26-billion-by-2027-Fior-Markets.html
https://www.globenewswire.com/news-release/2022/05/19/2447271/0/en/Global-IP-Multimedia-Subsystem-IMS-Market-Size-to-Expand-Significantly-of-USD-8-26-billion-by-2027-Fior-Markets.html
https://www.globenewswire.com/news-release/2022/05/19/2447271/0/en/Global-IP-Multimedia-Subsystem-IMS-Market-Size-to-Expand-Significantly-of-USD-8-26-billion-by-2027-Fior-Markets.html
https://www.futuremarketinsights.com/reports/communications-platform-as-a-service-cpaas-market
https://www.futuremarketinsights.com/reports/communications-platform-as-a-service-cpaas-market
https://www.fortunebusinessinsights.com/industry-reports/toc/unified-communication-as-a-service-ucaas-market-101934
https://www.fortunebusinessinsights.com/industry-reports/toc/unified-communication-as-a-service-ucaas-market-101934
https://www.fortunebusinessinsights.com/industry-reports/toc/unified-communication-as-a-service-ucaas-market-101934
https://www.fortunebusinessinsights.com/toc/contact-center-as-a-service-ccaas-market-104160
https://www.fortunebusinessinsights.com/toc/contact-center-as-a-service-ccaas-market-104160
https://www.thesipschool.com/
https://www.sipforum.org/
mailto:%20jdrosen%40jdrosen.net?subject=

THE INTERNET PROTOCOL JOURNAL

31

Fragments
IAB Comments on FCC Notice on Secure Internet Routing
The Internet Architecture Board (IAB), which provides oversight for
the protocols and procedures used by the Internet and also handles the
liaison management for the Internet Engineering Task Force (IETF),
appreciates the opportunity to submit comments in response to the
Federal Communication Commission’s (FCC) Notice of Inquiry,
“Secure Internet Routing”[1]. The IETF is the main organization that
works on standards relating to Internet technology. The mission of
the IETF is to produce relevant technical documents that influence the
way people design, use, and manage the Internet. The IETF is an open,
diverse, global community of developers consisting of network opera-
tors, vendors, researchers and many other stakeholders.

The IETF originally developed the Internet protocol stack, including
the routing system based on the Border Gateway Protocol (BGP), and
continues to be responsible for maintaining and evolving the technical
specifications that define the Internet and its protocols. The Internet’s
success has resulted from its flexible, modular architecture. BGP is the
central protocol for providing global end-to-end connectivity across
the world’s heterogeneous network domains. It is fundamental to the
operation of the Internet.

As in any protocol development, the adoption within the industry
of new capabilities will vary. In recent decades, occurrences of BGP-
related operational issues have increased. The existing BGP protocol
stack is based on a design which can be extended, building on existing
network investments. The IETF has two working groups dedicated
to improving BGP interdomain routing, called Inter-Domain Routing
(IDR) and Global Routing Operations (GROW). IDR is concerned
with the correctness, robustness, and scalability of BGP. GROW is
concerned with the operational problems associated with global rout-
ing systems, including measurement, policy, and security. The IETF
will continue to evolve BGP to meet the needs of new network struc-
tures and applications, with a strong focus on security.

We believe in a continuous, modular, flexible evolution of the Internet
and its protocols based on operational experience and requirements,
where each service provider can determine their security needs based
on their diverse requirements and in partnership with other providers.
The success of future standardization efforts intended to increase rout-
ing security, will be highly dependent on educating BGP users about
BGP operational issues and how well real-world deployment experi-
ence can be fed back into the multi-stakeholder standards development
process, as opposed to a mandated top-down approach, which would
fail to meet the diverse needs of the global community.

The FCC can support these efforts by supporting research and other
work that help these communities to understand issues, develop solu-
tions where needed, and deploy security technology more widely. The
IAB believes that the IETF is an important partner in these efforts.

