
 

June 2000 Volume 3, Number 2

 

A Quarterly Technical Publication for 
Internet and Intranet Professionals

 

In This Issue

 

From the Editor .......................1

TCP Performance ....................2

Internet Mail Standards .........25

Book Review..........................37

Fragments ..............................39

 

F r o m  T h e  E d i t o r

 

Two protocols used in the Internet are so important that they deserve
special attention: the 

 

Internet Protocol

 

 (IP) from which this journal takes
its name, and the 

 

Transmission Control Protocol

 

 (TCP). IP is fundamen-
tal to Internet addressing and routing, while TCP provides a reliable
transport service that is used by most Internet applications, including in-
teractive Telnet, file transfer, electronic mail, and Web page access via
HTTP. Because of the critical importance of TCP to the operation of the
Internet, it has received much attention in the research community over
the years. As a result, numerous improvements to implementations of
TCP have been developed and deployed. In this issue, Geoff Huston
takes a detailed look at TCP from a performance perspective and de-
scribes several enhancements to the original protocol. In a second article,
Geoff will look at the challenges facing TCP in a rapidly growing and
changing Internet, and describe work to further augment TCP. 

Electronic mail is by far the most used of all Internet applications. The
fundamental protocols for delivery and retrieval of e-mail have not
changed much since the early days of the ARPANET, but as with TCP,
many enhancements have been added to accommodate new uses of e-
mail. Today, Internet e-mail supports international character sets, in-
cludes the ability to send file attachments, and allows roaming e-mail
clients to authenticate themselves to servers. All of this has been made
possible by continued development in the 

 

Internet Engineering Task
Force

 

 (IETF). In our second article, Paul Hoffman of the Internet Mail
Consortium gives an overview of Internet mail standards. 

This is the second anniversary issue of 

 

The Internet Protocol Journal

 

(IPJ). By now more than 10,000 people from virtually every country in
the world have subscribed to the paper edition of IPJ. In order to serve
our readers better, we are developing an online subscription system,
which will be deployed in July 2000. With this new system you will be
able to modify your mailing address as well as select your preferred de-
livery method for the journal. You can choose to receive IPJ on paper,
or be notified via e-mail when a new issue becomes available on line.
More information about this new system can be found on our Web site
at 

 

www.cisco.com/ipj

 

. We would love to hear your feedback on this
system and any other aspect of IPJ. Please send your comments to

 

ipj@cisco.com

 

—Ole J. Jacobsen, Editor and Publisher

 

ole@cisco.com

 

You can download IPJ
back issues and find

subscription information at:

 

www.cisco.com/ipj
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TCP Performance

 

by Geoff Huston, Telstra

 

he 

 

Transmission Control Protocol

 

 (TCP) and the 

 

User Data-
gram Protocol

 

 (UDP) are both IP transport-layer protocols. UDP
is a lightweight protocol that allows applications to make direct

use of the unreliable datagram service provided by the underlying IP ser-
vice. UDP is commonly used to support applications that use simple
query/response transactions, or applications that support real-time com-
munications. TCP provides a reliable data-transfer service, and is used
for both bulk data transfer and interactive data applications. TCP is the
major transport protocol in use in most IP networks, and supports the
transfer of over 90 percent of all traffic across the public Internet today.
Given this major role for TCP, the performance of this protocol forms a
significant part of the total picture of service performance for IP net-
works. In this article we examine TCP in further detail, looking at what
makes a TCP session perform reliably and well. This article draws on
material published in the 

 

Internet Performance Survival Guide

 

[1]

 

. 

 

Overview of TCP 

 

TCP is the embodiment of reliable end-to-end transmission functional-
ity in the overall Internet architecture. All the functionality required to
take a simple base of IP datagram delivery and build upon this a control
model that implements reliability, sequencing, flow control, and data
streaming is embedded within TCP

 

[2]

 

. 

TCP provides a communication channel between processes on each host
system. The channel is reliable, full-duplex, and streaming. To achieve
this functionality, the TCP drivers break up the session data stream into
discrete segments, and attach a TCP header to each segment. An IP
header is attached to this TCP packet, and the composite packet is then
passed to the network for delivery. This TCP header has numerous fields
that are used to support the intended TCP functionality. TCP has the
following functional characteristics: 

•

 

Unicast protocol:

 

 TCP is based on a unicast network model, and
supports data exchange between precisely two parties. It does not
support broadcast or multicast network models. 

•

 

Connection state:

 

 Rather than impose a state within the network to
support the connection, TCP uses synchronized state between the
two endpoints. This synchronized state is set up as part of an initial
connection process, so TCP can be regarded as a connection-ori-
ented protocol. Much of the protocol design is intended to ensure
that each local state transition is communicated to, and acknowl-
edged by, the remote party. 

•

 

Reliable:

 

 Reliability implies that the stream of octets passed to the
TCP driver at one end of the connection will be transmitted across
the network so that the stream is presented to the remote process as
the same sequence of octets, in the same order as that generated by
the sender.

T
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This implies that the protocol detects when segments of the data
stream have been discarded by the network, reordered, duplicated, or
corrupted. Where necessary, the sender will retransmit damaged seg-
ments so as to allow the receiver to reconstruct the original data
stream. This implies that a TCP sender must maintain a local copy of
all transmitted data until it receives an indication that the receiver
has completed an accurate transfer of the data. 

•

 

Full duplex:

 

 TCP is a full-duplex protocol; it allows both parties to
send and receive data within the context of the single TCP con–
nection.

•

 

Streaming:

 

 Although TCP uses a packet structure for network trans-
mission, TCP is a true streaming protocol, and application-level
network operations are not transparent. Some protocols explicitly
encapsulate each application transaction; for every 

 

write,

 

 there must
be a matching 

 

read.

 

 In this manner, the application-derived segmen-
tation of the data stream into a logical record structure is preserved
across the network. TCP does not preserve such an implicit structure
imposed on the data stream, so that there is no pairing between 

 

write

 

and 

 

read

 

 operations within the network protocol. For example, a
TCP application may 

 

write

 

 three data blocks in sequence into the
network connection, which may be collected by the remote reader in
a single 

 

read

 

 operation. The size of the data blocks (segments) used
in a TCP session is negotiated at the start of the session. The sender
attempts to use the largest segment size it can for the data transfer,
within the constraints of the maximum segment size of the receiver,
the maximum segment size of the configured sender, and the maxi-
mum supportable non-fragmented packet size of the network path
(path 

 

Maximum Transmission Unit

 

 [MTU]). The path MTU is
refreshed periodically to adjust to any changes that may occur within
the network while the TCP connection is active. 

•

 

Rate adaptation:

 

 TCP is also a rate-adaptive protocol, in that the rate
of data transfer is intended to adapt to the prevailing load condi-
tions within the network and adapt to the processing capacity of the
receiver. There is no predetermined TCP data-transfer rate; if the net-
work and the receiver both have additional available capacity, a TCP
sender will attempt to inject more data into the network to take up
this available space. Conversely, if there is congestion, a TCP sender
will reduce its sending rate to allow the network to recover. This
adaptation function attempts to achieve the highest possible data-
transfer rate without triggering consistent data loss. 

 

The TCP Protocol Header 

 

The TCP header structure, shown in Figure 1, uses a pair of 16-bit
source and destination 

 

Port

 

 addresses. The next field is a 32-bit 

 

se-
quence number,

 

 which identifies the sequence number of the first data
octet in this packet. The sequence number does not start at an initial
value of 1 for each new TCP connection; the selection of an initial value
is critical, because the initial value is intended to prevent delayed data
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from an old connection from being incorrectly interpreted as being valid
within a current connection. The sequence number is necessary to en-
sure that arriving packets can be ordered in the sender’s original order.
This field is also used within the flow-control structure to allow the asso-
ciation of a data packet with its corresponding acknowledgement,
allowing a sender to estimate the current round-trip time across the
network. 

 

Figure 1: The TCP/IP
Datagram

 

The 

 

acknowledgment sequence number

 

 is used to inform the remote
end of the data that has been successfully received. The acknowledg-
ment sequence number is actually one greater than that of the last octet
correctly received at the local end of the connection. The 

 

data offset

 

 field
indicates the number of four-octet words within the TCP header. Six
single 

 

bit flags

 

 are used to indicate various conditions. URG is used to
indicate whether the 

 

urgent

 

 

 

pointer

 

 is valid. ACK is used to indicate
whether the 

 

acknowledgment

 

 field is valid. PSH is set when the sender
wants the remote application to 

 

push

 

 this data to the remote applica-
tion. RST is used to 

 

reset

 

 the connection. SYN (for 

 

synchronize)

 

 is used
within the connection startup phase, and FIN (for 

 

finish

 

) is used to close
the connection in an orderly fashion. The 

 

window

 

 field is a 16-bit count
of available buffer space. It is added to the acknowledgment sequence
number to indicate the highest sequence number the receiver can accept.
The TCP 

 

checksum

 

 is applied to a synthesized header that includes the
source and destination addresses from the outer IP datagram. The final
field in the TCP header is the 

 

urgent pointer,

 

 which, when added to the
sequence number, indicates the sequence number of the final octet of ur-
gent data if the urgent flag is set.
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Many options can be carried in a TCP header. Those relevant to TCP
performance include: 

•

 

Maximum-receive-segment-size option:

 

 This option is used when the
connection is being opened. It is intended to inform the remote end of
the maximum segment size, measured in octets, that the sender is will-
ing to receive on the TCP connection. This option is used only in the
initial SYN packet (the initial packet exchange that opens a TCP con-
nection). It sets both the maximum receive segment size and the
maximum size of the advertised TCP window, passed to the remote
end of the connection. In a robust implementation of TCP, this option
should be used with path MTU discovery to establish a segment size
that can be passed across the connection without fragmentation, an
essential attribute of a high-performance data flow. 

