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F r o m  T h e  E d i t o r

The networking industry is full of acronyms, as the table of contents for
this issue clearly illustrates. According to the dictionary, an acronym is
“...a word formed from the initial letter or letters of each of the succes-
sive parts or major parts of a compound term.” While neither BEEP nor
ENUM are strictly speaking acronyms, these “short names” are becom-
ing ever more prevalent and difficult to keep track of. We promise to
continue to provide acronym expansion whenever possible.

BEEP is an example of a technology that came to life in a very short
time. While IETF standards often take years from initial idea to proto-
col specification, BEEP seems to have happened in just over a year.
There is already a textbook on BEEP from which our first article is
adapted. Marshall Rose gives an overview of the BEEP framework and
explains how you can get involved in its further development.

ENUM refers to the use of the Domain Name System (DNS) to look up
telephone numbers and subsequently route telephone calls to the right
destination using the Internet as the underlying routing fabric. This inte-
gration of the traditional telephone network with the Internet is
becoming a reality and several standardization bodies are working on
technologies to make this as seamless as possible. Geoff Huston ex-
plains the mechanisms and politics behind ENUM.

Our series “One Byte at a Time” examines the Dynamic Host Configu-
ration Protocol (DHCP). This protocol is widely used to provide IP
address and other basic routing information to clients. This is particu-
larly useful for mobile devices, but it can be used in any network
environment. Since the IP addresses are assigned as leases with a
configurable time limit, DHCP also provides for effective address man-
agement. Douglas Comer explains the details of DHCP and its
predecessor BOOTP. 

As always, we appreciate your feedback. Send your comments and
questions to ipj@cisco.com

—Ole J. Jacobsen, Editor and Publisher
ole@cisco.com



             
An Overview of BEEP
by Marshall Rose, Dover Beach Consulting

he Blocks Extensible Exchange Protocol (BEEP) is something
like “the missing link between the application layer and the
Transmission Control Protocol (TCP).” 

This statement is a horrific analogy because TCP is a transport protocol
that provides reliable connections, and it makes no sense to compare a
protocol to a layer. TCP is a highly-evolved protocol; many talented en-
gineers have, over the last 20 years, built an impressive theory and
practice around TCP. In fact, TCP is so good at what it does that when
it came to survival of the fittest, it obliterated the competition. Even to-
day, any serious talk about the transport protocol revolves around
minor tweaks to TCP. (Or, if you prefer, the intersection between peo-
ple talking about doing an “entirely new” transport protocol and
people who are clueful is the empty set.) 

Unfortunately, most application protocol design has not enjoyed as ex-
cellent a history as TCP. Engineers design protocols the way monkeys
try to get to the moon—that is, by climbing a tree, looking around, and
finding another tree to climb. Perhaps this is because there are more dis-
tractions at the application layer. For example, as far as TCP is
concerned, its sole reason for being is to provide a full-duplex octet-
aligned pipe in a robust and network-friendly fashion. The natural re-
sult is that while TCP’s philosophy is built around “reliability through
retransmission,” there isn’t a common mantra at the application layer. 

Historically, when different engineers work on application protocols,
they come up with different solutions to common problems. Sometimes
the solutions reflect differing perspectives on inevitable tradeoffs; some-
times the solutions reflect different skill and experience levels.
Regardless, the result is that the wheel is continuously reinvented, but
rarely improved. 

So, what is BEEP and how does it relate to all this? BEEP integrates the
best practices for common, basic mechanisms that are needed when de-
signing an application protocol over TCP. For example, it handles
things like peer-to-peer, client/server, and server/client interactions. De-
pending on how you count, there are about a dozen or so issues that
arise time and time again, and BEEP just deals with them. This means
that you get to focus on the “interesting stuff.” 

BEEP has three things going for it: 

• It’s been standardized by the Internet Engineering Task Force (IETF),
the so-called “governing body” for Internet protocols. 

• There are open source implementations available in different
languages. 

• There’s a community of developers who are clueful. 

T
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The standardization part is important, because BEEP has undergone a
lot of technical review. The implementation part is important, because
BEEP is probably available on a platform you’re familiar with. The
community part is important, because BEEP has a lot of resources avail-
able for you. 

Application Protocols 
An application protocol is a set of rules that says how your application
talks to the network. Over the last few years, the Hypertext Transfer
Protocol (HTTP) has been pressed into service as a general-purpose ap-
plication protocol for many different kinds of applications, ranging
from the Internet Printing Protocol (IPP)[1] to the Simple Object Access
Protocol (SOAP)[2]. This is great for application designers: it saves them
the trouble of having to design a new protocol and allows them to re-
use a lot of ideas and code. 

HTTP has become the reuse platform of choice, largely because: 

• It is familiar. 

• It is ubiquitous. 

• It has a simple request/response model. 

• It usually works through firewalls. 

These are all good reasons, and—if HTTP meets your communications
requirements—you should use it. The problem is that the widespread
availability of HTTP has become an excuse for not bothering to under-
stand what the requirements really are. It’s easier to use HTTP, even if
it’s not a good fit, than to understand your requirements and design a
protocol that does what you really need. 

That’s where BEEP comes in. It’s a toolkit that you can use for building
application protocols. It works well in a wide range of application do-
mains, many of which weren’t of interest when HTTP was being
designed. 

BEEP’s goal is simple: you, the protocol designer, focus on the protocol
details for your problem domain, and BEEP takes care of the other de-
tails. It turns out that the vast majority of application protocols have
more similarities than differences. The similarities primarily deal with
“administrative overhead”—things you need for a working system, but
aren’t specific to the problem at hand. BEEP mechanizes the similar
parts, and lets you focus on the interesting stuff. 

Application Protocol Design 
Let’s assume, for the moment, that you don’t see a good fit between the
protocol functions you need and either the e-mail or the Web infrastruc-
tures. (We’ll talk more about this later on in the section “The Problem
Space”.) It’s time to make something new. 
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First, you decide that your protocol needs ordered, reliable delivery.
This is a common requirement for most application protocols, includ-
ing HTTP and the Simple Mail Transfer Protocol (SMTP).[3] The easiest
way to get this is to layer the protocol over TCP. 

So, you decide to use TCP as the underlying transport for your proto-
col. Of course, TCP sends data as an octet stream—there aren’t any
delimiters that TCP uses to indicate where one of your application’s
messages ends and another one begins. This means you have to design a
framing mechanism that your application uses with TCP. That’s pretty
simple to do—HTTP uses an octet count and SMTP uses a delimiter
with quoting.