	 [1]	 “FCC Launches Inquiry To Reduce Cyber Risks,” The Internet
Protocol Journal, Volume 25, No. 1, April 2022, page 38.

https://ipj.dreamhosters.com/wp-content/uploads/2022/04/251-ipj.pdf
mailto:https://www.ipjsubscription.org/?subject=

THE INTERNET PROTOCOL JOURNAL

32

Thank You!
Publication of IPJ is made possible by organizations and individuals around the world dedicated to
the design, growth, evolution, and operation of the global Internet and private networks built on the
Internet Protocol. The following individuals have provided support to IPJ. You can join them by visiting
http://tinyurl.com/IPJ-donate

Kjetil Aas
Fabrizio Accatino
Michael Achola
Martin Adkins
Melchior Aelmans
Christopher Affleck
Scott Aitken
Jacobus Akkerhuis
Antonio Cuñat Alario
William Allaire
Nicola Altan
Shane Amante
Marcelo do Amaral
Matteo D’Ambrosio
Selva Anandavel
Jens Andersson
Danish Ansari
Finn Arildsen
Tim Armstrong
Richard Artes
Michael Aschwanden
David Atkins
Jac Backus
Jaime Badua
Bent Bagger
Eric Baker
Santosh Balagopalan
William Baltas
David Bandinelli
Benjamin Barkin-Wilkins
Feras Batainah
Michael Bazarewsky
David Belson
Richard Bennett
Hidde Beumer
Pier Paolo Biagi
Tyson Blanchard
John Bigrow
Orvar Ari Bjarnason
Axel Boeger
Keith Bogart
Mirko Bonadei
Roberto Bonalumi
Lolke Boonstra
Julie Bottorff
 Photography
Gerry Boudreaux
Leen de Braal
Kevin Breit
Thomas Bridge
Ilia Bromberg
Václav Brožík
Christophe Brun

Gareth Bryan
Ron Buchalski
Paul Buchanan
Stefan Buckmann
Caner Budakoglu
Darrell Budic
BugWorks
Scott Burleigh
Chad Burnham
Jon Harald Bøvre
Olivier Cahagne
Antoine Camerlo
Tracy Camp
Ignacio Soto Campos
Fabio Caneparo
Roberto Canonico
David Cardwell
Richard Carrara
John Cavanaugh
Lj Cemeras
Dave Chapman
Stefanos Charchalakis
Greg Chisholm
David Chosrova
Marcin Cieslak
Lauris Cikovskis
Guido Coenders
Brad Clark
Narelle Clark
Horst Clausen
Joseph Connolly
Steve Corbató
Brian Courtney
Beth and Steve Crocker
Dave Crocker
Kevin Croes
John Curran
André Danthine
Morgan Davis
Jeff Day
Julien Dhallenne
Freek Dijkstra
Geert Van Dijk
David Dillow
Richard Dodsworth
Ernesto Doelling
Michael Dolan
Eugene Doroniuk
Karlheinz Dölger
Michael Dragone
Joshua Dreier
Lutz Drink
Aaron Dudek

Dmitriy Dudko
Andrew Dul
Joan Marc Riera
 Duocastella
Pedro Duque
Holger Durer
Mark Eanes
Andrew Edwards
Peter Robert Egli
George Ehlers
Peter Eisses
Torbjörn Eklöv
Y Ertur
ERNW GmbH
ESdatCo
Steve Esquivel
Jay Etchings
Mikhail Evstiounin
Bill Fenner
Paul Ferguson
Ricardo Ferreira
Kent Fichtner
Armin Fisslthaler
Michael Fiumano
The Flirble Organisation
Gary Ford
Jean-Pierre Forcioli
Susan Forney
Christopher Forsyth
Andrew Fox
Craig Fox
Fausto Franceschini
Valerie Fronczak
Tomislav Futivic
Laurence Gagliani
Edward Gallagher
Andrew Gallo
Chris Gamboni
Xosé Bravo Garcia
Osvaldo Gazzaniga
Kevin Gee
Greg Giessow
John Gilbert
Serge Van Ginderachter
Greg Goddard
Tiago Goncalves
Ron Goodheart
Octavio Alfageme
 Gorostiaga
Barry Greene
Jeffrey Greene
Richard Gregor
Martijn Groenleer