•

 

Window-scale option:

 

 This option is intended to address the issue of
the maximum window size in the face of paths that exhibit a high-
delay bandwidth product. This option allows the window size adver-
tisement to be right-shifted by the amount specified (in binary
arithmetic, a right-shift corresponds to a multiplication by 2). With-
out this option, the maximum window size that can be advertised is
65,535 bytes (the maximum value obtainable in a 16-bit field). The
limit of TCP transfer speed is effectively one window size in transit
between the sender and the receiver. For high-speed, long-delay net-
works, this performance limitation is a significant factor, because it
limits the transfer rate to at most 65,535 bytes per round-trip inter-
val, regardless of available network capacity. Use of the window-
scale option allows the TCP sender to effectively adapt to high-band-
width, high-delay network paths, by allowing more data to be held
in flight. The maximum window size with this option is 2

 

30

 

 bytes.
This option is negotiated at the start of the TCP connection, and can
be sent in a packet only with the SYN flag. Note that while an MTU
discovery process allows optimal setting of the maximum-receive-
segment-size option, no corresponding bandwidth delay product dis-
covery allows the reliable automated setting of the window-scale
option

 

[3]

 

. 

•

 

SACK-permitted option and SACK option:

 

 This option alters the
acknowledgment behavior of TCP. SACK is an acronym for 

 

selec-
tive acknowledgment.

 

 The SACK-permitted option is offered to the
remote end during TCP setup as an option to an opening SYN
packet. The SACK option permits selective acknowledgment of per-
mitted data. The default TCP acknowledgment behavior is to
acknowledge the highest sequence number of in-order bytes. This
default behavior is prone to cause unnecessary retransmission of
data, which can exacerbate a congestion condition that may have
been the cause of the original packet loss. The SACK option allows
the receiver to modify the acknowledgment field to describe noncon-
tinuous blocks of received data, so that the sender can retransmit
only what is missing at the receiver’s end

 

[4]

 

. 
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Any robust high-performance implementation of TCP should negotiate
these parameters at the start of the TCP session, ensuring the following:
that the session is using the largest possible IP packet size that can be
carried without fragmentation, that the window sizes used in the trans-
fer are adequate for the bandwidth-delay product of the network path,
and that selective acknowledgment can be used for rapid recovery from
line-error conditions or from short periods of marginally degraded net-
work performance. 

 

TCP Operation 

 

The first phase of a TCP session is establishment of the connection. This
requires a 

 

three-way handshake,

 

 ensuring that both sides of the connec-
tion have an unambiguous understanding of the sequence number space
of the remote side for this session. The operation of the connection is as
follows: 

• The local system sends the remote end an initial sequence number to
the remote port, using a SYN packet. 

• The remote system responds with an ACK of the initial sequence
number and the initial sequence number of the remote end in a
response SYN packet. 

• The local end responds with an ACK of this remote sequence
number. 

The connection is opened. 

The operation of this algorithm is shown in Figure 2. The performance
implication of this protocol exchange is that it takes one and a half

 

round-trip times

 

 (RTTs) for the two systems to synchronize state before
any data can be sent. 

 

Figure 2:
TCP Connection
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After the connection has been established, the TCP protocol manages
the reliable exchange of data between the two systems. The algorithms
that determine the various retransmission timers have been redefined nu-
merous times. TCP is a 

 

sliding-window

 

 protocol, and the general
principle of flow control is based on the management of the advertised
window size and the management of retransmission timeouts, attempt-
ing to optimize protocol performance within the observed delay and loss
parameters of the connection. Tuning a TCP protocol stack for optimal
performance over a very low-delay, high-bandwidth LAN requires dif-
ferent settings to obtain optimal performance over a dialup Internet
connection, which in turn is different for the requirements of a high-
speed wide-area network. Although TCP attempts to discover the delay
bandwidth product of the connection, and attempts to automatically op-
timize its flow rates within the estimated parameters of the network
path, some estimates will not be accurate, and the corresponding efforts
by TCP to optimize behavior may not be completely successful. 

Another critical aspect is that TCP is an adaptive flow-control protocol.
TCP uses a basic flow-control algorithm of increasing the data-flow rate
until the network signals that some form of saturation level has been
reached (normally indicated by data loss). When the sender receives an
indication of data loss, the TCP flow rate is reduced; when reliable
transmission is reestablished, the flow rate slowly increases again. 

If no reliable flow is reestablished, the flow rate backs further off to an
initial probe of a single packet, and the entire adaptive flow-control pro-
cess starts again.

This process has numerous results relevant to service quality. First, TCP
behaves 

 

adaptively,

 

 rather than 

 

predictively.

 

 The flow-control algo-
rithms are intended to increase the data-flow rate to fill all available
network path capacity, but they are also intended to quickly back off if
the available capacity changes because of interaction with other traffic,
or if a dynamic change occurs in the end-to-end network path. For ex-
ample, a single TCP flow across an otherwise idle network attempts to
fill the network path with data, optimizing the flow rate within the
available network capacity. If a second TCP flow opens up across the
same path, the two flow-control algorithms will interact so that both
flows will stabilize to use approximately half of the available capacity
per flow. The objective of the TCP algorithms is to adapt so that the net-
work is fully used whenever one or more data flows are present. In
design, tension always exists between the efficiency of network use and
the enforcement of predictable session performance. With TCP, you give
up predictable throughput but gain a highly utilized, efficient network. 
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Protocol Performance 

 

In this section we examine the transfer of data using the TCP protocol,
focusing on the relationship between the protocol and performance.
TCP is generally used within two distinct application areas: short-delay
short data packets sent on demand, to support interactive applications
such as 

 

Telnet,

 

 or 

 

rlogin,

 

 and large packet data streams supporting reli-
able volume data transfers, such as mail transfers, Web-page transfers,
and 

 

File Transfer Protocol

 

 (FTP). Different protocol mechanisms come
into play to support interactive applications, as distinct from short- and
long-held volume transactions. 

 

Interactive TCP 

 

Interactive protocols are typically directed at supporting single-charac-
ter interactions, where each character is carried in a single packet, as is
its echo. The protocol interaction to support this is indicated in Figure 3.
These 2 bytes of data generate four TCP/IP packets, or 160 bytes of pro-
tocol overhead. TCP makes some small improvement in this exchange
through the use of 

 

piggybacking,

 

 where an ACK is carried in the same
packet as the data, and 

 

delayed acknowledgment,

 

 where an ACK is de-
layed up to 200 ms before sending, to give the server application the
opportunity to generate data that the ACK can piggyback. The result-
ant protocol exchange is indicated in Figure 4. 

 

Figure 3:
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Figure 4:
Interactive Exchange

with Delayed ACK

 

For short-delay LANs, this protocol exchange offers acceptable perfor-
mance. This protocol exchange for a single data character and its echo
occurs within about 16 ms on an Ethernet LAN, corresponding to an in-
teractive rate of 60 characters per second. When the network delay is
increased in a WAN, these small packets can be a source of congestion
load. The TCP mechanism to address this small-packet congestion was
described by John Nagle in RFC 896

 

[5]

 

. Commonly referred to as the

 

Nagle Algorithm,

 

 this mechanism inhibits a sender from transmitting
any additional small segments while the TCP connection has outstand-
ing unacknowledged small segments. On a LAN, this modification to
the algorithm has a negligible effect; in contrast, on a WAN, it has a
dramatic effect in reducing the number of small packets in direct correla-
tion to the network path congestion level (as shown in Figures 5 and 6).
The cost is an increase in session jitter by up to a round-trip time inter-
val. Applications that are jitter-sensitive typically disable this control
algorithm. 

TCP is not a highly efficient protocol for the transmission of interactive
traffic. The typical carriage efficiency of the protocol across a LAN is 2
bytes of payload and 120 bytes of protocol overhead. Across a WAN,
the Nagle algorithm may improve this carriage efficiency slightly by in-
creasing the number of bytes of payload for each payload transaction,
although it will do so at the expense of increased session jitter. 
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Figure 5: WAN
Interactive Exchange

Figure 6: WAN
Interactive Exchange
with Nagle Algorithm
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TCP Volume Transfer 

 

The objective for this application is to maximize the efficiency of the
data transfer, implying that TCP should endeavor to locate the point of
dynamic equilibrium of maximum network efficiency, where the send-
ing data rate is maximized just prior to the onset of sustained packet
loss. 

Further increasing the sending rate from such a point will run the risk of
generating a congestion condition within the network, with rapidly in-
creasing packet-loss levels. This, in turn, will force the TCP protocol to
retransmit the lost data, resulting in reduced data-transfer efficiency. On
the other hand, attempting to completely eliminate packet-loss rates im-
plies that the sender must reduce the sending rate of data into the
network so as not to create transient congestion conditions along the
path to the receiver. Such an action will, in all probability, leave the net-
work with idle capacity, resulting in inefficient use of available network
resources. 