Since TCP is just sending bytes for you, you need to not only frame
messages, but have a way of marking what’s in each message. (For ex-
ample, a data structure, an image, some text, and so on.) This means
you have to design an encoding mechanism that your application uses
with the framing mechanism. That’s also pretty simple to do—HTTP
and SMTP both use Multipurpose Internet Mail Extensions (MIME).[4] 

Back in the early 1980s, when I was a young (but exceptionally cyni-
cal) computer scientist, my advisor told me that protocols have two
parts: data and control. It looks like the data part is taken care of with
MIME, so it’s onto the control part. If you are fortunate enough to
know ahead of time every operation and option that your protocol will
ever support, there’s no need for any kind of capabilities negotiation. In
other words, your protocol doesn’t need anything that lets the partici-
pants tell each other which operations and options are supported. (Of
course, if this is the case, you have total recall of future events, and re-
ally ought to be making the big money in another, more speculative,
field.) 

The purpose of negotiation is to find common ground between two dif-
ferent implementations of a protocol (or two different versions of the
same implementation). There are lots of different ways of doing this
and, unfortunately, most of them don’t work very well. SMTP is a re-
ally long-lived, well-deployed protocol, and it seems to do a pretty good
job of negotiations. The basic idea is for the server to tell the client what
capabilities it supports when a connection is established, and then for
the client to use a subset of that. 

Well, that’s just the first control issue. The next deals with when it’s
time for the connection to be released. Sometimes this is initiated by the
protocol, and sometimes it’s required by TCP because the network is
unresponsive. To further complicate things, if the release is initiated by
the protocol, maybe one of the computers hasn’t finished working on
something, so it doesn’t want to release the connection just yet. 
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Some application protocols don’t do any negotiation on connection re-
lease, and just rely on TCP to indicate that it’s time to go away—even
though this is inherently ambiguous. Is ambiguity a good thing in a pro-
tocol? Computers lack subtlety and nuance, so in protocols between
computers, ambiguity is a bad thing. For example, in HTTP 1.0 (and
earlier), you often didn’t know whether a response was truncated or
not. For a more concrete example, interested readers will be amused by
page 2 of RFC 962.[5] 

The final control issue deals with what happens between connection es-
tablishment and release. Most application protocols tend to be client/
server in nature: one computer establishes a connection, sends some re-
quests, gets back responses, and then releases the connection. But, are
the requests and responses handled one at a time (in lock-step), or can
multiple requests be outstanding, either in transit or being processed, at
the same time (asynchronously)? 

In the original SMTP, the lock-step model was implicitly assumed by
most implementors; later on, SMTP introduced a capability to allow
limited pipelining. Regardless, as soon as we move away from lock-
stepping, it looks as though we’ll need some way of correlating requests
and responses. 

Although this is a step in the right direction, some application protocols
need even more support for asynchrony. The reasoning is a little convo-
luted, but it all comes down to performance. There’s a lot of overhead
involved in terms of establishing a connection and getting the right user
state, so it makes sense to maximize the number of transactions that get
done in a single connection. While this helps in terms of overall
efficiency, if the transactions are handled serially, then transactional la-
tency—the time it takes to transit the network, process the transaction,
and then transit back—isn’t reduced (and may even be increased); a
transaction might be blocked while waiting for another to complete.
The solution is to be able to handle transactions in parallel.

Earlier I mentioned how, back in the 1980s, protocols had two parts,
data and control. Today, things have changed. First of all, I’m still cyni-
cal, but more comfortable with it, and—perhaps as important—many
might argue that protocols now have a third part, namely security. 

The really unfortunate part is that security is a moving target on two
fronts: 

• When you deploy your protocol in different environments, you may
have different security requirements.

• Even in the same environment, security requirements change over
time. 
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This introduces something of a paradox: modern thinking is that secu-
rity must be tightly integrated with your protocol, but at the same time,
you have to take a modular approach to the actual technology to allow
for easy upgrades. Worse, it’s very easy to get security very wrong. (Just
ask any major computer vendor!) Few applications folks are also ex-
pert in protocol security, and obtaining that expertise is a time-
consuming, thankless task, so there’s a lot of benefit in having a secu-
rity mechanism menu, developed by security experts, that applications
folk can pick from. 

Now the good news: there’s already something around designed to meet
just those requirements. It’s called the Simple Authentication and Secu-
rity Layer (SASL), and a lot of existing application protocols have been
retrofitted over the last four years to make use of it. 

Well, let’s see what all this means. Without ever having talked about
what your application protocol is going to do to earn a living, we have
to develop solutions for: 

• Framing messages 

• Encoding data 

• Negotiating capabilities (versions and options) 

• Negotiating connection release 

• Correlating requests and responses 

• Handling multiple outstanding requests (pipelining) 

• Handling multiple asynchronous requests (multiplexing) 

• Providing integrated and modular security 

• Integrating all these things together into a single, coherent
framework 

So, going back to the question “Why use BEEP?”, the answer is pretty
simple: if you use BEEP, you simply don’t have to think about any of
these things. They automatically get taken care of. 

Now maybe you’re the kind of hardcore engineer that really wants to
solve these problems yourself. Okay, go right ahead! But first, I’ll let
you in on a little secret: engineers have been solving these problems
since 1972. In fact, they keep solving them over and over again. For
each problem, there are usually two or three good solutions, and while
individual tastes may vary, the sad fact is that you can make any of
them work great if you’re willing to put in the hours. But why put in the
hours if they have nothing to do with the primary reason for writing the
application protocol to begin with? Isn’t there something more produc-
tive that you’d care to do with your life than design yet another framing
protocol?
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So, what’s really new about BEEP? The short answer is: not much. The
innovative part is that some folks sat down, did an analysis of the prob-
lems and solutions, and came up with an integrated framework that put
it all together. That’s not really innovation, but it’s really good news if
you’re already familiar with the building blocks that BEEP uses. 

Doesn’t all this stuff add a lot of overhead? The short answer is: nope.
The reason is a little more complex. BEEP is fairly minimalistic—it pro-
vides a simple mechanism for negotiating things on an à la carte basis. If
you don’t want privacy, no problem; don’t turn it on. If you don’t want
parallelism, that’s easy; just say “no” if the other computer asks for it.
The trick here is two-fold: 

• BEEP’s inner mechanisms (for example, framing) are pretty light-
weight, so you don’t incur a lot of overhead using them (even if you
don’t use all the functionality they provide). 