Geert Jan de Groot
Ólafur Guðmundsson
Christopher Guemez
Gulf Coast Shots
Sheryll de Guzman
Rex Hale
Jason Hall
Darow Han
Handy Networks LLC
James Hamilton
Stephen Hanna
Martin Hannigan
John Hardin
David Harper
Edward Hauser
David Hauweele
Marilyn Hay
Headcrafts SRLS
Hidde van der Heide
Johan Helsingius
Robert Hinden
Asbjørn Højmark
Damien Holloway
Alain Van Hoof
Edward Hotard
Bill Huber
Hagen Hultzsch
Kauto Huopio
Kevin Iddles
Mika Ilvesmaki
Karsten Iwen
David Jaffe
Ashford Jaggernauth
Thomas Jalkanen
Martijn Jansen
Jozef Janitor
John Jarvis
Dennis Jennings
Edward Jennings
Aart Jochem
Nils Johansson
Brian Johnson
Curtis Johnson
Richard Johnson
Jim Johnston
Jonatan Jonasson
Daniel Jones
Gary Jones
Jerry Jones
Michael Jones
Amar Joshi
Javier Juan
David Jump

Anders Marius Jørgensen
Merike Kaeo
Andrew Kaiser
Christos Karayiannis
Daniel Karrenberg
David Kekar
Stuart Kendrick
Robert Kent
Jithin Kesavan
Jubal Kessler
Shan Ali Khan
Nabeel Khatri
Dae Young Kim
William W. H. Kimandu
John King
Russell Kirk
Gary Klesk
Anthony Klopp
Henry Kluge
Michael Kluk
Andrew Koch
Ia Kochiashvili
Carsten Koempe
Richard Koene
Alexader Kogan
Matthijs Koot
Antonin Kral
Robert Krejčí
Mathias Körber
John Kristoff
Terje Krogdahl
Bobby Krupczak
Murray Kucherawy
Warren Kumari
George Kuo
Dirk Kurfuerst
Darrell Lack
Andrew Lamb
Richard Lamb
Yan Landriault
Edwin Lang
Sig Lange
Markus Langenmair
Fred Langham
Tracy LaQuey Parker
Alex Latzko
Jose Antonio Lazaro
 Lazaro
Rick van Leeuwen
Simon Leinen
Robert Lewis
Christian Liberale
Martin Lillepuu

http://tinyurl.com/IPJ-donate

THE INTERNET PROTOCOL JOURNAL

33

Follow us on Twitter and Facebook @protocoljournal https://www.facebook.com/newipj

Roger Lindholm
Link Light Networks
Chris and Janet Lonvick
Sergio Loreti
Eric Louie
Adam Loveless
Josh Lowe
Guillermo a Loyola
Hannes Lubich
Dan Lynch
David MacDuffie
Sanya Madan
Miroslav Madić
Alexis Madriz
Carl Malamud
Jonathan Maldonado
Michael Malik
Tarmo Mamers
Yogesh Mangar
John Mann
Bill Manning
Harold March
Vincent Marchand
Normando Marcolongo
Gabriel Marroquin
David Martin
Jim Martin
Ruben Tripiana Martin
Timothy Martin
Carles Mateu
Juan Jose Marin Martinez
Ioan Maxim
David Mazel
Miles McCredie
Brian McCullough
Joe McEachern
Alexander McKenzie
Jay McMaster
Mark Mc Nicholas
Olaf Mehlberg
Carsten Melberg
Kevin Menezes
Bart Jan Menkveld
Sean Mentzer
William Mills
David Millsom
Desiree Miloshevic
Joost van der Minnen
Thomas Mino
Rob Minshall
Wijnand
 Modderman-Lenstra
Mohammad Moghaddas
Roberto Montoya
Charles Monson