The notion of a point of equilibrium is an important one. The objective
of TCP is to coordinate the actions of the sender, the network, and the
receiver so that the network path has sufficient data such that the net-
work is not idle, but it is not so overloaded that a congestion backlog
builds up and data loss occurs. Maintaining this point of equilibrium re-
quires the sender and receiver to be synchronized so that the sender
passes a packet into the network at precisely the same time as the re-
ceiver removes a packet from the network. If the sender attempts to
exceed this equilibrium rate, network congestion will occur. If the sender
attempts to reduce its rate, the efficiency of the network will drop. 

TCP uses a sliding-window protocol to support bulk data transfer (Fig-
ure 7). The receiver advertises to the sender the available buffer space at
the receiver. The sender can transmit up to this amount of data before
having to await a further buffer update from the receiver. The sender
should have no more than this amount of data in transit in the network.
The sender must also buffer sent data until it has been ACKed by the re-
ceiver. The send window is the minimum of the sender’s buffer size and
the advertised receiver window. Each time an ACK is received, the trail-
ing edge of the send window is advanced. The minimum of the sender’s
buffer and the advertised receiver’s window is used to calculate a new
leading edge. If this send window encompasses unsent data, this data
can be sent immediately. 
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Figure 7: TCP Sliding Window

 

The size of TCP buffers in each host is a critical limitation to perfor-
mance in WANs. The protocol is capable of transferring one send
window of data per round-trip interval. For example, with a send win-
dow of 4096 bytes and a transmission path with an RTT of 600 ms, a
TCP session is capable of sustaining a maximum transfer rate of 48
Kbps, regardless of the bandwidth of the network path. Maximum
efficiency of the transfer is obtained only if the sender is capable of com-
pletely filling the network path with data. Because the sender will have
an amount of data in forward transit and an equivalent amount of data
awaiting reception of an ACK signal, both the sender’s buffer and the
receiver’s advertised window should be no smaller than the 

 

Delay-Band-
width Product

 

 of the network path. That is: 

 

Window size 
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 Bandwidth (bytes/sec) ×  Round-trip time (sec)

The 16-bit field within the TCP header can contain values up to 65,535,
imposing an upper limit on the available window size of 65,535 bytes.
This imposes an upper limit on TCP performance of some 64 KB per
RTT, even when both end systems have arbitrarily large send and re-
ceive buffers. This limit can be modified by the use of a window-scale
option, described in RFC 1323, effectively increasing the size of the win-
dow to a 30-bit field, but transmitting only the most significant 16 bits
of the value. This allows the sender and receiver to use buffer sizes that
can operate efficiently at speeds that encompass most of the current
very-high-speed network transmission technologies across distances of
the scale of the terrestrial intercontinental cable systems. 
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Although the maximum window size and the RTT together determine
the maximum achievable data-transfer rate, there is an additional ele-
ment of flow control required for TCP. If a TCP session commenced by
injecting a full window of data into the network, then there is a strong
probability that much of the initial burst of data would be lost because
of transient congestion, particularly if a large window is being used. In-
stead, TCP adopts a more conservative approach by starting with a
modest amount of data that has a high probability of successful trans-
mission, and then probing the network with increasing amounts of data
for as long as the network does not show signs of congestion. When
congestion is experienced, the sending rate is dropped and the probing
for additional capacity is resumed. 

The dynamic operation of the window is a critical component of TCP
performance for volume transfer. The mechanics of the protocol in-
volve an additional overriding modifier of the sender’s window, the
congestion window, referred to as cwnd. The objective of the window-
management algorithm is to start transmitting at a rate that has a very
low probability of packet loss, then to increase the rate (by increasing
the cwnd size) until the sender receives an indication, through the detec-
tion of packet loss, that the rate has exceeded the available capacity of
the network. The sender then immediately halves its sending rate by re-
ducing the value of cwnd, and resumes a gradual increase of the sending
rate. The goal is to continually modify the sending rate such that it oscil-
lates around the true value of available network capacity. This
oscillation enables a dynamic adjustment that automatically senses any
increase or decrease in available capacity through the lifetime of the data
flow. 

The intended outcome is that of a dynamically adjusting cooperative
data flow, where a combination of such flows behaves fairly, in that
each flow obtains essentially a fair share of the network, and so that
close to maximal use of available network resources is made. This flow-
control functionality is achieved through a combination of cwnd value
management and packet-loss and retransmission algorithms. TCP flow
control has three major parts: the flow-control modes of Slow Start and
Congestion Avoidance, and the response to packet loss that determines
how TCP switches between these two modes of operation. 

TCP Slow Start 
The starting value of the cwnd window (the Initial Window, or IW) is
set to that of the Sender Maximum Segment Size (SMSS) value. This
SMSS value is based on the receiver’s maximum segment size, obtained
during the SYN handshake, the discovered path MTU (if used), the
MTU of the sending interface, or, in the absence of other information,
536 bytes. The sender then enters a flow-control mode termed Slow
Start. 
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The sender sends a single data segment, and because the window is now
full, it then awaits the corresponding ACK. When the ACK is received,
the sender increases its window by increasing the value of cwnd by the
value of SMSS. This then allows the sender to transmit two segments; at
that point, the congestion window is again full, and the sender must
await the corresponding ACKs for these segments. This algorithm con-
tinues by increasing the value of cwnd (and, correspondingly, opening
the size of the congestion window) by one SMSS for every ACK re-
ceived that acknowledges new data.

If the receiver is sending an ACK for every packet, the effect of this algo-
rithm is that the data rate of the sender doubles every round-trip time
interval. If the receiver supports delayed ACKs, the rate of increase will
be slightly lower, but nevertheless the rate will increase by a minimum of
one SMSS each round-trip time. Obviously, this cannot be sustained
indefinitely. Either the value of cwnd will exceed the advertised receive
window or the sender’s window, or the capacity of the network will be
exceeded, in which case packets will be lost. 

There is another limit to the slow-start rate increase, maintained in a
variable termed ssthresh, or Slow-Start Threshold. If the value of cwnd
increases past the value of ssthresh, the TCP flow-control mode is
changed from Slow Start to congestion avoidance. Initially the value of
ssthresh is set to the receiver’s maximum window size. However, when
congestion is noted, ssthresh is set to half the current window size, pro-
viding TCP with a memory of the point where the onset of network
congestion may be anticipated in future. 

One aspect to highlight concerns the interaction of the slow-start algo-
rithm with high-capacity long-delay networks, the so-called Long Fat
Networks (or LFNs, pronounced “elephants”). The behavior of the
slow-start algorithm is to send a single packet, await an ACK, then send
two packets, and await the corresponding ACKs, and so on. The TCP
activity on LFNs tends to cluster at each epoch of the round-trip time,
with a quiet period that follows after the available window of data has
been transmitted. The received ACKs arrive back at the sender with an
inter-ACK spacing that is equivalent to the data rate of the bottleneck
point on the network path. During Slow Start, the sender transmits at a
rate equal to twice this bottleneck rate. The rate adaptation function
that must occur within the network takes place in the router at the en-
trance to the bottleneck point. The sender’s packets arrive at this router
at twice the rate of egress from the router, and the router stores the
overflow within its internal buffer. When this buffer overflows, packets
will be dropped, and the slow-start phase is over. The important conclu-
sion is that the sender will stop increasing its data rate when there is
buffer exhaustion, a condition that may not be the same as reaching the
true available data rate. If the router has a buffer capacity considerably
less than the delay-bandwidth product of the egress circuit, the two val-
ues are certainly not the same.
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In this case, the TCP slow-start algorithm will finish with a sending rate
that is well below the actual available capacity. The efficient operation
of TCP, particularly in LFNs, is critically reliant on adequately large
buffers within the network routers. 

Another aspect of Slow Start is the choice of a single segment as the ini-
tial sending window. Experimentation indicates that an initial value of
up to four segments can allow for a more efficient session startup, par-
ticularly for those short-duration TCP sessions so prevalent with Web
fetches[6]. Observation of Web traffic indicates an average Web data
transfer of 17 segments. A slow start from one segment will take five
RTT intervals to transfer this data, while using an initial value of four
will reduce the transfer time to three RTT intervals. However, four seg-
ments may be too many when using low-speed links with limited
buffers, so a more robust approach is to use an initial value of no more
than two segments to commence Slow Start[7]. 

Packet Loss 
Slow Start attempts to start a TCP session at a rate the network can sup-
port and then continually increase the rate. How does TCP know when
to stop this increase? This slow-start rate increase stops when the con-
gestion window exceeds the receiver’s advertised window, when the rate
exceeds the remembered value of the onset of congestion as recorded in
ssthresh, or when the rate is greater than the network can sustain. Ad-
dressing the last condition, how does a TCP sender know that it is
sending at a rate greater than the network can sustain? The answer is
that this is shown by data packets being dropped by the network. In this
case, TCP has to undertake many functions: 

• The packet loss has to be detected by the sender. 

• The missing data has to be retransmitted. 

• The sending data rate should be adjusted to reduce the probability of
further packet loss. 

