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F r o m  T h e  E d i t o r

 

Major Internet events such as the IETF meetings, the Regional Internet
Registry meetings, APRICOT, SIGCOMM, and NetWorld+Interop to
name a few, all provide Internet access for attendees. Commonly re-
ferred to as the “Terminal Room,” these facilities have evolved into
complex high-speed networks with redundant paths, IPv6 routing, mul-
ticast, and more. In the last five years or so, these networks have also
been providing wireless access using various flavors of the IEEE 802.11
standard. As I write this, I am sitting in the lobby of the Minneapolis
Hilton Hotel, where the 53rd IETF meeting is being held. The lobby
area and two floors of meeting rooms have IEEE 802.11 coverage, and
a directional high-gain antenna provides access in the pub across the
street. Wireless Internet computing is a reality, at least when you have a
large gathering of engineers such as an IETF meeting. In our first arti-
cle, Edgar Danielyan takes a closer look at this technology, its
applications and evolution. 

More and more software is being distributed via the Internet rather
than through the use of conventional media such as CD ROMs or
floppy disks. Downloading software via the Internet is very convenient,
especially if you have reasonably high bandwidth. However, with this
convenience comes a certain risk that you may be receiving a modified
copy of the software, perhaps one that contains a virus. Code signing is
a method wherein software is cryptographically signed and later
verified. Eric Fleischman explains the details of code signing.

I should have known better than to announce the imminent availability
of our online subscription system in the previous issue. We are working
on it, but it isn’t ready yet, so please continue to send your subscription
requests and updates to: 

 

ipj@cisco.com

 

 

 

—Ole J. Jacobsen, Editor and Publisher

 

ole@cisco.com

 

You can download IPJ
back issues and find

subscription information at:

 

www.cisco.com/ipj
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IEEE 802.11

 

by Edgar Danielyan

 

ntroduced in 1997, the IEEE Standard 802.11 for wireless local-
area networks has seen modifications and improvements in the
past years and is promising a brighter wireless future, so yearned

for by many of us. However, during its lifetime, the standard also has
had a few setbacks, which are reminders that nothing is perfect in this
world, much less in networking. This article provides a brief but com-
prehensive introduction to IEEE 802.11 wireless networking, its
present and future, and highlights some of its security, performance,
and safety aspects. 

 

IEEE 802.11 

  

trical and Electronics Engineers

 

 (IEEE) in 1997. That standard is
known as IEEE 802.11-1997 and is now updated by the current stan-
dard, IEEE 802.11-1999. The current standard has also been accepted
as an American national standard by the 

 

American National Standards
Institute

 

 (ANSI) and has been adopted by the 

 

International Organiza-
tion for Standardization

 

 (ISO) as ISO/IEC 8802-11:1999. The
completion of IEEE 802.11 in 1997 set in motion the development of
standards-based wireless LAN networking. The 1997 standard specified
a bandwidth of 2 Mbps, with fallback to 1 Mbps in hostile (noisy) envi-
ronments with 

 

Direct Sequence Spread Spectrum

 

 (DSSS) modulation,
and bandwidth of 1 Mbps with 

 

Frequency Hopping Spread Spectrum

 

(FHSS) modulation, with possible 2-Mbps operation in friendly (noise-
less) environments. Both methods operate in the unlicensed 2.4-GHz
band. What is less known about IEEE 802.11 is that it also defines a
baseband infrared medium, in addition to the DSSS and FHSS radio
specifications, although its usefulness seems somewhat limited. There
are also several task groups inside the 802.11 working group itself that
work on substandards of 802.11: 
• 802.11D: Additional Regulatory Domains 

• 802.11E: Quality of Service (QoS) 

• 802.11F: Inter-Access Point Protocol (IAPP) 

• 802.11G: Higher data rates at 2.4 GHz 

• 802.11H: Dynamic Channel Selection and Transmission Power
Control

• 802.11i: Authentication and Security 

The IEEE 802 group has an official Web site at 

 

www.ieee802.org,

 

and IEEE 802.11 has an official Web site at 

 

www.ieee802.org/11/.

 

 

I

The initial IEEE Standard 802.11 was published by the Institute of Elec-
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DSSS

 

Direct Sequence Spread Spectrum

 

 (DSSS) is one of the modulation tech-
niques provided for by the IEEE 802.11 and the one chosen by the
802.11 Working Group for the widely used IEEE 802.11b devices.
DSSS modulation is governed in the United States by FCC Regulation
15.247 and in Europe by ETSI Regulations 300-328. DSSS in IEEE
802.11 uses 

 

Differential Binary Phase Shift Keying

 

 (DBPSK) for 1
Mbps, and 

 

Differential Quadrature Phase Shift Keying

 

 (DQPSK) for 2
Mbps. The 

 

Higher-Rate DSSS

 

 (DSSS/HR) defined in IEEE 802.11b uses

 

Complementary Code Keying

 

 (CCK) as its modulation scheme and pro-
vides 5.5- and 11-Mbps data rates. Because of their compatibility, all
three modulation schemes can coexist using the rate-switching proce-
dures defined in the IEEE 802.11. The 

 

Orthogonal Frequency Division
Multiplexing

 

 (OFDM) used by the IEEE 802.11a is regulated in the
United States by Title 47 Section 15.407 of the U.S. 

 

Code of Federal
Regulation

 

 (CFR). IEEE 802.11a uses a system of 52 subcarriers modu-
lated by BPSK or QPSK and 16-quadrature amplitude modulation. It
also uses 

 

forward error correction

 

 (FEC) coding, also used by the Digi-
tal Video Broadcasting (DVB) standard with coding rates of 1/2, 2/3,
and 3/4. 

 

FHSS 

 

Although specified by the original IEEE 802.11, 

 

Frequency Hopping
Spread Spectrum

 

 (FHSS) modulation is not favored by vendors and, it
seems, the 802.11 working group itself. DSSS has won the battle—very
few vendors support 802.11/FHSS, and further developments with
802.11 use DSSS. Some have expressed ideas that frequency hopping in
FHSS may contribute to the security of 802.11, but these are invalid ex-
pectations—the hopping codes used by FHSS are specified by the
standard and are available to anyone, thus making the expectation of
security through FHSS unreasonable. 

Two supplements to the IEEE 802.11-1999, known as IEEE 802.11a
and IEEE 802.11b, brought considerable changes and improvements to
the IEEE 802.11-1999 standard. 

 

IEEE 802.11a 

 

IEEE 802.11a specifies a high-speed physical layer operating in the 5-
GHz unlicensed band utilizing a complex coding technique known as
OFDM. The data rates specified by IEEE 802.11a are 6, 9, 12, 18, 24,
36, 48, and 54 Mbps, with support for 6, 12, and 24 Mbps as a man-
datory requirement. IEEE 802.11a is seen by some in the industry as
the future of IEEE 802.11. Some products already implement the IEEE
802.11a, such as the chip from Atheros (

 

www.atheros.com

 

) and a
PCMCIA/CardBus adapter from Card Access Inc (

 

www.cardaccess-
inc.com

 

) based on it. However, 802.11a is not without disadvan-
tages. The increased bandwidth of IEEE 802.11a results in a shorter
operation range.



 

IEEE 802.11: 

 

continued
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Additionally, because of the protocol overhead and interference/error
correction, the real bandwidth may be considerably less than the nomi-
nal. New surveys and installation will also be required in many cases;
the underlying infrastructure will also be more expensive because of the
shorter operation range (about 1/3 of 802.11b) and higher density of

 

base stations

 

 (also known as 

 

access points

 

).