• BEEP’s outer mechanisms (for example, encryption) are all con-
trolled via bilateral negotiation, so you can decide exactly what you
want to get and pay for. 

There’s no free lunch, but if you want to start with something “lean and
mean,” BEEP doesn’t slow you down, and when you want to bulk up
(say, by adding privacy), BEEP lets you negotiate it. You incur only the
overhead you need. (This overhead will show up, regardless of whether
you use BEEP or grow your own mechanisms.) 

It turns out that this philosophy can yield some interesting results. For
example, take a look at this high-level scripting fragment:

::init -server example.com -port 10288 -privacy strong 

This fragment is invoking a procedure to establish a BEEP session. With
the exception of the last two terms, it looks pretty conventional. 

The last two terms tell the procedure to “tune” the session by looking at
the security protocols supported in common, selecting one that sup-
ports “strong privacy,” and then negotiating its use. What’s interesting
here is that neither the person who designed the application protocol
nor the person who wrote the application making the procedure call
has to be a security expert. The choice to use strong privacy, and how it
gets transparently used, is all an issue of provisioning. Of course, the ap-
plication protocol designer may still provide security guidelines to the
implementor; naturally, the implementor may bundle a wide range of
security protocols with the code. However—and this is key—everyone
got to focus on what they do best (even the security guys), and it still
comes together into a working system. 

The cool part here is how easily this all integrates into an evolving pro-
tocol. Back in the good ol’ days (say the mid-1980s) when the Post
Office Protocol (POP)[6] was defined, this kind of flexibility wasn’t
available. Whenever someone wanted to add a new security mecha-
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7



 

BEEP: 

 

continued

     
nism for authentication or privacy, you had to muck with the entire
protocol. With BEEP’s framework, you just add a module that works
seamlessly with the rest of the protocol. This means less work for every-
one, and presumably fewer mistakes getting the work done. 

Now we’ve come full circle: the reason for using BEEP is because it
makes it a lot easier to specify, develop, maintain, and evolve new appli-
cation protocols. 

The Problem Space 
BEEP works for a large class of application protocols. However, you
should always use the right tool for the right job. Before you start using
BEEP for a project, you should ask yourself whether your application
protocol is a good fit for either the e-mail or Web models.

Dave Crocker, one of the Internet’s progenitors, suggests that net-
work applications can be broadly distinguished by five operational
characteristics: 

• Server push or client pull 

• Synchronous (interactive) or asynchronous (batch) 

• Time-assured or time-insensitive 

• Best-effort or reliable 

• Stateful or stateless 

For example: 

• The World Wide Web is a pull, synchronous, time-insensitive, reli-
able, stateless service. 

• Internet mail is a push, asynchronous, time-insensitive, best-effort,
stateless service. 

This is a pretty useful taxonomy. 

So, your first step is to see whether either of these existing infrastruc-
tures meet your requirements. It’s easiest to start by asking if your
application can reside on top of e-mail. Typically, the unpredictable la-
tency of the Internet mail infrastructure raises the largest issues;
however, in some cases it’s a non-issue. For example, in the early 1990s,
some of the earliest business-to-business exchanges were operated over
e-mail (for example, USC/ISI’s FAST project). If you can find a good fit
between your application and Internet e-mail, use it! 

More likely, though, you’ll be tempted to use the Web infrastructure,
and there are a lot of awfully good reasons to do so. After all, when you
use HTTP: 

• There’s lots of tools (libraries, servers, etc.) to choose from. 

• It’s easy to prototype stuff. 

• There’s already a security model. 

• You can traverse firewalls pretty easily. 
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All of this boils down to one simple fact: it is pretty easy to deploy
things in the Web infrastructure. The real issue is whether you can
make good use of this infrastructure. 

HTTP was originally developed for retrieving documents in a LAN en-
vironment, so HTTP’s interaction model is optimized for that
application. Accordingly, in HTTP: 

• Each session consists of a single request/response exchange. 

• The computer that initiates the session is also the one that initiates
the request. 

What needs to be emphasized here is that this is a perfectly fine interac-
tion model for HTTP’s target application, as well as many other
application domains. 

The problem arises when the behavior of your application protocol
doesn’t match this interaction model. In this case, there are two choices:
make use of HTTP’s extensibility features, or simply make do. Obvi-
ously, each choice has some drawbacks. The problem with using
HTTP’s extensibility features is that it pretty much negates the ability to
use the existing HTTP infrastructure; the problem with “just making
do” is that you end up crippling your protocol. For example, if your ap-
plication protocol needs asynchronous notifications, you’re out of luck. 

A second problem arises due to “the law of codepaths.” The HTTP 1.1
specification, RFC 2616[10] is fairly rigorous. Even so, few implemen-
tors take the time to think out many of the nuances of the protocol. For
example, the typical HTTP transaction consists of a small request,
which results in a (much) larger response. Talk to any engineer who’s
worked on a browser and they’ll tell you this is “obvious.” So, what
happens when the “obvious” doesn’t happen? 

Some time ago, folks wanted a standardized protocol for talking to net-
worked printers. The result was something called the Internet Printing
Protocol (IPP)[1]. IPP sits on top of HTTP. At this point, the old “obvi-
ous” thing (small request, big response) gets replaced with the new
“obvious” thing—the request contains an arbitrarily large file to be
printed, and the response contains this tiny little status indication. A
surprising amount of HTTP software doesn’t handle this situation par-
ticularly gracefully (that is, long requests get silently truncated). The
moral is that even though HTTP’s interaction model doesn’t play favor-
ites with respect to lengthy requests or responses, many HTTP
implementors inadvertently make unfortunate assumptions. 

A third problem deals with the unitary relationship between sessions
and exchanges. If a single transaction needs to consist of more than one
exchange, it has to be spread out over multiple sessions. This intro-
duces two issues: 
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• In terms of stateful behavior, the server computer has to be able to
keep track of session state across multiple connections, imposing a
significant burden both on the correctness and implementation of the
protocol (for example, to properly handle time-outs). 

• In terms of performance, TCP isn’t designed for dealing with back-
to-back connections—there’s a fair amount of overhead and latency
involved in establishing a connection. This is also true for the secu-
rity protocols that layer on top of TCP. 

HTTP 1.1 begins to address these issues by introducing persistent con-
nections that allow multiple exchanges to occur serially over a single
connection, but still the protocol lacks a session concept. In practice,
implementors try to bridge this gap by using “cookies” to manage ses-
sion state, which introduces ad-hoc (in)security models that often result
in security breakdowns (as a certain Web-based e-mail service provider
found out). 