TCP can detect packet loss in two ways. First, if a single packet is lost
within a sequence of packets, the successful delivery packets following
the lost packet will cause the receiver to generate a duplicate ACK for
each successive packet The reception of these duplicate ACKs is a signal
of such packet loss. Second, if a packet is lost at the end of a sequence of
sent packets, there are no following packets to generate duplicate ACKs.
In this case, there are no corresponding ACKs for this packet, and the
sender’s retransmit timer will expire and the sender will assume packet
loss. 

A single duplicate ACK is not a reliable signal of packet loss. When a
TCP receiver gets a data packet with an out-of-order TCP sequence
value, the receiver must generate an immediate ACK of the highest in-
order data byte received. This will be a duplicate of an earlier transmit-
ted ACK. Where a single packet is lost from a sequence of packets, all
subsequent packets will generate a duplicate ACK packet.
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On the other hand, where a packet is rerouted with an additional incre-
mental delay, the reordering of the packet stream at the receiver’s end
will generate a small number of duplicate ACKs, followed by an ACK of
the entire data sequence, after the errant packet is received. The sender
distinguishes between these cases by using three duplicate ACK packets
as a signal of packet loss. 

The third duplicate ACK triggers the sender to immediately send the seg-
ment referenced by the duplicate ACK value (fast retransmit) and
commence a sequence termed Fast Recovery. In fast recovery, the value
of ssthresh is set to half the current send window size (the send window
is the amount of unacknowledged data outstanding). The congestion
window, cwnd, is set three segments greater than ssthresh to allow for
three segments already buffered at the receiver. If this allows additional
data to be sent, then this is done. Each additional duplicate ACK inflates
cwnd by a further segment size, allowing more data to be sent. When an
ACK arrives that encompasses new data, the value of cwnd is set back
to ssthresh, and TCP enters congestion-avoidance mode. Fast Recovery
is intended to rapidly repair single packet loss, allowing the sender to
continue to maintain the ACK-clocked data rate for new data while the
packet loss repair is being undertaken. This is because there is still a se-
quence of ACKs arriving at the sender, so that the network is continuing
to pass timing signals to the sender indicating the rate at which packets
are arriving at the receiver. Only when the repair has been completed
does the sender drop its window to the ssthresh value as part of the tran-
sition to congestion-avoidance mode[8].

The other signal of packet loss is a complete cessation of any ACK pack-
ets arriving to the sender. The sender cannot wait indefinitely for a
delayed ACK, but must make the assumption at some point in time that
the next unacknowledged data segment must be retransmitted. This is
managed by the sender maintaining a Retransmission Timer. The main-
tenance of this timer has performance and efficiency implications. If the
timer triggers too early, the sender will push duplicate data into the net-
work unnecessarily. If the timer triggers too slowly, the sender will
remain idle for too long, unnecessarily slowing down the flow of data.
The TCP sender uses a timer to measure the elapsed time between send-
ing a data segment and receiving the corresponding acknowledgment.
Individual measurements of this time interval will exhibit significant
variance, and implementations of TCP use a smoothing function when
updating the retransmission timer of the flow with each measurement.
The commonly used algorithm was originally described by Van Jacob-
son[9], modified so that the retransmission timer is set to the smoothed
round-trip-time value, plus four times a smoothed mean deviation
factor[10]. 



T h e  I n t e r n e t  P r o t o c o l  J o u r n a l
1 7

When the retransmission timer expires, the actions are similar to that of
duplicate ACK packets, in that the sender must reduce its sending rate in
response to congestion. The threshold value, ssthresh, is set to half of the
current value of outstanding unacknowledged data, as in the duplicate
ACK case. However, the sender cannot make any valid assumptions
about the current state of the network, given that no useful information
has been provided to the sender for more than one RTT interval. In this
case, the sender closes the congestion window back to one segment, and
restarts the flow in slow start-mode by sending a single segment. The
difference from the initial slow start is that, in this case, the ssthresh
value is set so that the sender will probe the congestion area more slowly
using a linear sending rate increase when the congestion window reaches
the remembered ssthresh value. 

Congestion Avoidance 
Compared to Slow Start, congestion avoidance is a more tentative prob-
ing of the network to discover the point of threshold of packet loss.
Where Slow Start uses an exponential increase in the sending rate to find
a first-level approximation of the loss threshold, congestion avoidance
uses a linear growth function. 

When the value of cwnd is greater than ssthresh, the sender increments
the value of cwnd by the value SMSS × SMSS/cwnd, in response to each
received nonduplicate ACK[7], ensuring that the congestion window
opens by one segment within each RTT time interval. 

The congestion window continues to open in this fashion until packet
loss occurs. If the packet loss is isolated to a single packet within a
packet sequence, the resultant duplicate ACKs will trigger the sender to
halve the sending rate and continue a linear growth of the congestion
window from this new point, as described above in fast recovery. 

The behavior of cwnd in an idealized configuration is shown in Figure 8,
along with the corresponding data-flow rates. The overall characteris-
tics of the TCP algorithm are an initial relatively fast scan of the
network capacity to establish the approximate bounds of maximal
efficiency, followed by a cyclic mode of adaptive behavior that reacts
quickly to congestion, and then slowly increases the sending rate across
the area of maximal transfer efficiency. 

Packet loss, as signaled by the triggering of the retransmission timer,
causes the sender to recommence slow-start mode, following a timeout
interval. The corresponding data-flow rates are indicated in Figure 9. 
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Figure 8: Simulation of Single TCP Transfer

The inefficiency of this mode of performance is caused by the complete
cessation of any form of flow signaling from the receiver to the sender.
In the absence of any information, the sender can only assume that the
network is heavily congested, and so must restart its probing of the net-
work capacity with an initial congestion window of a single segment.
This leads to the performance observation that any form of packet-drop
management that tends to discard the trailing end of a sequence of data
packets may cause significant TCP performance degradation, because
such drop behavior forces the TCP session to continually time out and
restart the flow from a single segment again. 

Figure 9: Simulation of TCP Transfer with Tail Drop Queue
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Assisting TCP Performance within the Network—RED and ECN 
Although TCP is an end-to-end protocol, it is possible for the network
to assist TCP in optimizing performance. One approach is to alter the
queue behaviour of the network through the use of Random Early De-
tection (RED). RED permits a network router to discard a packet even
when there is additional space in the queue. Although this may sound
inefficient, the interaction between this early packet-drop behaviour and
TCP is very effective. 

RED uses a the weighted average queue length as the probability factor
for packet drop. As the average queue length increases, the probability
of a packet being dropped, rather than being queued, increases. As the
queue length decreases, so does the packet-drop probability. (See Figure
10). Small packet bursts can pass through a RED filter relatively intact,
while larger packet bursts will experience increasingly higher packet-dis-
card rates. Sustained load will further increase the packet-discard rates.
This implies that the TCP sessions with the largest open windows will
have a higher probability of experiencing packet drop, causing a back-
off in the window size. 

Figure 10: RED
Behavior

A major goal of RED is to avoid a situation in which all TCP flows ex-
perience congestion at the same time, all then back off and resume at the
same rate, and tend to synchronize their behaviour[11,12]. With RED, the
larger bursting flows experience a higher probability of packet drop,
while flows with smaller burst rates can continue without undue impact.
RED is also intended to reduce the incidence of complete loss of ACK
signals, leading to timeout and session restart in slow-start mode. The in-
tent is to signal the heaviest bursting TCP sessions the likelihood of
pending queue saturation and tail drop before the onset of such a tail-
drop congestion condition, allowing the TCP session to undertake a fast
retransmit recovery under conditions of congestion avoidance. Another
objective of RED is to allow the queue to operate efficiently, with the
queue depth ranging across the entire queue size within a timescale of
queue depth oscillation the same order as the average RTT of the traffic
flows. 
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Once the average queue capacity reaches a certain threshold,
RED begins to select flows from which to discard packets, so
that congestion (buffer exhaustion) can be avoided. The more
the queue fills up, the greater the probability of packet discard.
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Behind RED is the observation that TCP sets very few assumptions
about the networks over which it must operate, and that it cannot count
on any consistent performance feedback signal being generated by the
network. As a minimal approach, TCP uses packet loss as its perfor-
mance signal, interpreting small-scale packet-loss events as peak load
congestion events and extended packet loss events as a sign of more criti-
cal congestion load. RED attempts to increase the number of small-scale
congestion signals, and in so doing avoid long-period sustained conges-
tion conditions. 

It is not necessary for RED to discard the randomly selected packet. The
intent of RED is to signal the sender that there is the potential for queue
exhaustion, and that the sender should adapt to this condition. An alter-
native mechanism is for the router experiencing the load to mark packets
with an explicit Congestion Experienced (CE) bit flag, on the assump-
tion that the sender will see and react to this flag setting in a manner
comparable to its response to single packet drop[13] [14]. This mechanism,
Explicit Congestion Notification (ECN), uses a 2-bit scheme, claiming
bits 6 and 7 of the IP Version 4 Type-of-Service (ToS) field (or the two
Currently Unused [CU] bits of the IP Differentiated Services field). Bit 6
is set by the sender to indicate that it is an ECN-capable transport sys-
tem (the ECT bit). Bit 7 is the CE bit, and is set by a router when the
average queue length exceeds configured threshold levels. 