 

IEEE 802.11b 

 

Probably the most widely implemented and used wireless LAN technol-
ogy today, IEEE 802.11b specifies 5.5- and 11-Mbps data rates (in
addition to the already specified 1 and 2 Mbps), but operates in the
original 2.4-GHz band also using DSSS modulation. Most currently
selling IEEE 802.11 products implement IEEE 802.1b. IEEE 802.11b-
compliant devices can operate at 1, 2, 5.5, and 11 Mbps. 

It is important to note that both incarnations of IEEE 802.11 use the
same 

 

Media Access Control

 

 (MAC) protocol, 

 

Carrier Sense Multiple
Access with Collision Avoidance

 

 (CSMA/CA); therefore, these
modifications affect only the physical layer (PHY layer in IEEE par-
lance) of the standard. The 1/2- and 5.5/11-Mbps DSSS (IEEE
802.11b) networks can coexist, enabling a painless transition to IEEE
802.11b (High Rate) at 11 Mbps. Eleven to fourteen radio channels
are available for use with IEEE 802.11b in the 2.4-GHz band, depend-
ing on the local legal and administrative restrictions. 

 

Distance, Power, and Speed Issues 

 

It is obvious that all three of these parameters of wireless systems are in-
terconnected. However, as with other radio-based technologies, the
external conditions (such as the line of sight in case of outdoor use)
greatly affect the operation of IEEE 802.11 devices. 

 

Antennae 

 

Antennae used with IEEE 802.11b devices may be grouped into two
categories: 

 

omnidirectional

 

 and 

 

point-to-point.

 

 Obviously, omnidirec-
tional antennae are the easiest to use, because they do not require
positioning. Omnidirectional antennae are used in most base stations,
as well as in most access cards. However, because of their nature, omni-
directional antennae do not work well over longer distances, unless
used with external amplifiers; and these are not always legal or appro-
priate to use. Directional, or point-to-point antennae, on the other
hand, require careful positioning and are used outdoors. Although the
typical range for an omnidirectional antenna system is 150 ft (45m),
configurations with high-gain directional antennae can work on dis-
tances up to 25 miles (about 40 km). In localities where amplifiers are
allowed, the maximum distance may be considerably increased and is
limited only by the line of sight.
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Among other factors affecting the operational range of IEEE 802.11b
devices are the base-station placement (when used in the infrastructure
mode) and radio interference. As mentioned earlier, IEEE 802.11b de-
vices will auto-configure for the highest possible speed and fall back to
lower speeds when circumstances so require. 

 

Performance Issues 

 

Aside from obvious factors that affect performance (such as antennae,
distance, radio interference) there are numerous other, more subtle is-
sues. In the infrastructure mode, when all devices have to register with
the base station(s), the load on the base station(s) increases with the
number of clients and may reach a point when the performance reaches
unacceptable lows. For example, Apple’s AirPort Base Station (Version
2) can support up to 50 simultaneous clients. However, the actual per-
formance of the whole system also depends on the kind of traffic. In
particular, isochronous traffic (time-sensitive traffic, such as some types
of video, audio, and telemetry), as well as multicast traffic, are particu-
larly taxing for IEEE 802.11 networks and are better kept off the
wireless LAN. However, several groups are currently working on exten-
sions to 802.11 to provide for such kinds of traffic in a future version of
the standard.

 

Figure 1: Typical IEEE
802.11 Configuration in

Infrastructure Mode

 

IEEE 802.11 Base Stations and Clients 

 

All IEEE 802.11 devices can be grouped into one of two groups: base
stations or clients. Base stations can function as clients; however, not all
clients can function as base stations. The reason for this is that base sta-
tions are required to provide certain network services to clients
(association, distribution, integration, reassociation, and so on) that not
all client hardware, firmware, or software can or intended to provide. 

The Internet

Corporate
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Firewall

Base Station

Client
Client

Client

Client
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These considerations apply when the infrastructure mode of IEEE
802.11 is deployed. In 

 

ad hoc

 

 networks, where there are no base sta-
tions, all clients communicate directly with each other, reminiscent of a
traditional shared Ethernet network, with all nodes sharing equal rights
and responsibilities. As noted earlier, 11 to 14 radio channels are avail-
able, but separate networks may coexist on the same frequency (using
different network IDs (

 

Service Set Identifiers

 

 [SSIDs]), albeit with per-
formance penalties. 

The workings of 802.11 devices also differ in the infrastructure and ad
hoc modes. In the infrastructure mode (Figure 1), clients associate (and
optionally authenticate) themselves with a base station, and the pres-
ence of the base station is necessary for the operation of the network. 

Complex 802.11 networks may be built using the infrastructure mode,
with numerous base stations providing coverage over relatively large
physical areas, and clients may roam within this roaming domain,
which theoretically may extend from a single building to the entire cam-
pus or town. The 

 

Spanning-Tree Protocol

 

 (STP) is usually used in these
cases to provide loop-free bridging in this wireless LAN. 

In the ad hoc mode (Figure 2), base stations are not used and are not
necessary, because all nodes of the wireless LAN have direct reachabil-
ity (that is, they “see” each other). This mode is usually used in
circumstances where all devices are in close proximity to each other
(such as a floor or office) and when omnidirectional antennae are used.

 

Figure 2: IEEE 802.11
ad hoc Network

 

IEEE 802.11 Roaming and Mobility 

 

IEEE 802.11 provides for roaming and mobility of 802.11 client de-
vices and allows clients to roam among multiple 802.11 base stations
that may be operating on the same or different frequencies (channels).
This is achieved through the use of 

 

beacon frames,

 

 which are used to
synchronize 802.11 devices and, in the infrastructure mode, to associ-
ate with a base station. 

Area of direct radio visibility

Client Client

Client

Client
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sive scanning. In active scanning mode, the 802.11 device sends out
“probe” frames, soliciting “I am here” responses from existing 802.11
devices. In the passive mode, the devices just listen for beacon frames,
which are periodically transmitted by the active devices. In addition, the
IEEE 802.11 Task Group F is working on the IAPP, which is to pro-
vide better and interoperable mobility and roaming mechanisms. 

 

Security of IEEE 802.11 

 

Up to this point IEEE 802.11 could be considered an absolute success;
however, security of IEEE 802.11 is not quite on par with other aspects
of the standard. Although an entire chapter (Chapter 8) of the standard
is dedicated to authentication and privacy, it is now the common con-
sensus that designers of IEEE 802.11 did not excel in this area. Two
reports widely covered in the media, “Your 802.11 Wireless Network
Has No Clothes”

 

[7]

 

, and “Intercepting Mobile Communications: The
Insecurity of 802.11”

 

[6]

 

, shed light on the apparent shortcomings of the
standard, or to be more exact, on its “vulnerability by design.” They
demonstrated that although the designers were well aware of the need
to plan for authentication and privacy, the actual implementation was
not an excellent one. The WEP algorithm, used to provide authentica-
tion and privacy in 802.11 wireless networks, is the problem. 

 

WEP 

 

Before discussing the security weaknesses discovered in IEEE 802.11,
we quote the aim of the 

 

Wired Equivalent Privacy

 

 (WEP) algorithm as
specified in the IEEE 802.11 standard document: 

“Eavesdropping is a familiar problem to users of other types of wireless
technology. IEEE 802.11 specifies a wired LAN equivalent data
confidentiality algorithm. Wired equivalent privacy is defined as
protecting authorized users of a wireless LAN from casual eaves-
dropping. This service is intended to provide functionality for the
wireless LAN equivalent to that provided by the physical security
attributes inherent to a wired medium.” 