Andrea Montefusco
Fernando Montenegro
Joel Moore
John More
Maurizio Moroni
Brian Mort
Soenke Mumm
Tariq Mustafa
Stuart Nadin
Michel Nakhla
Mazdak Rajabi Nasab
Krishna Natarajan
Naveen Nathan
Darryl Newman
Thomas Nikolajsen
Paul Nikolich
Travis Northrup
Marijana Novakovic
David Oates
Ovidiu Obersterescu
Tim O’Brien
Mike O’Connor
Mike O’Dell
John O’Neill
Jim Oplotnik
Packet Consulting
 Limited
Carlos Astor Araujo
 Palmeira
Alexis Panagopoulos
Gaurav Panwar
Chris Parker
Manuel Uruena Pascual
Ricardo Patara
Dipesh Patel
Alex Parkinson
Craig Partridge
Dan Paynter
Leif Eric Pedersen
Rui Sao Pedro
Juan Pena
Chris Perkins
Michael Petry
Alexander Peuchert
David Phelan
Harald Pilz
Derrell Piper
Rob Pirnie
Marc Vives Piza
Jorge Ivan Pincay Ponce
Victoria Poncini
Blahoslav Popela
Andrew Potter
Eduard Llull Pou
Tim Pozar

David Raistrick
Priyan R Rajeevan
Balaji Rajendran
Paul Rathbone
William Rawlings
Mujtiba Raza Rizvi
Bill Reid
Petr Rejhon
Robert Remenyi
Rodrigo Ribeiro
Glenn Ricart
Justin Richards
Rafael Riera
Mark Risinger
Fernando Robayo
Michael Roberts
Gregory Robinson
Ron Rockrohr
Carlos Rodrigues
Magnus Romedahl
Lex Van Roon
Marshall Rose
Alessandra Rosi
David Ross
William Ross
Boudhayan
 Roychowdhury
Carlos Rubio
Rainer Rudigier
Timo Ruiter
RustedMusic
Babak Saberi
George Sadowsky
Scott Sandefur
Sachin Sapkal
Arturas Satkovskis
PS Saunders
Richard Savoy
John Sayer
Phil Scarr
Gianpaolo Scassellati
Elizabeth Scheid
Jeroen Van Ingen
 Schenau
Carsten Scherb
Ernest Schirmer
Benson Schliesser
Philip Schneck
James Schneider
Peter Schoo
Dan Schrenk
Richard Schultz
Timothy Schwab
Roger Schwartz
SeenThere

Peter Tomsu Fine Art
 Photography
Joseph Toste
Rey Tucker
Sandro Tumini
Angelo Turetta
Michael Turzanski
Phil Tweedie
Steve Ulrich
Unitek Engineering AG
John Urbanek
Martin Urwaleck
Betsy Vanderpool
Surendran Vangadasalam
Ramnath Vasudha
Philip Venables
Buddy Venne
Alejandro Vennera
Luca Ventura
Scott Vermillion
Tom Vest
Peter Villemoes
Vista Global Coaching
 & Consulting
Dario Vitali
Rüdiger Volk
Jeffrey Wagner
Don Wahl
Michael L Wahrman
Laurence Walker
Randy Watts
Andrew Webster
Tim Weil
Jd Wegner
Westmoreland
 Engineering Inc.
Rick Wesson
Peter Whimp
Russ White
Jurrien Wijlhuizen
Derick Winkworth
Pindar Wong
Makarand Yerawadekar
Phillip Yialeloglou
Janko Zavernik
Bernd Zeimetz
Muhammad Ziad
Ziayuddin
Tom Zingale
Jose Zumalave
Romeo Zwart
廖 明沂.