The ECN algorithm is that an active router will perform RED, as de-
scribed. After a packet has been selected, the router may mark the CE
bit of the packet if the ECT bit is set; otherwise, it will discard the se-
lected packet. (See Figure 11). 

Figure 11: Operation of
Explicit Congestion

Notification

The TCP interaction is slightly more involved. The initial TCP SYN
handshake includes the addition of ECN-echo capability and Conges-
tion Window Reduced (CWR) capability flags to allow each system to
negotiate with its peer as to whether it will properly handle packets with
the CE bit set during the data transfer. The sender sets the ECT bit in all
packets sent. If the sender receives a TCP packet with the ECN-echo flag
set in the TCP header, the sender will adjust its congestion window as if
it had undergone fast recovery from a single lost packet.
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The next sent packet will set the TCP CWR flag, to indicate to the re-
ceiver that it has reacted to the congestion. The additional caveat is that
the sender will react in this way at most once every RTT interval. Fur-
ther, TCP packets with the ECN-echo flag set will have no further effect
on the sender within the same RTT interval. The receiver will set the
ECN-echo flag in all packets when it receives a packet with the CE bit
set. This will continue until it receives a packet with the CWR bit set, in-
dicating that the sender has reacted to the congestion. The ECT flag is set
only in packets that contain a data payload. TCP ACK packets that con-
tain no data payload should be sent with the ECT bit clear. 

The connection does not have to await the reception of three duplicate
ACKs to detect the congestion condition. Instead, the receiver is notified
of the incipient congestion condition through the explicit setting of a
notification bit, which is in turn echoed back to the sender in the corre-
sponding ACK. Simulations of ECN using a RED marking function
indicate slightly superior throughput in comparison to configuring RED
as a packet-discard function. 

However, widespread deployment of ECN is not considered likely in the
near future, at least in the context of Version 4 of IP. At this stage, there
has been no explicit standardization of the field within the IPv4 header
to carry this information, and the deployment base of IP is now so wide
that any modifications to the semantics of fields in the IPv4 header
would need to be very carefully considered to ensure that the changed
field interpretation did not exercise some malformed behavior in older
versions of the TCP stack or in older router software implementations. 

ECN provides some level of performance improvement over a packet-
drop RED scheme. With large bulk data transfers, the improvement is
moderate, based on the difference between the packet retransmission
and congestion-window adjustment of RED and the congestion-win-
dow adjustment of ECN. The most notable improvements indicated in
ECN simulation experiments occur with short TCP transactions (com-
monly seen in Web transactions), where a RED packet drop of the initial
data packet may cause a six-second retransmit delay. Comparatively, the
ECN approach allows the transfer to proceed without this lengthy delay. 

The major issue with ECN is the need to change the operation of both
the routers and the TCP software stacks to accommodate the operation
of ECN. While the ECN proposal is carefully constructed to allow an
essentially uncoordinated introduction into the Internet without nega-
tive side effects, the effectiveness of ECN in improving overall network
throughput will be apparent only after this approach has been widely
adopted. As the Internet grows, its inertial mass generates a natural re-
sistance to further technological change; therefore, it may be some years
before ECN is widely adopted in both host software and Internet rout-
ing systems. RED, on the other hand, has had a more rapid introduction
to the Internet, because it requires only a local modification to router be-
havior, and relies on existing TCP behavior to react to the packet drop. 
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Tuning TCP 

 

How can the host optimize its TCP stack for optimum performance?
Many recommendations can be considered. The following suggestions
are a combination of those measures that have been well studied and are
known to improve TCP performance, and those that appear to be highly
productive areas of further research and investigation

 

[1]

 

. 

•

 

Use a good TCP protocol stack:

 

 Many of the performance patholo-
gies that exist in the network today are not necessarily the by-
product of oversubscribed networks and consequent congestion.
Many of these performance pathologies exist because of poor imple-
mentations of TCP flow-control algorithms; inadequate buffers
within the receiver; poor (or no) use of path-MTU discovery; no sup-
port for fast-retransmit flow recovery, no use of window scaling and
SACK, imprecise use of protocol-required timers, and very coarse-
grained timers. It is unclear whether network ingress-imposed Qual-
ity-of-Service (QoS) structures will adequately compensate for such
implementation deficiencies. The conclusion is that attempting to
address the symptoms is not the same as curing the disease. A good
protocol stack can produce even better results in the right
environment. 

•

 

Implement a TCP Selective Acknowledgment (SACK) mechanism:

 

SACK, combined with a selective repeat-transmission policy, can
help overcome the limitation that traditional TCP experiences when
a sender can learn only about a single lost packet per RTT. 

•

 

Implement larger buffers with TCP window-scaling options:

 

 The
TCP flow algorithm attempts to work at a data rate that is the mini-
mum of the delay-bandwidth product of the end-to-end network
path and the available buffer space of the sender. Larger buffers at
the sender and the receiver assist the sender in adapting more
efficiently to a wider diversity of network paths by permitting a
larger volume of traffic to be placed in flight across the end-to-end
path. 

•

 

Support TCP ECN negotiation:

 

 ECN enables the host to be explic-
itly informed of conditions relating to the onset of congestion
without having to infer such a condition from the reserve stream of
ACK packets from the receiver. The host can react to such a condi-
tion promptly and effectively with a data flow-control response
without having to invoke packet retransmission. 

•

 

Use a higher initial TCP slow-start rate than the current 1 MSS
(Maximum Segment Size) per RTT.

 

 A size that seems feasible is an
initial burst of 2 MSS segments. The assumption is that there will be
adequate queuing capability to manage this initial packet burst; the
provision to back off the send window to 1 MSS segment should
remain intact to allow stable operation if the initial choice was too
large for the path. A robust initial choice is two segments, although
simulations have indicated that four initial segments is also highly
effective in many situations.
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•

 

Use a host platform that has sufficient processor and memory capac-
ity to drive the network.

 

 The highest-quality service network and
optimally provisioned access circuits cannot compensate for a host
system that does not have sufficient capacity to drive the service load.
This is a condition that can be observed in large or very popular pub-
lic Web servers, where the peak application load on the server drives
the platform into a state of memory and processor exhaustion, even
though the network itself has adequate resources to manage the
traffic load. 

All these actions have one thing in common: They can be deployed in-
crementally at the edge of the network and can be deployed individually.
This allows end systems to obtain superior performance even in the ab-
sence of the network provider tuning the network’s service response
with various internal QoS mechanisms. 

 

Conclusion 

 

TCP is not a predictive protocol. It is an adaptive protocol that at-
tempts to operate the network at the point of greatest efficiency. Tuning
TCP is not a case of making TCP pass more packets into the network.
Tuning TCP involves recognizing how TCP senses current network load
conditions, working through the inevitable compromise between mak-
ing TCP highly sensitive to transient network conditions, and making
TCP resilient to what can be regarded as noise signals. 

If the performance of end-to-end TCP is the perceived problem, the
most effective answer is not necessarily to add QoS service differentia-
tion into the network. Often, the greatest performance improvement can
be made by upgrading the way that hosts and the network interact
through the appropriate configuration of the host TCP stacks. 

In the next article on this topic, we will examine how TCP is facing new
challenges with increasing use of wireless, short-lived connections, and
bandwidth-limited mobile devices, as well as the continuing effort for
improved TCP performance. We’ll look at a number of proposals to
change the standard actions of TCP to meet these various requirements
and how they would interact with the existing TCP protocol.
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Overview of Internet Mail Standards

 

by Paul Hoffman, Internet Mail Consortium

 

 eople who are new to the Internet often think it is equivalent to
“the Web” since that’s what they have heard about most in the
media. After a few weeks of using their new Internet account,

they tend to say the Internet is “e-mail and the Web,” in that order. 

Business users have an even higher regard for e-mail. According to the
American Management Association, most business people say that e-mail
has surpassed the telephone in importance for business communication.
While many companies believe that their Web site will be very important
in a few years, their e-mail system is already extremely critical to them
today. 

Because mail is one of the oldest services on the Internet, the protocols
used to move mail around are more stable and mature than those used
for newer services. The flip side of this is that some of the protocols that
are used to move the billions of pieces of mail a day are somewhat ar-
cane and even quaint. The 

 

Internet Engineering Task Force

 

 (IETF)
motto “if it isn’t broken, don’t fix it!” has prevented people from rede-
signing Internet mail. Instead, numerous extensions and enhancements
have been added to the original set of mail standards, as we shall see
later. 

Historically, there have been many other mail systems, such as BIT-
NET, Fidonet, MAPI, cc:Mail, and so on. Of course, users of these
systems still exist, and there is quite an active market for systems that act
as gateways between Internet mail and other systems. However, this ar-
ticle only covers the tried-and-true Internet mail system. 

 

The Internet Mail Model 

 

Many Internet protocols are simple client/server systems with a single
message payload format. Mostly due to history, Internet mail doesn’t
have this luxury. Figure 1 shows the main protocols and formats used to
move Internet mail. 

 

Figure 1: Internet Mail
Architecture
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A typical mail transaction goes from left to right in the figure. A 

 

Mail
User Agent

 

 (MUA), which is most often run by a human but could be
controlled by a program, submits a message using the 

 

Simple Mail
Transfer Protocol

 

 (SMTP) to the initiating host. That host looks up the
IP address associated with the destination host computer and sends the
message to the destination host using SMTP. The destination host re-
ceives the message and writes it into the local message store (which
almost always is a file or database on a hard drive). 