As you see, the aim of WEP is to provide a level of privacy equivalent to
that of a wired LAN. The wording of standard is very important here:
the developers of the standard did not intend to provide a level of secu-
rity superior to or higher than that of a regular wired LAN, such as
Ethernet. The very name of the algorithm, “Wireless Equivalent Pri-
vacy,” signifies the actual intention of the developers. However, as the
practice has shown, the level of security roughly equivalent to the level
of security provided by wired LANs is not sufficient—and it is the as-
sumption that “it is OK if wireless LANs are as secure as wired LANs”
that is wrong. Other problems, such as the choice of 

 

Cyclic Redun-
dancy Check 32

 

 (CRC-32) instead of 

 

Message Digest Algorithm 5

 

(MD5) or some other secure hash algorithm, just worsen the problem. 

There are two ways to scan for existing 802.11 networks: active and pas-
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How WEP Works 

 

Let’s now look at the workings of WEP. WEP uses a secret key shared
between 802.11 nodes to encrypt 802.11 frames (Layer 2). It also uses a
checksum (CRC-32) to provide data integrity. The checksum itself is
also encrypted using the shared secret key. The decryption is the reverse
of the encryption process: the frame is decrypted using the key and the
CRC-32 checksum is computed and checked. The cipher used in WEP
is RC4, a stream cipher designed by Ron Rivest, and believed to be
cryptographically strong. The key is 40 or more bits long (up to 128
bits in some implementations). However, the 

 

Initialization Vector

 

 that
is used during the encryption process is only 24 bits long. It is difficult
to understand why the designers chose such a small number—more
about this later. WEP does not provide any key management—the stan-
dard itself does not specify how the shared secret key should be
managed and distributed. This leaves one of the most vulnerable parts
of any cryptographic system—

 

key distribution

 

—open for misuse. 

 

The Borisov Goldberg Wagner Attacks (February 2001) 

 

In their paper entitled “Intercepting Mobile Communications: The Inse-
curity of 802.11,” Nikita Borisov, Ian Goldberg, and David Wagner
describe the vulnerabilities present in WEP and attacks against it. In the
introduction to their paper, they state: 

“Unfortunately, WEP falls short of accomplishing its security goals.
Despite employing the well-known and believed-secure RC4 cipher,
WEP contains several major security flaws. The flaws give rise to a
number of attacks, both passive and active, that allow eavesdropping
on, and tampering with, wireless transmissions.” 

They go on to say that WEP fails to achieve all three of its security
goals, namely confidentiality, access control, and data integrity. 

As has been noted earlier, WEP uses the RC4 stream cipher with a 24-
bit Initialization Vector for encryption. Borisov, Goldberg, and Wagner
show that the poor design of WEP makes the system vulnerable in
many areas, and one of the weakest parts of WEP is the 24-bit Initial-
ization Vector, which may result in keystream reuse. Keystream reuse in
turn permits successful cryptanalysis attacks against the ciphertext.
However, what is surprising is that:

“The WEP protocol contains vulnerabilities despite the designers’
apparent knowledge of the dangers of keystream reuse attacks.”

Another not less important but equally poorly designed aspect of WEP
is the use of CRC-32. It is known that CRCs are not cryptographically
strong and are not intended to be used in place of message digest or
hash functions such as MD5 or the 

 

Secure Hash Algorithm

 

 (SHA). Be-
cause of the nature of CRC, it fails to provide the required integrity
protection.
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Some in the industry suggest that MD5 or SHA would introduce perfor-
mance penalties if used—and indeed they would—one cannot disagree.
But let’s not forget that CRC-32 was intended as a security measure—
which it isn’t—yes, it is fast, but it is also insecure. Presumably, a slower
but really secure solution is better than an inadequate though fast
solution. 

 

The Arbaugh Shankar Wau Attack (April 2001) 

 

In the paper “Your 802.11 Wireless Network Has No Clothes,”

 

[7]

 

 au-
thors present their research of the authentication flaws in the IEEE
802.11 and demonstrate a simple eavesdropping attack against IEEE
802.11 authentication. This work is partially based on the knowledge
obtained by Borisov, Goldberg, and Wagner in the paper described pre-
viously. The attack described in this work is possible even with WEP
enabled; however, in that case it will also require application of at-
tack(s) against WEP presented by Borisov et al. The authors also note
that a good key management architecture would increase the security of
the system; however, in their opinion only a comprehensive redesign of
the standard would provide a good long-term solution to these issues. 

 

The Fluhrer Mantin Shamir Attack (August 2001)

 

Scott Fluhrer, Itsik Mantin, and Adi Shamir describe a passive cipher-
text-only attack against the key scheduling algorithm of RC4 as used in
WEP

 

[11]

 

. They identify a large number of weak keys, in which knowl-
edge of a small number of key bits suffices to determine many state and
output bits with nonnegligible probability. They also show that the first
byte generated by the RC4 leaks information about individual key
bytes. This paper in particular shows how to reconstruct the secret key
in WEP by analyzing enough WEP-encrypted packets. The authors have
not tried to do this in practice—others did that. 

 

The Stubblefield Ioannidis Rubin Implementation of Fluhrer Mantin Shamir
Attack (August 2001) 

 

In an AT&T Laboratories report published on August 21, 2001

 

[14]

 

,
Adam Stubblefield, John Ioannidis, and Aviel Rubin describe a real-
world successful implementation of the Fluhrer Mantin Shamir attack
using a $100 Linksys card on a Linux machine. They report that it took
less than a week from ordering the card to recovering the WEP key on a
production network. This practical work has shown that no expensive
hardware or software is necessary in order to break WEP. They summa-
rize that it is the poor implementation of reasonable secure technologies
(such as RC4) that is responsible for WEP weaknesses. 
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WECA’s  Response 

 

The 

 

Wireless Ethernet Compatibility Alliance

 

 (WECA) is the organiza-
tion responsible for certifying compliance with the IEEE 802.11
standards. It also awards the WiFi (

 

Wireless Fidelity

 

) industry mark to
the products that have passed IEEE 802.11 compliance testing.

In response to the Berkeley paper, WECA has published an official
statement, clarifying its understanding of the situation. The main line of
this statement is that poor security is better than no security, as well as
that WEP was not intended to be a panacea for all security needs. The
statement correctly notes that the biggest security threat is the failure to
use available protection methods, including WEP. 

 

IEEE 802.11 Chair’s Response 

 

In response to the research made at UC Berkeley and the University of
Maryland, the Chair of the IEEE 802.11 Working Group, Stuart Kerry,
has published a Chair’s response intended to clarify some of the issues
around the security of IEEE 802.11. He denied allegations made in the
media that the security weaknesses of WEP are due to the closed stan-
dardization process. In fact, because WEP is a part of IEEE 802.11, it
was developed through an open process, like other IEEE standards. The
IEEE 802.11 Working Group itself is open to all interested parties to
participate. He also rejects the viewpoint that frequency-hopping wire-
less networks would be less vulnerable to security attacks. It is evident
that this is not true because both hopping codes and timing are unen-
crypted and are available to the attacker. Reminding us that the goal of
WEP was to provide a level of security comparable to wired LANs, he
states that the IEEE 802.11 Working Group is currently working on im-
provements to WEP to incorporate better security into the next version
of the standard. 