This brings us to a more general fourth problem: although HTTP has a
security model, it predates SASL. From a practical perspective, what this
means is that it’s very difficult to add new security protocols to HTTP.
Of course, that may not be an issue for you. 

If you can find a good fit between your application and the Web infra-
structure, use it! (For those interested in a more architectural perspective
on the reuse of the Web infrastructure for new application protocols,
consider RFC 3205[7].) 

Okay, so we’ve talked about both the e-mail and Web infrastructures,
and we’ve talked about what properties your application protocol needs
to have in order to work well with them. So, if there isn’t a good fit be-
tween either of them and your application protocol, what about BEEP? 

BEEP’s interaction model is pretty simple, with the following three
properties: 

• Each session consists of one or more request/response exchanges. 

• Either computer can initiate requests or notifications. 

• It’s connection-oriented. 

By using BEEP, you get an amortization effect with respect to the cost
of connection establishment and state management. This is largely de-
rived from the first property. Similarly, the second property gives BEEP
its ability to support either peer-to-peer or client-server interactions.
What we really need to explain is the connection-oriented part. 

To begin, all three of the interaction models we’ve looked at (BEEP, e-
mail, and the Web) are connection-oriented. (Although e-mail may get
delivered out of order, the commands sent over each e-mail “hop” are
processed in an ordered, reliable fashion.) The connection-oriented
model is the most commonly used for application protocols, but it does
introduce some restrictions. 
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A connection-oriented interaction model means that data is delivered
reliably and in the same order as it was sent. If you don’t require or-
dered, reliable delivery, you don’t need a connection-oriented
interaction model. For example, Internet telephony applications don’t
fit this model, nor do traditional multicast applications. 

So, BEEP is suitable for unicast application protocols (two computers
are talking to each other). However, not all unicast applications need a
connection-oriented model—for example, the Domain Name System
(DNS) manages name-to-address resolutions just fine without it. In fact,
if your protocol is able to limit each session to exactly one request/re-
sponse exchange with minimalist reliability requirements, and also limit
the size of each message to around 65K octets, then it’s probably a good
candidate for using the User Datagram Protocol (UDP) instead. 

The IETF and BEEP 
BEEP is an emerging standard from the Internet Engineering Task
Force (IETF). The IETF is a voluntary professional organization that de-
velops many of the protocols running in the Internet. (Of course,
anyone is free to develop their own protocols to run in their own little
part of the Internet, but if you want multi-vendor support, you need an
organization like the IETF.) So why does the IETF care about BEEP? 

The answer is that the largest area in the IETF deals with application
protocols. There are usually over two dozen working groups develop-
ing different application protocols. And, the IETF has been doing this
for a long, long time. It turns out that even though there are well-engi-
neered solutions to the different overhead issues, BEEP is the first time
that the IETF decided to develop a standard approach that integrates
the best practices for each issue. Before BEEP, each working group
would spend endless hours arguing about different solutions, and then,
if any time was remaining, they might sit down and look at the actual
problem domain. (Okay, this is an exaggeration... but not by much!) 

So, here’s the process by which BEEP got designed: 

• Identify the common domain-independent problems. 

• Determine the best solution for each problem. 

• Integrate the solutions into a consistent framework. 

• Declare victory. 

Now, the obvious question is: how do you determine what’s “best?” 

The truth is that in some cases, the answer is obvious, and in other
cases, the answer is arbitrary. (Protocol experts hate to admit this, but
in some cases, there is no clear winner, and it’s simply better to pick one
and order another drink.) Since most of what BEEP does is hidden from
the application designer and implementor, there’s really not a lot of
mileage in going through it here. 
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beepcore.org 
Where can you find out more about BEEP? To start, you can always
consult the two RFCs: the BEEP core framework[8] and the BEEP’s
mapping onto TCP[9]. However, it’s probably better to start with the
BEEP community Web site http://beepcore.org  where you’ll find: 

• News about BEEP meetings and events 

• Information about BEEP projects, programmers, and consultants 

• Information about beepcore (open source) and commercial software 

• BEEP-related RFCs, Internet-Drafts, and whitepapers 

[This article is adapted from Beep—The Definitive Guide, by Marshall
T. Rose, ISBN 0-596-00244-0, O’Reilly & Associates, 2002. Used with
permission. http://www.oreilly.com/catalog/beep/ ] 
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ENUM—Mapping the E.164 Number Space into the DNS
by Geoff Huston, Telstra

any communications networks are constructed for a single
form of communication, and are ill suited to being used for
any other form. Although the Internet is also a specialized

network in terms of supporting digital communications, its relatively
unique flexibility lies in its ability to digitally encode a very diverse set of
communications formats, and then support their interaction over the In-
ternet. In this way many communications networks can be mapped into
an Internet application and in so doing become just another distributed
application overlayed on the Internet. From this admittedly Internet-
centric perspective, voice is just another Internet application. And for
the growing population of Voice over IP (VoIP) users, this is indeed the
case. Being able to transmit voice over the Internet is not enough. Al-
lowing one Internet handset to connect to any other Internet handset is
still not enough. In the same way that walkie-talkies became ubiquitous
mobile phones only when there was a seamless integration with the tele-
phone network, a truly useful VoIP approach will be one that supports
seamless integration with the telephone network. 

The basics of the telephony world are very simple indeed. Telephone
handsets are little more than a speaker and a microphone. When a call
is made, the network connects the microphone of one party to the
speaker of the other, and vice versa. Of course you don’t need a special-
ized telephone network to support the carriage of voice. As any user of
a desktop computer would confirm, there are now a plethora of appli-
cations that can deliver a voice signal across the network. For an
application to support a voice conversation, a conventional approach is
to use a network base of the User Datagram Protocol (UDP) transport
protocol, with a Real-Time Protocol (RTP) overlay, and the RTP pay-
load is an encoded version of the original analogue voice signal.
Carrying voice signals in real time across an Internet is a well-under-
stood network service, with an accompanying set of existing protocols
and associated applications. 

E.164 Addresses and IP Services 
However, being able to transmit voice signals across a network is not
enough. It was Strowger’s step-by-step switching system of the late 19th
century that transformed the telephone into a truly useful communica-
tions network, allowing any telephone subscriber to initiate a
conversation with any other subscriber. This has evolved today into a
global numbering plan where every device connected to the telephone
network is assigned a unique numerical address. This numbering plan is
administered by the International Telecommunication Union (ITU), and
the plan, Recommendation E.164, involves the assignment of number
prefixes to each country code administrator[1].