The recipient MUA checks the mail store periodically and, if there is
mail, retrieves it. Again, the recipient is often a human but might be
an automated program such as an order entry system that is con-
trolled by e-mail. The protocols that checks for and retrieves mail are
usually the 

 

Post Office Protocol

 

 (POP) or 

 

Internet Message Access
Protocol

 

 (IMAP), but it could also be any number of proprietary
systems. 

E-mail messages have a format that is quite easy to understand, so much
so that many other protocols have adopted very similar formats. The
message consists of ASCII text 

 

headers

 

 followed by one ASCII (or possi-
bly binary) message 

 

body

 

. The header format is defined in RFC 822

 

[1]

 

,
thus the headers are called “RFC 822 headers” or just “822 headers.” A
simple message body is a single string of text; a complex body uses the

 

Multipurpose Internet Mail Extensions

 

 (MIME) message format.

 

Moving Between Hosts: SMTP 

 

Early host-to-host mail delivery was done using file transfer protocols.
Since such methods offer little flexibility and requires knowledge of user
names and file structures of the remote system, a more general purpose
delivery mechanism evolved. The resulting protocol, SMTP was defined
in 1982 and has proven to work effectively in the face of orders of mag-
nitude increase in the size of the network. 

Even though SMTP moves mail between two host computers, it is a cli-
ent/server protocol. The host that initiates the contact always acts as a

 

client,

 

 and the host that was contacted is the 

 

server.

 

 (There are a few
rarely-used exceptions to this rule.) The client has a variety of text-based
commands that it can give, and the server replies with short responses.
The server in the relationship never gives commands on its own, so it is
up to the client to ask enough questions, and to carefully watch the
server’s responses, to know how best to interact with the server. 

When a host wants to send mail somewhere on the Internet, it deter-
mines where the mail should go and initiates contact with the target
server. Thus, the sender is always the SMTP client, and the hosts that
are listening for SMTP traffic are always servers. In reality, most SMTP
server software can act both as clients and servers; MUAs almost al-
ways only participate in SMTP as clients. 
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The sending host uses the 

 

Domain Name System

 

 (DNS) to determine
the IP address of the target host, contacts that host using TCP port 25,
and uses SMTP to deliver the message. Sometimes, as we shall see later,
this IP lookup involves a level of indirection,—the target host may use a
different host to receive mail on its behalf. 

SMTP client commands consist of a keyword, possibly followed by
command arguments. The server’s response always starts with a three-
digit number that is a status indicator, which is possibly followed by ad-
ditional information. 

Most SMTP interactions follow a typical set of steps, shown in Figure 2.
The initiator who has mail to send (the client) is on the left and the host
that is receiving the mail (the server) is on the right. The client first opens
a TCP connection on port 25 on the the server. Next, the client and
server exchange greetings (the HELO command and response). The cli-
ent then prepares the server to receive the message by telling the server
who the message is from and who it is to; the server gives a positive ac-
knowledgment to each of these commands. The client then asks if the
server is ready for the body of the message and, when the server says
yes, sends the message as a stream of lines that is followed by a single
period on a line by itself. After the server says that it has received the
message fully, the client says good-bye and closes the connection. 

 

Figure 2: A Typical
SMTP Exchange

 

Submission and Relay 

 

After a message is created, the creator uses SMTP to submit the mes-
sage to one of two places: a local mail-forwarding host (such as the mail
server at the sender’s 

 

Internet Service Provider

 

 (ISP) or corporate IS ser-
vices) or the mail server that the DNS says is definitive for the recipient.
The former is typically used by Internet users who do not have persis-
tent network connections; the latter is more common on systems with
network connections that are always available. 

Messages may be forwarded hop-by-hop from the sending host, via in-
termediary hosts, to the recipient. This is called “relaying.” In many
cases, a message will go through more than two relays, for instance
when the recipient’s network is configured to accept all incoming mes-
sages on one machine that later relays messages to individual depart-
mental hosts. Note that submission and relay uses the same SMTP com-
mands described above (a recent change to this scheme is described near
the end of this article). 
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The last host in the chain makes the message available to the recipient.
This is done by moving the message to the message store, which usually
means “write the message out on disk.” There are, of course, many
ways to write something on disk; some hosts write out each message as
a separate file, some concatenate the message at the end of a file, while
others write the message into a database. 

 

Mail Addresses and MX Records 

 

The initiating host’s first job is to determine where a message is sup-
posed to go, that is, how to contact the recipient’s host. SMTP is a hop-
by-hop protocol, meaning that a sending host does not know the true
destination host for a message: it only knows the designated recipient
host. Of course, this might be the recipient’s final host, or it might be a
host that will pass the message along further.

The domain name in mail addresses do not necessarily correspond to
hosts on the Internet. For example, there is no host whose domain name
is 

 

imc.org

 

. When determining where to send a message, the initiating
host first looks in the DNS for a 

 

Mail Exchange

 

 (MX) record that
matches the domain name in the recipient’s mail address. If there is no
MX record, the initiating host looks for a DNS A record that matches
the domain name. If there is no MX record or A record, the message
cannot be delivered. 

Many people find MX records to be somewhat tricky. Part of the confu-
sion comes from the fact that an SMTP host is supposed to look up MX
records before they look for A records; there are very few protocols that
don’t rely on A records. Another confusing aspect is that MX records
may have wildcards in them. For instance, if a message is being sent to

 

someone@eng.example.com

 

, there may be no MX record for 

 

eng.ex-
ample.com

 

, but there may be one for 

 

*

 

.example.com

 

. Wildcard MX
records tell the sending host that any message for a domain name that
matches the wildcard specification should be sent to the named host. 

 

Modern Mail Extensions

 

All protocols must evolve, and SMTP has improved over the years. Early
mail implementors realized that the initial set of SMTP commands
would have to expand. Since the SMTP client gives all commands in an
exchange, the client determines which SMTP commands a server will be
able to handle. The 

 

SMTP Service Extension

 

s (ESMTP), defined in RFC
1869

 

[2]

 

, is a small change to SMTP that allows an SMTP server to list the
commands it knows at the beginning of an SMTP session. 

The bootstrapping process for ESMTP is quite simple. Instead of start-
ing with the “HELO” command, an ESMTP server starts with the
“EHLO” command. If the SMTP host indicates that it has no idea what
“EHLO” means, the client knows that the server doesn’t understand
ESMTP, and therefore doesn’t understand any SMTP extensions. On
the other hand, if the server does understand the “EHLO” greeting, the
host responds with the entire list of SMTP extensions that the client is
allowed to use during the session. 
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There have been over a dozen extensions to SMTP that are on stan-
dards track in the IETF, and many more have been proposed. However,
most modern SMTP servers have only implemented a few of these. 

Probably the most publicized SMTP extension in the past few years has
been the 

 

SMTP Service Extension for Authentication

 

 (AUTH) for au-
thenticating the SMTP client to the server. The AUTH extension,
described in RFC 2554

 

[3]

 

, allows roaming users to submit mail from
outside their local networks without forcing the servers to accept mail
from just anyone. This new method, which is now starting to appear in
both mail clients and servers, will reduce the hassle faced by many
roaming users as they move from ISP to ISP. 

Another significant SMTP extension that has become widely imple-
mented is 

 

Delivery Status Notifications,

 

 or DSNs defined in RFC
1891

 

[4]

 

. These are similar to return receipts in postal mail, but with
some significant differences. DSNs are issued by SMTP servers, not end
users. Thus, the meaning of a DSN is interpreted as “the message was
received by this SMTP host,” not “the message was received by the in-
tended recipient.” 

 

Retrieving Mail 

 

After the final SMTP server has received a message and written it into
the message store, the recipient needs to be able to access the message. In
the early days of Internet mail, the message store was nothing more than
a text file on disk, and mail was read by reading the text file. In fact,
many people still read their mail this way, albeit using somewhat more
modern tools. 

If the recipient is not directly logged into the host computer that has the
message store, reading the disk file can be difficult. To alleviate this
problem, the 

 

Post Office Protocol

 

 (POP), described in RFC 1939

 

[5]

 

 in-
troduced a client/server model for an MUA to get mail from the message
store and store it on the local computer. The vast majority of mail users
today use POP to retrieve their mail. 

POP looks like many Internet protocols. The client connects to the
server, logs in using a user name and password, checks if it has any mes-
sages waiting for it, then asks for the messages one by one. The client
has the option of leaving messages that it has read on the server or delet-
ing them after they have been retrieved. 

 

Modern Mail Access with IMAP 

 

Although POP works well for many people, it has its drawbacks. The
mail client cannot preview a message to see whether or not it wants to
download it. The client has only one mailbox which has no hierarchical
structure. In most POP systems, leaving all your mail on the server
makes retrieving new mail quite slow. To get around these problems,
the mail community developed the 

 

Internet Message Access Protocol

 

(IMAP), described in RFC 2060

 

[6]

 

. 
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IMAP is significantly more powerful than POP. IMAP clients give the
user much more control over their mail, such as letting them keep some
of their mail locally while leaving other mail on the server. IMAP even
allows for mailboxes that are shared among users, such as group an-
nouncements lists. It also gives mail administrators many more
opportunities to support novice users by keeping their mail in a central
location. Most modern mail clients support IMAP, and IMAP servers
are available from many vendors. 