 

IEEE 802.1X 

 

Security in 802.11 networks can be broken down into three compo-
nents: authentication framework, authentication algorithm/protocol,
and encryption. IEEE 802.1X is trying to address the authentication
framework part of the puzzle. Although still in development, 802.1X
provides a scalable, centralized framework for authentication. 802.1X
may deploy a variety of authentication protocols (currently Cisco’s

 

Lightweight Extensible Authentication Protocol

 

 [LEAP] and Mi-
crosoft’s 

 

Extensible Authentication Protocol – Transport Layer Security

 

[EAP-TLS] are available), and it works with both wired and wireless
LANs. The widely used 

 

Remote Access Dial-In User Service

 

 (RADIUS)
protocol is also used in the 802.1X framework. 802.1X/LEAP is avail-
able with the Cisco Aironet 350 Series of wireless LAN devices; EAP-
TLS is supported in Windows XP. Although it is still a draft, 802.1X
may one day become the solution to the authentication issues of
802.11. 
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IEEE 802.11i 

 

Task Group I of the IEEE Working Group 802.11 is currently defining
MAC enhancements to provide enhanced security for 802.11. This is a
work in progress, and no IEEE 802.11i draft exists at the time of
writing. 

 

Cisco’s Solution 

 

Cisco Systems has responded to both papers on the security of the
WEP

 

[10]

 

. Cisco agrees that the WEP has serious shortcomings, and states
that its Aironet series of wireless networking products offers many solu-
tions to these problems: dynamic WEP keys, secure key derivation, and
mutual authentication using LEAP

 

[13]

 

. However, Cisco agrees that im-
provements are needed in the standard itself. 

RC4 Fast Packet Keying for WEP 
In a Document Nr 550r2, “Temporal Key Hash,” submitted by Russ
Housley of RSA Security and Doug Whiting of Hifn to the IEEE 802.11
Working Group, they describe a solution to the WEP problem that uses
a hashing technique that rapidly generates a unique RC4 key for each
packet of data sent over the wireless network. This technique addresses
the performance aspect of the security solution as well—the hash algo-
rithm used in Fast Packet Keying (FPK) is much faster than traditional
hash algorithms such as MD5 and SHA1 because of the special caching
approach. The IEEE 802.11 Working Group has decided to include this
technique in the IEEE 802.11i as an informative document. In most
cases, FPK may be implemented as a firmware upgrade for the existing
hardware. It is possible that when released, IEEE 802.11i may use FPK
as the solution—but this decision is yet to be made. No definite plans
are announced at the time of writing. For more information, see:
http://www.rsasecurity.com/rsalabs/technotes/wep-
fix.html. 

Health and IEEE 802.11 
Concerns about safety and health effects of various wireless solutions
such as mobile phones and wireless network devices periodically sur-
face in the media. In particular, the question of whether mobile phones
are linked to brain cancer and other diseases is still open. However, in
response to these concerns regarding wireless networking equipment
health effects, Cisco Systems has published a white paper entitled
“Cisco Systems Spread Spectrum Radios and RF Safety,” which ex-
plains why these devices do not present a threat to human health when
correctly used. The bottom line is that devices certified as compliant
with U.S. Federal Communications Commission or Industry Canada’s
regulations are safe to use because of their low emitted power. 
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Practical Uses 

 

Many companies, such as MobileStar, Wayport, Surf&Sip, and Air-
wave, have begun providing IEEE 802.11b Internet access at numerous
locations throughout the United States. Several international airports
also provide 802.11b service free of charge to travelers. No doubt more
such services will continue to appear all over the world, maybe making
a dream—Internet anywhere—a reality. 

 

Summary 

 

IEEE Standard 802.11 brought the long-awaited standardization to
wireless LAN networking. Unfortunately, it also brought various secu-
rity problems. Despite that, IEEE 802.11 is widely used, and with the
coming of IEEE 802.11a, it can only gain in popularity. What now re-
mains to be done is more effective and truly secure privacy and
authentication for 802.11 wireless networks. 

The IEEE 802.11 Working Group is actively working to improve what
has been done to date. The most improvements are obviously needed in
the area of security, where Working Groups 802.1X and 802.11i are
working to define better security mechanisms. In particular, 802.11 WG
is working on a new release of 802.11, which will include improve-
ments over 802.11-1999. In the meantime, consider your wireless LAN
as an external, insecure network—just like the Internet—and employ
additional security measures, such as Virtual Private Networks, Trans-
port Layer Security, SSH, and IP Security Architecture—in addition to
WEP. 
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Code Signing
by Eric Fleischman, The Boeing Company

ode signing is a common mechanism that authors of execut-
able code use to assert their authorship of that code and to
provide integrity assurance to the users of the code that an un-

authorized third party has not subsequently modified the code in any
way. Code signing is widely used to protect software that is distributed
over the Internet. It is also widely used for mobile code security, being a
core element of the mobile code security systems of both Microsoft’s
ActiveX and JavaSoft’s Java applet systems. Despite this widespread
use, common misunderstandings have arisen concerning the actual secu-
rity benefits provided by code signing. This article addresses this issue. It
explains how code signing works, including its dependence upon under-
lying Public Key Infrastructure (PKI) technologies. 

Motivation for Code Signing 
Code signing, which is also known as object signing in certain program-
ming environments, is a subset of electronic document signing. In many
ways code signing is a simplification of the more generic technology in
that generally only a single signature is permitted and that signature per-
tains to the entire file. That is, code signing usually does not support
multiple signatures, encryption of (data) content, dynamic data place-
ment, or sectional signing, which are commonly available in many
document-signing systems. As a result, code signing provides only au-
thenticity and integrity for electronic executable files—it does not
provide privacy, authentication, or authorization, which are supported
by several electronic document-signing approaches. 

A signature provides authenticity by assuring users as to where the code
came from—who really signed it. If the certificate originated from a
trusted third-party Certificate Authority (CA), then the certificate em-
bedded in the digital signature as part of the code-signing process
provides the assurance that the CA has certified that the code signer is
who he or she claims to be. Integrity occurs by using a signed hash func-
tion as evidence that the resulting code has not been tampered with
since it was signed. 

In the pre-Internet era, software was distributed in a packaged manner
via branding or trusted sales outlets. It frequently came in a shrink-
wrapped form directly from the vendor or a trusted distributor. In the
Internet era, software is often distributed via the Web, by e-mail, or by
file transfer. Code signing provides users with a similar level of assur-
ance as to software authenticity in this comparatively anonymous—and
comparatively insecure—new distribution paradigm as was previously
offered by packaged software in the pre-Internet era. 

C
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In all cases, what is assured is the authorship of the software, including
the verification that third parties have not subsequently modified the
code. In no case does the user receive any assurance that the code itself
is safe to run or actually does what it claims. Thus, the actual value of
code signing remains a function of the reliability and integrity of its au-
thor. Code signing, therefore, is solely a mechanism for software
creators to assert their authorship of the product and validate that it has
not been modified. In no case does it provide the end user with any
claim as to the quality, intent, or safety of the code. 

How Code Signing Works 
Code signing appends a digital signature to the executable code itself.
This digital signature provides enough information to authenticate the
signer as well as to ensure that the code has not been subsequently
modified. 

Code signing is an application within a PKI system. A PKI is a distrib-
uted infrastructure that supports the distribution and management of
public keys and digital certificates. A digital certificate is a signed asser-
tion (via a digital signature) by a trusted third party, known as the
Certificate Authority (CA), which correlates a public key to some other
piece of information, such as the name of the legitimate holder of the
private key associated with that public key. The binding of this informa-
tion then is used to establish the identity of that individual. All system
participants can verify the name-key binding coupling of any presented
certificate by merely applying the public key of the CA to verify the CA
digital signature. This verification process occurs without involving the
CA. 