M
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If the Internet voice domain interoperates seamlessly with the telephone
network, supporting this E.164 numbering plain into the realm of the
Internet is a critical step. To make Internet telephony truly useful, the
Internet telephony world has to be able to interface to the telephone
network by allowing Internet-connected telephone devices to make and
receive calls to any other telephone device, whether the other device is
connected to the Internet, connected to the telephone network, or con-
nected to any other network that seamlessly interoperates with the
telephone network. For this to work, one of the preconditions is that ev-
ery Internet device that supports telephone operation needs to also have
an alias in the form of a unique telephone address. But there’s a bit
more to it than simple numbering. 

Each Internet telephone is also an IP device, and, for the Internet com-
ponent of the end-to-end path, the voice traffic will be carried by IP
packets. These packets obviously require the IP address of the Internet
telephone device. So each Internet telephone requires both an Internet
address and a telephone address. It is the mapping from a telephone
number to an IP address that is the crucial part of this function.

Figure 1: Calling an IP
Telephone

Consider an example. When Alice, on a normal telephone, wants to call
Bob, on an Internet phone, all Alice needs to do is simply dial Bob’s
telephone number, or his E.164 address (Figure 1). Of course, because
Bob’s phone is connected to the Internet and can’t directly receive Al-
ice’s call request, a gateway is necessary. The telephone system should
be able to map Alice’s call request to the Internet telephony gateway
that is configured to act as Bob’s gateway agent. The gateway then
needs to translate Bob’s E.164 phone number into an IP address. Then
the gateway has to map the telephone network signals associated with
Alice’s call request to corresponding signals within an Internet session
initiation protocol, and then send these IP packets to Bob’s Internet
phone. If Bob answers the call, the phone uses the same protocol to in-
form the gateway, which then sends a corresponding telephone call
code across the telephone network to Alice.
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4. Gateway completes
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server 10.0.0.1
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When Bob accepts the call, the gateway can then pass all data originat-
ing from Alice to Bob’s IP address, and all data received from Bob’s IP
address across to the telephone connection to Alice for the duration of
the call. Alice never needs to know that Bob is using an Internet device.
Alice dialed a phone number, heard it ring, and then heard Bob answer
the call. For Alice, nothing has changed. Bob heard the phone ring,
picked it up, and talked to Alice. For Bob, nothing has changed. 

The simplest way to configure each gateway is to load each gateway
with a configured list of E.164 phone numbers and corresponding IP
addresses. This approach is currently very common, but, like all stati-
cally configured approaches, has its weaknesses. But what happens
when the IP device is numbered dynamically using the Dynamic Host
Configuration Protocol (DHCP), or if it’s mobile, and moves from one
service provider’s IP network to another, or when the end subscriber
changes providers and that subscriber’s network is renumbered, or
when the primary gateway fails and the providers want to switch to a
secondary device? In other words, how can this mapping be dynamic
rather than static? 

The way a dynamic domain name-to-IP address mapping can be main-
tained on the Internet is through the Internet Domain Name System
(DNS). The telephony gateway can use the the E.164 address as the
DNS query, and request the DNS to return the corresponding IP ad-
dress. In our example, when Alice rings Bob, the gateway can use the
DNS to obtain Bob’s current IP address. The gateway can then use the
Session Initiation Protocol (SIP) to send to Bob’s Internet phone a call
request, which then starts Bob’s phone ringing. If Bob changes IP ad-
dress, then the corresponding change is a change in the DNS, not in the
gateway itself. If the primary gateway fails and a secondary gateway is
used, the secondary system can already access all necessary mappings
through the DNS. 

So the general approach of using the DNS to contain this mapping is
one with some merit, but, as always, the devil is in the details. There are
two parts to mapping a E.164 number into the DNS. The first is the na-
ture of the transforms to be applied to the E.164 address to obtain a
DNS query string, and the second is the form of the DNS response to
this query.

Mapping E.164 Addresses into DNS Query Strings 
One possible approach to mapping an E.164 number into the DNS is to
simply place numbers as text blocks into the DNS. In this way, the
number +61-0-12345678 could be mapped to the DNS string
61012345678.example.com.  If this method were to be used for a siz-
able number of E.164 numbers, there are obvious DNS performance
implications associated with the size of this DNS zone file, together with
the issue of frequency of update of the zone and its cache characteristics.
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ENUM: continued
There are also a large number of E.164 country code delegated authori-
ties and, consequently, a large number of entities who would like to be
the authority for parts of such a monolithic unstructured DNS zone file. 

In order to avoid these issues, some structure in the E.164 address space
has to be used to map into the hierarchical name structure used in the
DNS. One helpful observation is that E.164 numbers and Internet do-
main names use opposite ordering. Whereas a fully qualified domain
name, such as test.example.com,  has the more specific parts to the
left and the most general part, the root, on the right of the name, a tele-
phone number code has the most general part, the reference to the
country code prefix “+” to the left and the more specific parts to the
right. If one were to reverse the order of E.164 symbols, then the two
address domains would have a similar structure. 

One of the first efforts to provide a mapping between E.164 number
and the DNS was part of the TPC fax gateway service, started in
1993[2]. This approach uses a reversed E.164 number, and treats ev-
ery digit as a node on the DNS name hierarchy. In our example, the
E.164 address +61 0 12345678 would map to the DNS query string
8.7.6.5.4.3.2.1.0.1.6.tpc.int.  (in the TPC service, the parent
DNS zone of this mapping is tpc.int. ) 

This mapping has some very convenient properties. Each country code
corresponds to a delegatable DNS domain, so that the international
country code for Australia, +61, can have a corresponding DNS delega-
tion for the zone 1.6.tpc.int.  Within the country code the DNS can
be further delegated to operators in a manner that parallels the further
delegation of E.164 common prefix number blocks. 

This same mapping is used by ENUM, using a DNS name parent of
e164.arpa.  The mapping entails taking a complete E.164 address (in-
cluding the country code), and then removing all nondigit symbols
from the address. The digit string is reversed and a “. ” is placed be-
tween each pair of digits. The string .e164.arpa.  is then appended to
make a complete DNS query string. Using this process, our example
number +61-0-12345678 is transformed into the DNS query:
8.7.6.5.4.3.2.1.0.1.6.e164.arpa.  