It should be noted that, although IMAP is considered much more useful
than POP and is widely available, it has had very little adoption in the
ISP market (it has been accepted much more readily in the enterprise
mail market). The reasons for this are not clear. Many ISPs say they do
not want to incur the costs and responsibilities of storing users’ mail,
even if this gives them greater ability to administer the mail. It is not
clear what, if anything, will shift ISPs away from POP to IMAP. 

 

Access Through Web Browsers 

 

The ubiquity of the Web has introduced a new method for getting mail
that has become surprisingly popular: the use of the 

 

HyperText Trans-
fer Protocol

 

 (HTTP). Web access to e-mail lets users read their mail
without a POP or IMAP client. Of course, this offers many fewer fea-
tures than POP or IMAP; for instance, you can’t easily store messages
after reading them and getting file attachments in your mail takes many
more steps. However, the big advantage of this method is that Web
browsers are almost everywhere these days, and there are many situa-
tions where you don’t care about being able to store your mail on your
local computer. 

Giving users Web browser access to their mail quickly became a com-
modity market. Now, almost every portal offers such services. In fact,
many corporations and ISP also offer this service because it is a fairly
easy add-on to POP and IMAP servers. As more and more users want to
access their e-mail from small devices such as cellular phones, it is likely
that these devices will include Web-like mail interfaces.

 

Client Extensions 

 

Both POP and IMAP are extensible, and developers have proposed
many extensions for both protocols, although most work is being done
on IMAP. Because of the slow adoption of IMAP by ISPs (who could
make its advantages much more visible), it’s not clear when these will
appear in clients and servers, even though many of them add interesting
functionality that is wanted by both users and administrators. 

There are many client extensions that don’t rely on either POP or IMAP,
however. One of the most popular is 

 

Message Disposition Notifications

 

(MDNs), which are quite similar to postal return receipts. Unlike DSNs,
which say that a particular message got to one of the servers in an
SMTP chain, MDNs are truly end-to-end, and are returned by recipi-
ents when they open their mail.
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Some people find MDNs intrusive (“why should he know when I read
this?”), and they aren’t particularly reliable because not all mail clients
(most notably Web browser readers) support them. However, they are a
good example of what end users are seeing in terms of extensions that
add desired functions to the Internet mail system. 

 

The Format of Mail Messages 

 

SMTP, POP, and (to a great extent) IMAP ignore the contents of a mes-
sage. SMTP uses its own control information to find the recipient of a
message; POP and IMAP retrieve messages based on user account
names, which may or may not correspond to the address in a message.
In users minds, however, the contents of the messages they read are al-
most always much more important than the way that the message got to
them. 

Mail messages consist of two parts: the 

 

headers

 

 and the 

 

body.

 

 The head-
ers come first, followed by a blank line, followed by the body, as shown
in Figure 3. The basic structure of messages has remained unchanged
since it was defined in RFC 822. Originally, the headers were designed
to look like inter-office memos, and also to contain control and debug-
ging information; today, some parts of the headers are considered to be
as important as the body of the message. 

 

Figure 3: A Typical
E-mail Message

 

Message Headers 

 

Because they were designed to be functional, message headers have a
very straight-forward design. Each header has a single token, followed
by a colon, followed by the parameters and options of the header.
Headers usually consist of a single line, but you can create multi-line
headers by starting the continuation lines with blanks. 

There are dozens of common headers, and dozens more that are rarely
used. Almost all mail users are familiar with “To:”, “From:”, “Sub-
ject:”, and “Date:”, and they may have seen additional common headers
such as “Cc:” and “Received:”. Depending on the interface of the
MUA, users typically see some of these headers after they have retrieved
a message with POP or IMAP but before they have “opened” the mes-
sage to see the message body. 
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Basic and Advanced Message Bodies 

 

Originally, the body of mail messages consisted of plain ASCII text. This
was sufficient for the inventors of e-mail, who spoke mostly English and
had access to other information transfer mechanisms such as FTP to
move binary data around. Of course, such restrictions would not last. 

Probably the biggest advance in Internet mail in the past ten years is in
the format of mail messages, not in their transport. In the early 1990s,
Internet mail went from being text-only to allowing the transfer of non-
text messages and parts of messages. MIME, described in RFCs 2045–
2047

 

[7, 8, 9]

 

, revolutionized the usefulness of Internet mail by allowing
senders to include files with messages, to use styled text, to give their
messages useful structure, and to provide the first interoperable support
for international e-mail. 

Unfortunately, the term “attachments” became associated with MIME
even though it is much more powerful than just allowing files to be at-
tached to a message. The majority of MIME-enabled messages today
don’t contain any attachments: instead, they use MIME’s capability of
labeling the type of a single message body part. MIME labeling can tell
the receiving client the format of the message (for instance, an HTML
message) and, if it is a text message, the type of characters in the
message. 

Another great feature of MIME is that it allows messages to have struc-
ture. For instance, Figure 4 shows a message with two representations of
the same information: text and HTML. A mail client that cannot dis-
play HTML can skip that part of the message and just display the plain
text. This allows message content to gradually migrate towards new
technology. In the near future, it is likely that similar logic will be used
for messages that contain XML, HTML, and plain text.

 

Figure 4: A Multipart
MIME message
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Because of the capability to structure messages, MIME can be used for
multimedia and unified messaging. A single mail message can contain
one or more movies, sound files, text files in a variety of formats, binary
files such as word processing documents, calendar events, fax images,
and so on. The MIME structure tells the recipient software which parts
of the message contain particular types of data, as well the relationship
between the parts (such as “this part contains three different alternative
sound formats”). 

With the explosion of the popularity of the Web, users have come to ex-
pect that the content they read will look like Web pages. Most users
don’t understand that a “Web page” that “contains” graphics in fact
isn’t a single entity but is really a page of HTML that has links to other
pages that contain individual images. They expect to be able to receive
mail messages that look just like the things they see on the Web. The
MHTML protocol (described in RFC 2557

 

[10]

 

) describes how to struc-
ture MIME messages that contain both HTML parts and images so that
they appear together in mail clients exactly like they appear in Web
browsers. 

MIME enables a plethora of other uses for e-mail. For example, secure
e-mail using S/MIME and PGP uses MIME to structure the messages so
that the cryptographic control information is separate from the message
itself. For instance, in a digitally-signed message, the signature informa-
tion (which is unreadable to the human recipient) is in a different part of
the structure than the human-readable content. You can even have lay-
ers of encryption and signatures, all structured through MIME. 

 

Internationalization of E-mail 

 

You can use character sets other than ASCII in both the headers and
body of Internet e-mail messages. Using different character sets in text
bodies requires the use of the “charset” parameter in the “Content-
type:” header, as described in RFC 2046

 

[8]

 

. You can also use character
sets in message headers with the methods described in RFC 2047

 

[9]

 

. 

 

The Future of E-mail 

 

E-mail is incredibly popular with Internet users, but it is far from
finished. The next billion new e-mail users will most likely be much less
technically savvy than today’s Internet users, and they will come to the
Internet with very different expectations. In order to give these users a
more pleasant experience, the Internet mail industry will have to add
many new features and make mail clients easier. 

The number of ISPs is also increasing, although not as fast as the num-
ber of Internet users. Since e-mail is such an integral part of the service
that an ISP offers, mail server software will also have to become easier
to administer. Internet mail server vendors are working on such en-
hancements as a way of gaining a competitive advantage. 
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The most major change that users will see in the next few years are more
highly enabled MUAs. These clients will be all-in-one messaging centers
that will handle faxes, voice messages, paging, calendar and event man-
agement, and probably some sort of instant messaging. In this way,
traditional mail will be only one part of what the user sees when they go
to their messaging client. 

The importance of Internet fax should not be underestimated. The recent
standards for Internet fax, defined in RFCs 2301–2306[11, 12, 13, 14, 15, 16]

specify how faxes go through Internet mail. Although there have been a
raft of proprietary real-time fax proposals, fax vendors have rallied
around faxes in e-mail as an easy way to transition from fax over phone
lines. Comparing the high cost of sending international faxes to the near-
zero cost of sending e-mail, many companies are quickly moving
towards the new standards. 

Other mail-enabled services are becoming standardized as well. For ex-
ample, calendaring over Internet mail is nearing completion. This will
allow users to coordinate schedules for meetings, even with people who
are not online. E-mail fall-back for phone conversations that were not
completed is also being researched. 

The e-mail world five and ten years from now will not necessarily look
completely different from the way it looks today. Certainly, there will be
many more enriched text and multimedia messages being composed by
end users. Mailing lists will grow and the mail on them will be more like
Web pages than today’s text messages. Many people predict that the
face of e-mail will change radically if e-mail becomes the “universal in-
box” for voicemail, faxes, and other types of communication. Many
companies are discovering that regular newsletters sent through e-mail
are more effective than expecting users to come to a web site regularly,
and it is likely that there will be an increase in the number of publica-
tions that are delivered as e-mail.[18] 

There is still plenty of room for additions to Internet mail that resemble
today’s non-Internet services. For instance, users are already clamoring
for features such as true message tracking, which is currently available
from many package delivery services. Better security is clearly desired,
although there seems to be major impediments caused by the need for
trusted certificates before we can see wide deployment of secure mail.
More problematic features such as message rescinding also have been
proposed.