A public key refers to the fact that the cryptographic underpinnings of
PKI systems rely upon asymmetric ciphers that use two related but dif-
ferent keys, a public key, which is generally known, and a private key,
which should be known only by the legitimate holder of the public
key. This approach is known as public-key cryptography and directly
contrasts to symmetric ciphers, which contrastingly require the two
entities to share an identical secret key in order to encrypt or decrypt
information. 

The certificates used to sign code can be obtained in two ways: They are
either created by the code signers themselves by using one of the code-
signing toolkits or obtained from a CA. The signed code itself reveals
the certificate origin, clearly indicating which alternative was used. The
preference of code-signing systems (and of the users of signed code) is
that the certificates come from a CA, and CAs, to earn the fee they
charge for issuing certificates, are expected to perform “due diligence”
to establish and verify the identity of the individual or institution
identified by the certificate. As such, the CA stands behind (validates)
the digital certificate, certifying that it was indeed issued only to the in-
dividual (or group) identified by the certificate and that the identity of
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that individual (or group) has been verified as stated. The CA then digi-
tally signs the certificate in order to formally bind this verified identity
with a given private and public key pair, which is logically contained
within the certificate itself. This key pair will subsequently be used in
the code-signing process. Self-created certificates, by contrast, are un-
constrained as to the identities they may impersonate. 

Figure 1: Code-Signing
Process

Code signing itself is accomplished as follows: Developers use a hash
function on their code to compute a digest, which is also known as a
one-way hash. The hash function securely compresses code of arbitrary
length into a fixed-length digest result. The most common hash func-
tion algorithms used in code signing are the Secure Hash Algorithm
(SHA), Message Digest Algorithm 4 (MD4), or MD5. The resulting
length of the digest is a function of the hash function algorithm, but a
common digest length is 128 bits. The digest is then encrypted using the
developer’s private key, which is part of the developer’s certificate. A
package containing the encrypted digest and the developer’s Digital
Certificate is encapsulated into a special structure called the signature
block. The signature block is then appended to the executable code to
form the signed code. 

In a Java context, the signed Java byte code is called a JAR file. First in-
troduced in the Java Developer’s Kit (JDK) version 1.1, this capability
was greatly expanded with Java 2. 
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Figure 2: Code
Verification Process

At some subsequent time, this signed code will be presented to a recipi-
ent, usually through the agency of a code-signing verification tool on the
recipient’s computer. This tool will inspect the signature block to verify
the authenticity and integrity of the received code. This inspection is
done in the following manner, as shown in Figure 2: 

1. The certificate is inspected from the signature block to verify that it is
recognizable to the code-signing verification system as a correctly for-
matted certificate. 

2. If it is, the certificate identifies the hash function algorithm that was
used to create the signed digest within the received signature block.
With this information, the same hash algorithm code that was used
to create the original digest is then applied to the received execut-
able code, creating a digest value, which then is temporarily stored.
If it is not a correctly formatted certificate, then the code-signing
verification process fails. 

3. The signed digest value is then taken from the signature block and
decrypted with the code signer’s public key, revealing the digest
value, which was originally computed by the code signer. Failure to
successfully decrypt this signed digest value indicates that the code
signer’s private key was not used to create the received signature. If
this is the case, then that signature is a fraud and the code-signing
verification process fails. 

4. The recomputed digest of Step 2 is then compared to the received
digest that was decrypted in Step 3. If these two values are not identi-
cal, then the code has subsequently been modified in some way and
the code-signing verification process fails. If any such anomaly
occurs, then the verification system alerts the recipient concerning the
nature of the failure, indicating that the resulting code is suspect and
should not be trusted. However, if the digests are identical, then the
identity of the code signer is established. 
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5. If establishment occurs, then the code signer’s certificate is copied
from the signature block and presented to the recipient. The recipi-
ent then has the option to indicate whether or not he or she trusts the
code signer. If so, then the code is executed. If not, then it is not
executed. 

Types of Code Signing 
Code signing is a mechanism to sign executable content. The term exe-
cutable content refers to presenting executable programs in a manner so
that they could be run locally—regardless of whether the executable file
originated locally or remotely. Code signing is commonly used to iden-
tify authorship within several distinct usage scenarios: 
• Applications can be code signed to identify their ownership within

comparatively anonymous software distribution mechanisms using
the Web, the File Transfer Protocol (FTP), or e-mail. This type of
code signing establishes the origin for downloadable JAR, tar, zip, or
CAB file software distributions, for example. 

• Code signing can provide Web users more control over mobile code
that is available to their Web browsers. Mobile code is code that
travels a network in its lifetime in order to execute on a destination
machine. The term is usually associated today with active Web con-
tent that executes on the client’s machine via technologies such as
Java, JavaScript, VBScript, ActiveX, and MS Word macros. 

• Device drivers can be code signed to inform an operating system of
the authorship of that driver. For example, the device drivers for
Windows 98, Windows ME, and Windows 2000 operating systems
should preferentially be certified by Microsoft’s device driver
certification laboratory[25]. The entity signs the device driver execut-
able in order to certify that the device driver in question has indeed
been successfully demonstrated by a Microsoft certification labora-
tory to correctly run on that operating system. 

• A recent news report[20] has stated that Microsoft will be using code
signing as a security mechanism within its forthcoming Windows XP
operating system. The article stated: “Microsoft is to incorporate a
‘signed application’ system in Whistler [that is, Windows XP], the in-
tention being to furnish users with a super-secure mode of operation
that just plain stops [unsigned] code executing on the machine.” 

Code Signing Does Not Provide Total Security 
A fundamental problem with code signing is that it cannot provide any
guarantee about the good intentions of the signer or the quality, intent,
operations, or safety of the code. The VeriSign and Thawte CAs, for ex-
ample, combat this limitation somewhat for executables signed by
certificates they issue by requiring the entities receiving their certificates
to sign a “software publisher’s pledge” not to sign a piece of malicious
software. If they subsequently learn of violations of this agreement, they
ask the owner to correct the problem.
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If the owner refuses, then they cancel the owner’s digital certificate and
potentially bring a lawsuit against the offender. The code-signing litera-
ture has documented that the latter has occurred at least once[21]. 

Another problem is that the digital signing by even a reputable entity
can be forged if the private key of the signer becomes known. This forg-
ing can occur when the criminally minded exploit any of numerous
potential vulnerabilities, including hacking into the key store on the
signer’s machine, carelessness on the part of the signer exposing this in-
formation, or an error in a CA PKI key distribution system. 

Perhaps the best summary of these issues is provided by Schneier, who
wrote: 

“Code signing, as it is currently done, sucks. There are all sorts of
problems. First, users have no idea how to decide if a particular signer
is trusted or not. Second, just because a component is signed doesn’t
mean that it is safe. Third, just because two components are
individually signed does not mean that using them together is safe;
lots of accidental harmful interactions can be exploited. Fourth,
“safe” is not an all-or-nothing thing; there are degrees of safety. And
fifth, the fact that the evidence of attack (the signature on the code) is
stored on the computer under attack is mostly useless: The attacker
could delete or modify the signature during the attack, or simply
reformat the drive where the signature is stored.” (Quoted from page
163 of [17]). 

Mobile Code Security 
Mobile code security is a two-edged sword: it seeks to protect com-
puter systems receiving potentially hostile mobile code and it also seeks
to protect mobile code from potentially hostile users of those computer
systems. 