Although this form of mapping is technically well suited to the DNS, it
does mean that the DNS equivalent of the E.164 address is not very eas-
ily adapted to our conventional use of telephone numbers. The
implication is that it is likely that Internet-based telephony applications
will continue to present E.164 numbers in their user interfaces as con-
ventional telephone numbers, and manipulate the DNS equivalent
strings as internal objects. 
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The DNS Response 
The telephone network supports more than simple voice conversations,
and any serious attempt to bridge the telephone network and the Inter-
net also should be able to also handle various forms of text messaging
and paging services as well as document transmission undertaken as
faxes. The desired outcome is that the interface between the telephone
network and the Internet should be able to seamlessly redirect the tele-
phone service to the appropriate Internet service. In other words, we are
seeing a requirement that a set of services associated with the same
E.164 address should be able to be mapped to a set of IP servers, rather
than a single server with a single IP address.

The implication is that the DNS response to an ENUM query should
have a richer functionality than simply returning a single IP address. In
DNS terms, associating a conventional “A” DNS resource record with
each ENUM domain name is not sufficiently flexible for our purposes. 

The approach adopted by the TPC fax gateway service was to map a
fax in the telephone environment to an e-mailed multimedia message in
the Internet environment. To support this mapping, telephone numbers
were mapped to DNS Mail Exchange (MX) resource records, and these
records were mapped to a mail server’s IP address in a second DNS
lookup. 

ENUM attempts to solve a more general model of providing mappings
for any relevant service. One possible approach is to use a collection of
DNS name roots, one for each mappable service. Thus, for example,
fax.e164.arpa.  could hold mappings for the fax service, while
voice.e164.arpa.  could hold mappings for voice services, and so on.
However, this approach is not consistent with the generic architecture
of the DNS, and the distribution of service information has the poten-
tial to lead to synchronization errors. Usefully, the DNS allows a
collection of resource records to be associated with a DNS name, and
this set of records is returned as the answer to a query. It is then left to
the application to determine which particular record to use, with per-
haps some preference hints provided in the DNS response. The
approach used by ENUM takes advantage of this DNS capability, and
ENUM uses the DNS to map an e164.arpa  number onto a collection
of service-specific Uniform Resource Identifiers (URIs)[3]. 

A gateway that uses ENUM to query the DNS will receive the complete
collection of service-specific URIs in response to a request to translate
an E.164 address to a URI. Depending on the type of service being re-
quested, the gateway can then select the most appropriate URI and use
the DNS a second time to translate the domain name part of the URI to
an IP address using the URI-specific DNS resource record as a query
term. The gateway can then use the full URI specification to open an IP
session with the selected service port and complete the service
transaction. 
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ENUM: continued
The URI resource records used by ENUM are Naming Authority Point-
ers (NAPTR) records[4]. This form of use of the DNS allows for entries
where the entry itself can be decomposed into further delegations, using
name formats that use URI syntax[5]. 

NAPTR fields contain numerous components: 

• An Order field to specify the order in which multiple NAPTR
records must be processed 

• A Preference field to determine the processing order when multiple
NAPTR records have the same order value 

• A Service field to specify the resolution protocol and service 

• Flags to modify the actions of further DNS lookups 

• A regular expression to allow the query client to rephrase the origi-
nal request in a DNS format 

• A Replacement field to define the next DNS query object

The intended operation of ENUM is to first take the E.164 number and
convert it to a query in the e164.arpa  domain. The resultant set of ser-
vices is specified by the returned collection of NAPTR records. The
agent selects a service that matches the service characteristics of the orig-
inal request, and takes the corresponding URI for further resolution by
the DNS. The elements of this URI are further decomposed as per any
rewrite rules in the NAPTR record. DNS queries are generated as per
the sequence of preferred NAPTR rewrite operations. The ultimate re-
sult of this sequence of DNS queries is the specification of a protocol, an
associated port address, and the IP address for a preferred server for the
service. 

An Example of the Use of ENUM 
Let’s say Bob’s Internet telephone services are mapped to the E.164 ad-
dress +61-0-12345678. When Alice tries to call Bob, the telephone
network routes the call request toward the Internet gateway that is the
nominated service agent for this E.164 number. The Internet gateway
takes the call setup request with Bob’s number and first reverses the
digits, then inserts a “. ” between each digit, and finally appends
e164.arpa.  The resultant DNS string is the fully qualified domain
name 8.7.6.5.4.3.2.1.0.1.6.e164.arpa.  This name is then
passed as a query to the DNS, to retrieve all associated NAPTR DNS
resource records. 

Bob has specified that he prefers to receive calls using SIP addressed to
user bob  at the server telebob.au  by placing the following in the DNS: 

$ORIGIN 8.7.6.5.4.3.2.1.0.1.6.e164.arpa.
IN NAPTR 100 10 "u" "sip+E2U"  "!̂ .*$!sip:bob@sip.telebob.au!" .
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In this case the DNS entry uses an order value of 100 and a preference
of 10. The “u” flag indicates that the rule is terminal and that the
specified URI is to be used. The service field specifies that the SIP proto-
col is to be used, in conjunction with the E.164 to URI (E2U) resolution
service[6]. The operation of the regular expression produces the URI of
the form sip:bob@telebob.au. 

For this call request, the gateway picks the sip+E2U  service and per-
forms the associated regular expression transform using the original
E.164 number and the regular expression. This produces the sip:  URI.
The gateway then uses the DNS a second time to translate the domain
part of the URI, sip.telebob.au , into an IP address using a DNS A
record. 

The gateway then opens up a session with UDP port 5060 on this SIP
server to complete the call setup, requesting a voice session with the user
Bob on this server. (Figure 2).

Figure 2: Using ENUM to Call
an IP Phone

If, on the other hand, Alice is sending Bob a short text message, then
Bob may want this to be delivered to him as mail. Bob would add the
following entry into the DNS: 

In this case the gateway would use this mailto:  URI and use the do-
main part of the URI as a MX DNS query. The DNS responses are a list
of mail server names and associated preferences. The gateway then se-
lects this more preferred server and resolves this name to an IP address
by a further query to the DNS for an A address record. 