Scott Seifel
Paul Selkirk
Yury Shefer
Yaron Sheffer
Doron Shikmoni
Tj Shumway
Jeffrey Sicuranza
Thorsten Sideboard
Greipur Sigurdsson
Fillipe Cajaiba da Silva
Andrew Simmons
Pradeep Singh
Henry Sinnreich
Geoff Sisson
John Sisson
Helge Skrivervik
Terry Slattery
Darren Sleeth
Richard Smit
Bob Smith
Courtney Smith
Eric Smith
Mark Smith
Tim Sneddon
Craig Snell
Job Snijders
Ronald Solano
Asit Som
Ignacio Soto Campos
Evandro Sousa
Peter Spekreijse
Thayumanavan Sridhar
Paul Stancik
Ralf Stempfer
Matthew Stenberg
Martin Štěpánek
Adrian Stevens
Clinton Stevens
John Streck
Martin Streule
David Strom
Colin Strutt
Viktor Sudakov
Edward-W. Suor
Vincent Surillo
Terence Charles
 Sweetser
T2Group
Roman Tarasov
David Theese
Douglas Thompson
Kerry Thompson
Lorin J Thompson
Fabrizio Tivano

https://www.facebook.com/newipj

THE INTERNET PROTOCOL JOURNAL

34

Call for Papers

The Internet Protocol Journal (IPJ) is a quarterly technical publication
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about
all aspects of Internet technology. IPJ is not intended to promote
any specific products or services, but rather is intended to serve as
an informational and educational resource for engineering profession-
als involved in the design, development, and operation of public and
private internets and intranets. In addition to feature-length articles,
IPJ contains technical updates, book reviews, announcements, opinion
columns, and letters to the Editor. Topics include but are not limited
to:
•	 Access and infrastructure technologies such as: Wi-Fi, Gigabit

Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile
wireless.

•	 Transport and interconnection functions such as: switching, routing,
tunneling, protocol transition, multicast, and performance.

•	 Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
troubleshooting, and mapping.

•	 Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed systems,
cloud computing, and quality of service.

•	 Application and end-user issues such as: E-mail, Web authoring,
server technologies and systems, electronic commerce, and applica-
tion management.

•	 Legal, policy, regulatory and governance topics such as: copyright,
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

mailto:ole%40protocoljournal.org?subject=
mailto:olejacobsen%40me.com?subject=
http://creativecommons.org/

THE INTERNET PROTOCOL JOURNAL

35

Supporters and Sponsors

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsors Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

Your logo here!

http://www.cisco.com
mailto:sponsor%40protocoljournal.org?subject=
https://www.icann.org
http://www.lacnic.net
http://www.us.ntt.net/
http://de-cix.net
http://www.wide.ad.jp/
http://www.juniper.net
http://nsrc.org/
http://www.akamai.com
https://apnic.foundation
http://www.internetsociety.org
http://www.ripe.net
http://www.linkedin.com
https://ams-ix.net
https://www.isc.org
http://www.qacafe.com
https://afrinic.net
http://www.iwl.com
https://www.dns-oarc.net
http://ipxo.com
http://comcast.net
http://labs.verisigninc.com
https://www.netskope.com
https://jprs.co.jp
http://www.team-cymru.org
http://www.google.com
http://www.linx.net
http://apricot.net
https://donuts.domains/
http://edg.io

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

John Crain, Senior Vice President and Chief Technology Officer
Internet Corporation for Assigned Names and Numbers

Dr. Steve Crocker, CEO and Co-Founder
Shinkuro, Inc.

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Dr. Cullen Jennings, Cisco Fellow
Cisco Systems, Inc.

Olaf Kolkman, Principal – Internet Technology, Policy, and Advocacy
The Internet Society

Dr. Jun Murai, Founder, WIDE Project
Distinguished Professor, Keio University
Co-Director, Keio University Cyber Civilization Research Center, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal
Link Fulfillment
7650 Marathon Dr., Suite E
Livermore, CA 94550

CHANGE SERVICE REQUESTED

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

http://creativecommons.org/licenses/by-nc-nd/2.0/