Code signing has emerged as a major adjunct to mobile code security.
Because mobile code probably represents the dominant use of code
signing that occurs today, this section examines how code signing as-
sists mobile code security. 

There is substantial and growing literature on mobile code security (for
example, see [3] through [16]). The literature identifies four distinct ap-
proaches to mobile code security, together with a few hybrids that
merge two or more methods. Each of the four approaches has an inher-
ent trust model that identifies the assumptions upon which the
approach is based. Rubin and Geer[4] list these four approaches as
being: 
• The sandbox approach, which restricts mobile code to a small set of

safe operations. This is the historic approach used by Java applets. In
the approach, each Java interpreter implementation attempts to ad-
here to a security policy, which explicitly describes the restrictions
that should be placed on remote applets. “Assuming that the policy



Code Signing: continued

T h e  I n t e r n e t  P r o t o c o l  J o u r n a l
2 0

itself is not flawed or inconsistent, then any application that truly im-
plements the policy is said to be secure. ... The biggest problem with
the Java sandbox is that any error in any security component can
lead to a violation of the security policy. ... Two types of applets
cause most of the problems. Attack applets try to exploit software
bugs in the client’s virtual machine; they have been shown to success-
fully break the type safety of JDK 1.0 and to cause buffer overflows
in HotJava. These are the most dangerous. Malicious applets are de-
signed to monopolize resources, and cause inconvenience rather than
actual loss.”[4] The trust model assumed by the sandbox approach is
that the sandbox is trustworthy in its design and implementation but
that mobile code is universally untrustworthy.

• In code signing, the client manages a list of entities that it trusts.
When a mobile code executable is received, the client verifies that it
was signed by an entity on this list. If so, then it is run; otherwise it
does not run. This approach is most commonly associated with Mi-
crosoft’s ActiveX technology. “Unfortunately, there is a class of
attacks that render ActiveX useless. If an intruder can change the
policy on a user’s machine, usually stored in a user file, the intruder
can then enable the acceptance of all ActiveX content. In fact, a legit-
imate ActiveX program can easily open the door for future
illegitimate traffic, because once such a program is run, it has com-
plete access to all of the user’s files. Such attacks have been
demonstrated in practice.”[4] The trust model for this approach as-
sumes that it is possible to distinguish untrustworthy authors from
trustworthy ones and that the code from trustworthy authors is
dependable.

• The firewalling approach involves selectively choosing whether or
not to run a program at the very point where it enters the client do-
main. “Research shows that it may not always be easy to block
unwanted applets while allowing other applets ... to run. The fire-
walling approach assumes that applets can somehow be identified. ...
This approach is fundamentally limited, however, by the halting
problem, which states that there is no general-purpose algorithm that
can determine the behavior of an arbitrary program.”[4] 

A related and more viable alternative is the playground architecture
that has been used to separate Java classes that prescribe graphics
actions from all other actions. The former are loaded on the client,
whereas the latter are loaded on a “sacrificial” playground machine
for execution and then reporting of the results to the browser.
Because this approach requires byte-code modification, it cannot be
used in conjunction with the usual approach to code signing. 

• The Proof-Carrying Code (PCC) technique is a theoretical ap-
proach that statistically checks code to ensure that it does not
violate safety policies. “PCC is an active area of research so its
trust model may change. At present, the design and implementa-
tion of the verifier are considered trustworthy but mobile code is
universally untrustworthy.”[4] 
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The most common hybrid approach occurs for Java’s JDK 1.1 and Java
2. Each combines the sandbox approach, which was the security mecha-
nism for JDK 1.0, with code signing. This hybrid originated from the
realization that the inherent restrictions of the sandbox model kept ap-
plications from doing “interesting and useful things.” Therefore, a
mechanism for running applications outside of the sandbox, code shar-
ing, was devised to supplement the sandbox-based original. Specifically,
in JDK 1.1 a signed applet enjoys unlimited access to system resources,
just like local applications do, provided that the corresponding public
key is trusted in the executing environment. This system evolved within
Java 2 to optionally provide a consistent and flexible policy for applets
and applications, determined by the policies established within a protec-
tion domain. 

The literature is unanimous that the net result of this hybrid version “in-
troduces the same security problems [as those] inherent in the ActiveX
code-signing approach.”[4]  For this reason, Bernard Cole[11] has stated
“neither [the sandbox nor the code signing] model is appropriate to the
new environment of small information appliances, connected embed-
ded devices, numerous web-enabled wireless phones and set-top
boxes.”[11] Indeed, several articles (for example, perhaps the best collec-
tion is contained in[13]) contained worrying descriptions of how to
compromise specific sandbox and code-signing products. 

The literature (see [3] through [16]) is also clear that despite the demon-
strable weaknesses of both the sandbox and code-signing approaches as
mechanisms for securing mobile code, they are the best practical alter-
natives available today. In the meantime, researchers are currently
exploring enhanced mobile code security by making hybrids containing
three—or all four—of the above mechanisms. 

Researchers have also begun to investigate alternative techniques. For
example, Zhao[16] reports that “Additional innovative authentication
functions are needed for mobile code. One approach is to apply digital
fingerprinting to authenticate mobile code. Analogous to ‘biometric au-
thentication’ for access control, a digital fingerprint of mobile code is a
unique authentication code that is an integral and intrinsic part of the
thing being authenticated. It is placed into the mobile code during its de-
velopment by using digital watermarking techniques.”

Major Code-Signing Systems 
Code-signing systems are often functions of specific applications. For ex-
ample, Thawte[22] is a CA that provides the following  certificate types:
• The Apple Developer Certificate is used by Apple MacOS-based ap-

plication developers to sign software for electronic distribution.

• The JavaSoft Developer Certificate can be used with JavaSoft’s JDK
1.3 and later to sign Web applets. 

• A Marimba Channel Signing Certificate is used to sign Castanet
channels on the Marimba platform. 
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• A Microsoft Authenticode Certificate is used with the Microsoft In-
etSDK developer tools to sign Web applets (for instance, ActiveX
controls) as well as .CAB, .OCX, .CLASS, .EXE, .STL, and .DLL
files, and other potentially harmful active content on Microsoft OS
platforms. These Authenticode certificates work only with Microsoft
IE 4.0 and later browsers.

• VBA Developer Certificates are identical to the Microsoft Authenti-
code certificates. They are used by developers to sign macros in

• Netscape Code-Signing Certificates are used to sign Java applets,
browser plug-ins, and other active content on the Netscape Commu-
nicator platform. 

Despite this diversity, the clearly dominant code-signing systems today

systems generally adhere to the same set of standards, their approaches
are highly diverse from each other. Each has its own certificate type.
Each system approaches code signing with different orientations, goals,
and expectations. 

Interoperability Problems 
Although all code signing uses similar technology, interoperability prob-
lems currently impact code signing. These problems may originate from
interoperability problems within the underlying PKI infrastructure,
from certificate differences, or from different (vendor) approaches to
code signing itself. 

PKI Infrastructure Interoperability 
The PKI Forum has identified ten impediments to the widespread adop-
tion of PKI[23], the most significant being the “lack of interoperability”
between PKI products. Because of this, the technical working group of
the PKI Forum is currently concentrating on addressing PKI interopera-
bility problems: “The Technical Working Group continues its focus on
multi-vendor interoperability projects. Over the last six months, it has
sponsored monthly interoperability “bake-offs” based on the Certificate
Management Protocol (CMP) standard, with participation from a grow-
ing number of vendors. In addition, two workshops have been held to
date on application-level interoperability through the use of digital
certificates, with remote testing ongoing. Looking forward, the Techni-
cal Working group plans to initiate two new interoperability projects in
the areas of Smart Card/Token Portability and CA interoperability, and
it will be defining a large-scale, multi-vendor interoperability project for
public demonstration in the first quarter of 2001.”[24]

Certificate Interoperability 
Numerous potential interoperability issues stem from the certificates
themselves because certain certificates are themselves tied to specific
types of applications. 