2. Telephone network
routes the call
request to the
associated SIP
Gateway

7. Gateway completes
call to SIP port on
server 10.0.0.1

Alice

Bob

SIP Gateway

1. Alice dials Bob's
telephone number
+61 0 12345678

IP Telephone
+61 0 12345678

10.0.0.1

3. Gateway queries
8.6.5.4.3.2.1.0.1.6.e164.arpa

4. Response sip+E2U
sip:bob@server

5. Query IP address of server

6. Response 10.0.0.1

Telephone
Network

IP

$ORIGIN 8.7.6.5.4.3.2.1.0.1.6.e164.arpa.
IN NAPTR 100 10 "u" "sip+E2U"     "!̂ .*$!sip:bob@sip.telebob.au!"   .
IN NAPTR 102 10 "u" "mailto+E2U"  "!̂ .*$!mailto:bob@mail.pobob.au!" .
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ENUM: continued
The gateway can complete the original text message delivery request by
opening a TCP session on port 25 of the mail server and sending the
message as mail addressed to user bob@mail.pobob.au.  

Services in ENUM
Other URIs can also be associated with an E.164 number, even services
not normally associated with a mapping of a telephone function. These
may include http:  URIs, even other E.164 telephone numbers,
specified by tel:  URIs. 

Let’s complete the example of Bob, who wants his SIP phone, mail ad-
dress, Web page, and mobile telephone to be referenced from a single
telephone number. 

Alice can enter the phone number 61012345678 into her browser and
retrieve Bob’s Web page in response. She can address e-mail to this
number and thereby send mail to Bob. Or she can make a telephone call
to Bob’s SIP phone, and if it does not answer she can try Bob on his
mobile phone. And she can do all this from a single number. 

Numerous interesting technical issues still need to be resolved, such as
the necessity and level of cacheing within the global ENUM system and
the creation of a standard registry scheme for ENUM service definition. 

The Politics of ENUM
There is quite some depth in the capabilities of the regular expression
rewrite rules in ENUM, but the basic functionality is one of mapping a
telephone number to a collection of service points that are associated
with the telephone customer who was assigned that telephone number. 

Despite this apparent functional simplicity, ENUM appears to have a
powerful set of attractors for regulatory and social controversy. 

A key benefit of moving into ENUM and the associated realm of IP-
based voice communications is that service creation becomes a function
of the edge and not the network. What were seen as telephone network
functions such as no answer and busy redirect, call forwarding, number
translation, and conference calls can all be implemented as edge applica-
tions driven by user scripts, rather than what we now see in the
telephone network as value-added network-based services. One way of
viewing this ENUM approach is that the DNS is functionally capable of
assuming the role of service control point for telephone services, taking
over the role undertaken by Signaling System 7/Channel 7 (SS7/C7). 

$ORIGIN 8.7.6.5.4.3.2.1.0.1.6.e164.arpa.
IN NAPTR 100 10 "u" "sip+E2U"     "!̂ .*$!sip:bob@sip.telebob.au!"   .
IN NAPTR 100 10 "u" "mailto+E2U"  "!̂ .*$!mailto:bob@mail.pobob.au!" . 
IN NAPTR 100 10 "u" "http+E2U"    "!̂ .*$!http://www.webhostbob.au"  .
IN NAPTR 103 10 "u" "tel+E2U"     "!̂ .*$!tel:+61-4-12341234"        . 
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Service creation and signaling are slipping away from the hands of net-
work operators into the hands of enterprises and eventually consumers,
in much that same way that the Internet has redefined other services in
terms of edge-based function instead of network mediation.

There is also the issue of ownership of these ENUM DNS zones, or to
put it another way: who gets to populate the e164.arpa  domain with
all these URIs? It could be that this is a responsibility of existing tele-
phone service providers, because after all these entities operate the
E.164 address space in each country. It could also be that this is a re-
sponsibility of Internet Service Providers (ISPs), because the data in the
resource records is describing Internet-based services. Or maybe the end
subscribers get to populate the DNS with their own entries, based on a
collection of services that may be sourced from a set of providers. 

It is quite conceivable that we could see ISPs that have no direct role in
carrying voice traffic wanting access to a country’s E.164 number plant
in order to provide various forms of ENUM services. Given that each
element of an ENUM service collection can use URIs that refer to differ-
ent ISP services, it is possible that the one ENUM record can be
populated by URIs referring to numerous different service providers.
This model of multi-agent access to such infrastructure resource records
is a novel concept to many regulatory and operating regimes, where a
single operator manages the entire associated infrastructure elements
that are needed to deliver a service. 

Some of the discussion about ENUM has been on more subtle aspects
of this mapping. There’s the choice of e164.arpa  as the common DNS
root for ENUM DNS entries. At an international level there’s a linger-
ing perception that “arpa ” is too American and that a name root of
“int ” appears to be more neutral. 

But there’s something else lurking here, which has surfaced within the
regulatory debate in the United States. North America has the .164
country code of “1,” implying that under ENUM there is a single DNS
domain for ENUM, namely 1.e164.arpa.  Single domains imply sin-
gle operators, and single operators have an implication of a
noncompetitive monopoly service regime. There has been a call for mul-
tiple E.164 DNS root locations for North America, allowing for two or
more competing service operators using different DNS hierarchies to lo-
cate their ENUM services.

On the one side there is the view that such attempts to create multiple
partially populated ENUM name hierarchies to support competitive ser-
vice provision in ENUM-based services are no more than an incitement
to address and service chaos. This chaos would, in turn, seriously ham-
per the uptake of ENUM services.
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ENUM: continued
On the other hand, the competitive provision proponents of multiple
DNS root domains argue that a regulatory-sanctioned monopoly is still
a monopoly, and this monopoly situation will likely lead to high service
prices for ENUM services. This escalated pricing structure would, in
turn, seriously hamper the uptake of ENUM services. 

As we have seen with the use of multiple services for an e164.arpa en-
try, the proponents of ENUM envisage a single telephone number as
being an alias not only for your Internet phone service, but also for in-
stant messaging, e-mail, your Web page, and any other service that is
associated with you. One identifier is all that would be required to reach
you, using a service protocol and service provider of your choice. The
implication of such a use of a telephone number is, on a personal level,
no more business cards cluttered with phone numbers, fax numbers,
mobile numbers, e-mail addresses, Web addresses, and instant-messag-
ing handles. Phone numbers are still the most widely used naming
scheme in communications, and the use of these numbers as a universal
locator has the advantage of being linguistically neutral as well as enjoy-
ing almost ubiquitous use. There are no international character set
issues within this particular number space. All we need is just one
ENUM address, or just one number, for all these services.

“One number to rule them all, one number to find them, one
number to bring them all and in the darkness bind them,” is
the ENUM version of Tolkien’s saga[7]. 