Forces outside the Internet mail world will also change how Internet
mail works. For instance, the rapid increase in wireless users will change
the way that large messages are handled by message stores. As more us-
ers start reading their mail from more than one system, IMAP may
become more popular. At the same time, users will expect to be able to
move their configuration information with them from machine to ma-
chine, probably using protocols such as the Application Configuration
Access Protocol (ACAP) defined in RFC 2244[17].
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There are plenty of opportunities in the Internet mail market. The only
significant dark cloud is the possibility that increasing unsolicited e-
mail—so called “spam”—might scare away users. To date, the techni-
cal solutions for battling spam have been limited, and they probably
won’t scale well if the amount of spam increases by an order of magni-
tude. On the bright side, it appears that most legitimate marketers have
been scared away from spam and are focusing on opt-in e-mail market-
ing. This could be a boon for ISPs who specialize in bringing interested
e-mail users and potential advertisers together.[19]

In such an environment, mail with rich media and lots of convenience
could become the place where many users want to spend much of their
time. To get there, we need to build on today’s well-established mail
protocols and to be creative in the kinds of features we add to both the
transport and display of e-mail. Fortunately, we don’t need to do much
with SMTP, IMAP, and MIME in order to bring these new capabilities
to the burgeoning numbers of new users waiting to get on the Internet. 
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Book Review
Introduction to Data Communications

and Networking
Introduction to Data Communications and Networking, Behrouz
Farouzan, ISBN 0-256-23044-7, WCB/McGraw-Hill, 1998. 

As personal computers have proliferated the landscape over the years,
they have become the domain of an increasing number of nontechnical
end users. Two things assisted in this transformation. The realization of
their value as a productivity tool became apparent, as well as their abil-
ity to become more user friendly to the masses. Networks, and
networking, have followed a similar path. The investment in creating a
networked environment in the past may have been a burden—in both
time and added complexity—to all but the largest corporations. How-
ever, as the world becomes more “wired,” the presence of networks has
become commonplace in nearly every work environment, not to men-
tion the movement into private residences. The need to become familiar
with concepts and terms as they relate to data communications and net-
works has become an important part of the technological landscape.
Introduction to Data Communications and Networking assists the nov-
ice in grasping these concepts, as well as serving as a refresher to the
more experienced audience. 

Organization 
The preface explains the ways this book can be useful. The textbook
portion is helpful. Multiple choice as well as discussion questions are
provided within each chapter, although all the answers are not. In addi-
tion, some of the questions asked do not always seem to be posed in the
context of the chapter just covered. However, it does turn out to be a
rather small inconvenience. The requisite appendices are included as
well—such as ASCII and EBCDIC codes, and various representations of
numbers. However, two areas that usually receive only fleeting recogni-
tion—Fourier analysis and Huffman coding—are covered. Not being an
engineer, I’m not sure that I now understand these concepts, but at least
now I know why. 

Although the areas covered in this book are covered in many introduc-
tory network books, this one takes nothing for granted. A good portion
of the more experienced readers will know that Layers 2–6 of the OSI
model have headers, only Layer 2 will include a trailer. Details such as
these are easily forgotten. Introducing concepts in meaningful, practical
ways is another positive attribute of this book. One great example is
how the author describes the difference between analog and digital.
Hands of a traditional, or analog, clock do not jump from minute to
minute or hour to hour. The notion of time advancing seems to be a
smooth transition, much like an analog signal is a continuous wave
form that changes smoothly over time. Digital (as in the case of a digital
clock), on the other hand, indicates discrete units of time—usually
whole hours and minutes—and can have only limited numbers of
defined values. In Chapter 4, analog and digital signals are detailed and
explained with clarity and excellent examples are given as well. 
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In fact, the only subject matter I had difficulty deciphering concerned
material presented in Chapter 5. The concepts of polar, unipolar, and
bipolar encoding seemed straightforward enough, but digital-to-analog
and analog-to-analog encoding will definitely have to be revisited. Am-
plitude and phase shifting keys may or may not be revisited. In fact, it
was at this point that I realized that the material was moving to a differ-
ent, more difficult, level. 

Although the preface states that the first eight chapters are essential for
readers being introduced to networking concepts, I found that chapters
5–8 went into a level of depth that would be particularly daunting for
an introductory discussion.

Summary 
I don’t remember exactly how I was introduced to this book—whether I
read about it in a journal or it was recommended by a friend—but the
book got favorable reviews wherever I inquired about it. It is a practical
addition to your bookshelf, regardless of your level of comfort with net-
works and voice/data communications. 

The book is relevant and practical for the professional who has been
working in the field for a few years. It is also useful as a textbook for use
in the classroom. However, I do not believe that all the information can
be adequately covered in a semester, as the author suggests. I believe one
of the reasons I enjoyed this book was because of the way it explained
ideas and concepts that were never used in any class I had ever taken. I
recall promises of receiving a good, comprehensive background in these
areas, yet years later I continue to struggle with some of the same con-
cepts I’ve encountered in classes before. I found myself continually
searching for a source that would provide me the information in a com-
prehensive, understandable fashion. I believe I have finally found it. 

—Steve Barsamian, Cisco Systems
sbarsam@cisco.com

______________

Would You Like to Review a Book for IPJ?
We receive numerous books on computer networking from all the ma-
jor publishers. If you’ve got a specific book you are interested in
reviewing, please contact us and we will make sure a copy is mailed to
you. The book is yours to keep if you send us a review. We accept re-
views of new titles, as well as some of the “networking classics.”
Contact us at ipj@cisco.com for more information.
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Fragments
New Top-Level Domains Are Coming 
For several years, there have been proposals to introduce new generic
top-level domains (gTLDs) into the Internet Domain Name System
(DNS). Although the introduction of gTLDs raises several issues that are
of concern to various members of the Internet community, significant
progress has been made recently toward achieving a consensus solution.
The Internet Corporation for Assigned Names and Numbers (ICANN)
Board of Directors is expected to consider adopting a policy to intro-
duce new gTLDs at its meeting in July 2000. The Names Council has
recommended to the ICANN Board that: “...a limited number of new
top-level domains be introduced initially and that the future introduc-
tion of additional top-level domains be done only after careful
evaluation of the initial introduction.” 

ICANN Announces CPR Institute as New Dispute Resolution Provider 
ICANN recently announced that the CPR Institute for Dispute Resolu-
tion has been designated an approved provider under their Uniform
Dispute Resolution Policy (UDRP) for domain name disputes. CPR, an
alliance of 500 general counsel of global corporations and partners of
major law firms, is the fourth dispute resolution provider to be desig-
nated by ICANN to handle domain disputes, joining the National
Arbitration Forum, the Disputes.org/eResolution Consortium, and the
World Intellectual Property Organization. The UDRP establishes a
streamlined, economical process administered by neutral arbitration
companies to provide a quick and cheap alternative to litigation. The
procedure applies to cases that meet all three of the following criteria:
The domain name must be identical or confusingly similar to a name in
which the complaining party has trademark rights (either through a reg-
istered trademark or a common-law trademark); The domain name
holder must have no legitimate right or interest in the name; The do-
main name must have been registered and used in bad faith. 

In its first few months of operation, the UDRP has proven to be a very
popular means of quickly resolving trademark/domain name disputes.
To date, 691 proceedings have been commenced under the policy in-
volving 1022 domain names. Of those proceedings, 348 have already
been resolved. For additional information on UDRP, see http://
www.icann.org/udrp/udrp.htm 

  

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particular
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errors. Later issues may modify or update information provided in this issue. Neither the publisher nor
any contributor shall have any liability to any person for any loss or damage caused directly or
indirectly by the information contained herein.



The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, Sr. VP, Internet Architecture and Engineering
MCI WorldCom, USA

David Farber 
The Alfred Fitler Moore Professor of Telecommunication Systems 
University of Pennsylvania, USA

Edward R. Kozel, Member of The Board of Directors
Cisco Systems, Inc., USA

Peter Löthberg, Network Architect
Stupi AB, Sweden

Dr. Jun Murai, Professor, WIDE Project 
Keio University, Japan

Dr. Deepinder Sidhu, Professor, Computer Science & 
Electrical Engineering, University of Maryland, Baltimore County 
Director, Maryland Center for Telecommunications Research, USA

Pindar Wong, Chairman and President
VeriFi Limited, Hong Kong

The Internet Protocol Journal is 
published quarterly by the
Chief Strategy Office,
Cisco Systems, Inc.
www.cisco.com
Tel: +1 408 526-4000
E-mail: ipj@cisco.com

Cisco, Cisco Systems, and the Cisco 
Systems logo are registered 
trademarks of Cisco Systems, Inc. in 
the USA and certain other countries. 
All other trademarks mentioned in this 
document are the property of their 
respective owners.

Copyright © 2000 Cisco Systems Inc.

The Internet Protocol Journal, Cisco Systems
170 West Tasman Drive, M/S SJ-10/5
San Jose, CA 95134-1706
USA

ADDRESS SERVICE REQUESTED

Bulk Rate Mail
U.S. Postage

PAID
Cisco Systems, Inc.