Office 2000 and other VBA 6.0 environments. 

come from Microsoft, Netscape, and JavaSoft. Although these three
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However, not every certificate is a code-signing certificate. Rather, code-
signing certificates are special certificates whose associated private keys
are used to create digital signatures. In addition, the id-kp-codesigning
value within the extended key usage field of the certificate itself (see Sec-
tion 4.2.1.13 of RFC 2459) needs to be set to indicate that the
certificate can be used for code signing. 

In any case, code-signing certificates must be packaged in the appropri-
ate format [Public Key Cryptographic Standards (PKCS)]), and the
various code-signing approaches (for example, Microsoft, Netscape,
JavaSoft) expect both the signing certificates and the code that is to be
signed to conform to different file format requirements. 

These differences between code-signing systems introduce opportunities
for incompatibility, even if each approach otherwise rigorously adheres
to the same basic certificate standards. 

Not all certificates can be used to support all potential certificate uses,
even if they originate from the same CA. For example, the Java Devel-
oper Certificates are not interoperable (exchangeable) with any other
certificates at this time. Fortunately, it is possible to buy certificates that
can be used for many (but not all) potential uses. For example, a single
certificate can support Microsoft Authenticode, Microsoft Office 2000/
VBA Macro Signing, Netscape Object Signing, Apple Code Signing, and
Marimba Channel Signing. 

Code Signing System Interoperability 
Probably the least understood of the potential interoperability prob-
lems are due to different vendor approaches to code signing itself.
Perhaps McGraw and Felten have provided the best insight to code-
signing system interoperability within Appendix A of their book Secur-

[15]. Unfortunately, those insights were in regard to an earlier
version of Java, which has evolved considerably since then. 

Certificate Issues 
Each of the three major code-signing systems (Microsoft, Netscape, Jav-
aSoft) has its own certificates. Each provides its own certificate stores to
house certificates within its system. 

Each of the three systems supports mechanisms by which certificates
may be exported from a given user’s certificate store and imported into
a different user’s certificate store on the same or on a different machine.
The Microsoft and Netscape systems also have provisions for import-
ing certificates between code-signing systems. 

Certificates are usually exported between PKI systems or certificate
stores in the PKCS-12 format (.p12 files if Netscape or .pfx files if
Microsoft Authenticode), which contains both certificate and key pair
information within the same file. Certificates can also be exported in the
PKCS-7 format (for example, .cer or .spc files).

ing Java
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The latter approach lacks information to permit the certificate to be
used for code signing by the importing system unless the missing ele-
ments can be retrieved via other mechanisms. 

Code-Signing Certificates 
The Netscape certificate utility (that is, signtool –L) indicates which of
the certificates located within a certificate store can be used for code
signing. By contrast, all certificates (except for those explicitly prohib-
ited from doing code signing according to the provisions of RFC 2459
Section 4.2.1.13) within a Microsoft certificate store can be used for
code signing within the Microsoft system. This means that a certificate
that is unable to be used for code signing in a Netscape system can be
imported into the Microsoft system and be successfully used for code
signing there. 

This difference stems from RFC 2459 Section 4.2.1.13, which deals
with the extended key usage field. The relevant text of the standard is as
follows: 

“If the extension is flagged critical, then the certificate MUST be used
only for one of the purposes indicated. If the extension is flagged non-
critical, then it indicates the intended purpose or purposes of the key,
and may be used in the correct key/certificate of an entity that has
multiple keys/certificates. It is an advisory field and does not imply
that usage of the key is restricted by the certification authority to the
purpose indicated. Certificate using applications may nevertheless
require that a particular purpose be indicated in order for the
certificate to be acceptable to that application.” 

What has occurred is that Netscape has implemented its system such
that certificates can be used only for the purposes specified in the ex-
tended usage field. Netscape does this for both critical and noncritical
markings. Microsoft, by contrast, provides that restriction solely to
certificates that have been marked “critical,” permitting certificates
without a critical marking to be used for any activity possible. Both ap-
proaches are legal, and both fully conform to the standard. 

Code Signing from an End User’s Perspective 
The results obtained when you try to execute signed code is a function
of your underlying operating system, the browser you are using, and
whether or not the executable is a Java applet. This should not be sur-
prising, because similar differences also occur with unsigned code. For
example, a Microsoft executable file will execute on a Microsoft Win-
dows operating system but is unlikely to execute on operating systems
that do not recognize that format. Similarly, a Java applet cannot be di-
rectly invoked on a Windows operating system, because that operating
system does not recognize the .jar file extension. However, it will
cleanly execute when accessed off of a Web page, regardless of the un-
derlying operating system.
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Book Review
Internet Performance

Survival Guide
Internet Performance Survival Guide: QoS Strategies for Multiservice

2000. 

Many readers of IPJ are familiar with the name Geoff Huston. He con-
tributes articles frequently. I find his style to be very lucid and his
writings to be very well structured and organized. 

I have need at my job to begin implementation of Quality of Service
(QoS) strategies to deal with an ever-increasing demand for Virtual Pri-
vate Network (VPN) tunnels over shared media. So, when I came across
the title of this book and saw who wrote it, I jumped at the opportu-
nity to review it for IPJ. 

Organization 
This book is organized more like a textbook than a reference manual. If
you are looking for a quick and dirty guide that simply lists all the tricks
of the trade and gives examples of how to implement them on specific
equipment, then this book is not for you. If, however, you are looking
for a well-written text that will help you to understand the issues, the
practices that address them, and the theory that underlies these prac-
tices, then this is an excellent book. 

The book begins with a chapter that explains in detail the problems that
administrators and engineers on heterogeneous, multiprotocol net-
works face today. There is a quick historical survey of the evolution of
networking and how that has shaped the nature of the problem. In a
very topical fashion, this introduction covers the basic techniques that
can be used to implement QoS, but also explains the complexity in-
volved with these techniques, their limitations, and why they are not
widely deployed yet. The book continues from there, starting with a
low-level view of the building blocks of the network and gradually
building to higher- and higher-level topics. 

The second chapter begins with some details about the performance fea-
tures built into the Internet Protocol, and in particular IPv6. This
chapter continues into TCP and covers all the well-known performance
features that are built into it, and then moves on to routing, switching,
and Multiprotocol Label Switching, or MPLS. MPLS is a unified ap-
proach to switching across large networks, and it has particular
applications to QoS. This topic is one of the main reasons I sought for
this book, and I am glad it was covered in such detail. The second chap-
ter ends with a survey of the various transmission systems that are
available today, and discusses in detail the performance characteristics
and problems that are peculiar to each. 

Networks, by Geoff Huston, ISBN 0-471-37808-9, John Wiley & Sons,
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The third chapter is a well-organized exposition of the various types of
performance-tuning techniques that are available. The author keeps the
discussion at a reasonably abstract level, yet is not afraid to discuss the
details of the application of these techniques to the specifics of the net-
work when such details are important. In particular, the use of QoS
techniques in conjunction with the Open Shortest Path First (OSPF)
routing protocol is discussed. 

The fourth chapter combines the building blocks of Chapter 2 and the
techniques of Chapter 3 into an architectural view that spans the net-
work. The author discusses the metrics that can be used to analyze
network performance, the protocols that can be used to implement ser-
vice strategies, the tradeoffs that are inherent in the problem, and the
policy choices that need to be made in order to come up with a clear de-
sign. In particular, the Integrated Service and Differentiated Service
models are discussed separately, and then the author shows how these
can be combined into an end-to-end network design. As with Chapter
3, the author explains important specific cases such as the use of the Re-
source Reservation Protocol (RSVP) with ATM. 

The fifth chapter moves on to explain how the architectures that have
been described can be used to attack the various kinds of problems that
exist on real networks. The emphasis is clearly on the end user of the
system and how to measure the levels of service being provided and to
bring into play the techniques already discussed to assure a consistent
level of service. The organization of this chapter seemed less clear than
that of the previous chapters, but that is perhaps due more to the na-
ture of the complexity of the problems being discussed than to the
author’s limitations or inattention. 

The sixth chapter provides little new material, per se, and is more of a
perspective on the material already provided. However, it contributes
highly to the content of the book in two important ways. First, it pro-
vides more of a top-down view of QoS to complement the material in
the preceding four chapters, which present a mostly bottom-up view.
Secondly, it acts as a natural bookend for the first chapter. The first
chapter raises the issues and poses the questions. The middle of the
book examines the protocols, techniques, and architectures in detail.
The last chapter then attempts to answer the questions that were ini-
tially raised. 

The author does an excellent job of presenting material that is com-
plex, vast, and is still in the process of evolving in the field. He is very
diligent about managing the level of detail, and is careful to first cover
the material topically before diving into the details. The examples are
appropriate and have been carefully chosen. 

Book Review: continued
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One of the features of the material that is most appreciated is the practi-
cal perspective that the author brings to his work. The theory never gets
out of hand, and is always balanced by a real-life approach to prob-
lems that, unfortunately, can never be completely solved. And, the
author’s observations always seem in tune with the experiences of the
reader. 

The material is well organized, and readers will appreciate the effort ex-
pended on the textual conventions that help to organize and structure
the material. The diagrams that accompany the text are clear and well-
placed, and they contribute to the reader’s comprehension. 

A glossary in the back helps a reader who has not thoroughly read the
preceding sections of the book. The index is also well done, and the ref-
erence material is copious and pertinent. 

Recommended 
Overall, I would recommend this book to any professional who man-
ages large, integrated networks, particularly those professionals who
work for Internet Service Providers in an engineering capacity. I think
this reflects the particular interests of the author, but that is as it should
be. 

—David P. Feldman, Tudor Investment Corporation
David.Feldman@Tudor.com

__________________________

Would You Like to Review a Book for IPJ?
We receive numerous books on computer networking from all the ma-
jor publishers. If you’ve got a specific book you are interested in
reviewing, please contact us and we will make sure a copy is mailed to
you. The book is yours to keep if you send us a review. We accept re-
views of new titles, as well as some of the “networking classics.”
Contact us at ipj@cisco.com for more information.
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Call for Papers The Internet Protocol Journal (IPJ) is published quarterly by Cisco
Systems. The journal is not intended to promote any specific products
or services, but rather is intended to serve as an informational and
educational resource for engineering professionals involved in the
design, development, and operation of public and private internets and
intranets. The journal carries tutorial articles (“What is…?”), as well as
implementation/operation articles (“How to…”). It provides readers
with technology and standardization updates for all levels of the
protocol stack and serves as a forum for discussion of all aspects of
internetworking.

Topics include, but are not limited to:

• Access and infrastructure technologies such as: ISDN, Gigabit Ether-
net, SONET, ATM, xDSL, cable, fiber optics, satellite, wireless, and
dial systems

• Transport and interconnection functions such as: switching, routing,
tunneling, protocol transition, multicast, and performance

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
trouble-shooting, and mapping

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed systems,
network computing, and Quality of Service

• Application and end-user issues such as: e-mail, Web authoring,
server technologies and systems, electronic commerce, and applica-
tion management

• Legal, policy, and regulatory topics such as: copyright, content
control, content liability, settlement charges, “modem tax,” and
trademark disputes in the context of internetworking

In addition to feature-length articles, IPJ will contain standardization
updates, overviews of leading and bleeding-edge technologies, book
reviews, announcements, opinion columns, and letters to the Editor.

Cisco will pay a stipend of US$1000 for published, feature-length
articles. Author guidelines are available from Ole Jacobsen, the Editor
and Publisher of IPJ, reachable via e-mail at ole@cisco.com

 

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement. This publication could contain technical inaccuracies or typographical
errors. Later issues may modify or update information provided in this issue. Neither the publisher nor
any contributor shall have any liability to any person for any loss or damage caused directly or
indirectly by the information contained herein.
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Fragments ICANN Considers Structural Reform
Stuart Lynn, President and CEO of The Internet Corporation for As-
signed Names and Numbers (ICANN) recently proposed a sweeping

noted Board Chairman Vint Cerf. “The rapid expansion of and increas-
ing global dependence on the Internet have made it clear that a new
structure is essential if ICANN is to fulfill its mission.” 

ICANN was formed three years ago as an entirely private global
organization designed to assume responsibility for the DNS root from
the U.S. government and to coordinate technical policy for the Internet’s
naming and address allocation systems. In the new proposals, the basic
mission remains intact, but the means of achieving that mission changes.
“What has become clear to me and others is that a purely private
organization will not work,” said Lynn. “The Internet has become too
important to national economic and social progress. Governments, as
the representatives of their populations, must participate more directly in
ICANN’s debates and policymaking functions. We must find the right
form of global public-private partnership—one that combines the agility
and strength of a private organization with the authority of governments
to represent the public interest.” 

Noting that current organizational inertia and obsession with process
over substance has impeded agility, Lynn laid out a roadmap designed
to instill confidence in key stakeholders and to ensure that ICANN can
be more effective. This roadmap entails restructuring the Board of Di-
rectors into a Board of Trustees composed in part of trustees nominated
by those governments who participate in the ICANN process; in part by
the chairs of proposed new “policy councils” that would replace the ex-
isting supporting organizations and that would provide expert advice;
and in part by trustees proposed by a broadly-based nominating com-
mittee and appointed by the Board itself. The roadmap is designed to
bring all critical stakeholders to the table, something that has been
difficult to achieve with the present structure and has slowed ICANN’s
progress and its ability to fulfill its responsibilities. It is also designed to
establish a broad-based funding mechanism sufficient to support the
critical mission of ICANN. 

“We need to build a stronger organization, supported by our key stake-
holders, led by the best team that can be assembled, and properly
funded,” Lynn said. “We must be structured to function effectively in
this fast-paced global Internet environment.” “A key requirement is to
keep the best of the present ICANN,” added Cerf, “in ensuring trans-
parency, openness, and participation, while creating an ICANN that
can act responsibly and quickly. That will mean rejecting practices that
have emphasized process over achievement. Above all, ICANN must
be—and be seen to be—effective and supportive of technical innova-
tion and of a reliable Internet.” 

A paper written by Lynn that
explains the reasons for
change and the roadmap for
reform is posted on the
ICANN web site:
http://www.icann.org/
general/lynn-reform-
proposal-24feb02.htm

series of structural reforms designed to lead ICANN towards
attainment of its core mission. “The current structure of ICANN was
widely recognized as an experiment when created three years ago,”
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