But one person’s ease of use is often another’s opportunity to exploit.
To be Lord of the Numbers would indeed be a powerful role if such
uses of ENUM were to become widespread. In addition to the commer-
cial opportunity in operating ENUM registries, ENUM can be seen as
yet another erosion of personal privacy on the Internet. It can be viewed
as one more step toward the use of single individual digital identity that
could be used to track individuals within the Internet. On a more imme-
diate and mundane level of concern it opens up the opportunity for
spammers to use a wealth of new ways to drive you to complete
distraction.

It appears that the technical components of ENUM are generally the
most straightforward part. The regulatory and social implications of
ENUM are more of a concern, and it is here that with ENUM we are
entering into “the Land of Mordor where the shadows lie.” 
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One Byte at a Time Bootstrapping with BOOTP and DHCP
by Douglas Comer, Purdue University

he process of starting a computer system is known as
bootstrapping. In most systems, the initial bootstrap sequence
begins with code in ROM, which the CPU executes. The ROM

code only contains a first step—it merely loads an image into the
computer’s RAM and branches to the image. There are two approaches
used to obtain an image: 

• Embedded system: On a diskless computer, the ROM code contains
sufficient support software to permit network communication. The
ROM code uses the network support to locate and download an
image. 

• Conventional computer: On a computer that has secondary storage
(for instance, a PC), the ROM code loads the image from a well-
known place on disk. Typically, the loaded image consists of an op-
erating system that then controls the computer. 

In either case, the image loaded by ROM is not tailored to the specific
physical hardware. Instead, an image is generic, which means that be-
fore it can be used, it must be configured for the local hardware. In
particular, the image does not contain such networking details as the
computer’s IP address, address mask, or domain name. Each of these
items must be supplied before applications can use TCP/IP. 

Early in the history of TCP/IP, designers chose to provide a separate
mechanism for each item of configuration information. Thus, the Re-
verse Address Resolution Protocol (RARP) only allowed a computer to
obtain its IP address. When subnet masks were introduced, ICMP Ad-
dress Mask messages were added to allow a computer to obtain a
subnet mask. The chief advantage of such an approach lies in flexibil-
ity—a computer can decide which items to obtain from a local file on
disk and which to obtain over the network. The chief disadvantage be-
comes apparent when one considers the network traffic and delay. A
given computer must issue a series of small request messages. More im-
portant, each response returns a small value (for instance, a 4-octet IP
address). Because networks enforce a minimum packet size, most of the
space in each packet is wasted. 

BOOTP 
As the complexity of configuration grew, TCP/IP protocol designers ob-
served that many of the configuration steps could be combined into a
single step if a server was able to supply more than one item of configu-
ration information. To provide such a service, the designers invented the
BOOTstrap Protocol (BOOTP). To obtain configuration information,
protocol software broadcasts a BOOTP Request message.

T
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A BOOTP server that receives the request looks up several pieces of
configuration information for the computer that issued the request,
places the information in a single BOOTP Response message, and re-
turns the reply to the requesting computer. Thus, in a single step, a
computer can obtain information such as the computer’s IP address, the
server’s name and IP address, and the IP address of a default router. 

Like other protocols used to obtain configuration information, BOOTP
broadcasts each request. Unlike other protocols used for configuration,
BOOTP appears to use a protocol that has not been configured:
BOOTP uses IP to send a request and receive a response. How can
BOOTP send an IP datagram before a computer’s IP address has been
configured? The answer lies in a careful design that allows IP to broad-
cast a request and receive a response before all values have been
configured. To send a BOOTP datagram, IP uses the all-1’s limited
broadcast address as a DESTINATION ADDRESS, and uses the all-0’s
address as a SOURCE ADDRESS. If a computer uses the all-0’s ad-
dress to send a request, a BOOTP server either uses broadcast to return
the response or uses the hardware address on the incoming frame to
send a response via unicast. (The server must be careful to avoid using
ARP because a client that does not know its IP address cannot answer
ARP requests.) 

Thus, a computer that does not know its IP address can communicate
with a BOOTP server. Figure 1 illustrates the BOOTP packet format.
The message is sent using UDP, which is encapsulated in IP. 

Figure 1: BOOTP Packet
Format

OP HLEN HOPSHTYPE

SECONDS ELAPSED UNUSED

CLIENT IP ADDRESS

YOUR IP ADDRESS

SERVER IP ADDRESS

ROUTER IP ADDRESS 

TRANSACTION IDENTIFIER

CLIENT HARDWARE ADDRESS (16 OCTETS)
•
•
•

•
•
•

•
•
•

•
•
•

SERVER HOST NAME (64 OCTETS)

BOOT FILE NAME (128 OCTETS)

VENDOR-SPECIFIC AREA (64 OCTETS)

0 16 24 318
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DHCP: continued
Each field in a BOOTP message has a fixed size. The first seven fields
contain information used to process the message. The OP field specifies
whether the message is a Request or a Response, and the HTYPE and
HLEN fields specify the network hardware type and the length of a
hardware address. The HOPS field specifies how many servers for-
warded the request, and the TRANSACTION IDENTIFIER field
provides a value that a client can use to determine if an incoming re-
sponse matches its request. The SECONDS ELAPSED field specifies
how many seconds have elapsed since the computer began to boot. Fi-
nally, if a computer knows its IP address (for instance, the address was
obtained using RARP), the computer fills in the CLIENT IP AD-
DRESS field in a request. 

Later fields are used in a response message to carry information back to
the computer that is booting. If a computer does not know its address,
the server uses field YOUR IP ADDRESS to supply the value. In addi-
tion, the server uses fields SERVER IP ADDRESS and SERVER HOST
NAME to give the computer information about the location of a com-
puter that runs servers. Field ROUTER IP ADDRESS contains the IP
address of a default router. 

In addition to protocol configuration, BOOTP allows a computer to ne-
gotiate to find a boot image. To do so, the computer fills in field BOOT
FILE NAME with a generic request (for instance, the computer can re-
quest the UNIX operating system). The BOOTP server does not send an
image. Instead, the server determines which file contains the requested
image, and uses field BOOT FILE NAME to send back the name of the
file. Once a BOOTP response arrives, a computer must use a protocol
like the Trivial File Transfer Protocol (TFTP) to obtain a copy of the
image. 

Automatic Address Assignment 
Although it simplifies loading parameters into protocol software,
BOOTP does not solve the configuration problem completely. When a
BOOTP server receives a request, the server looks up the computer in its
database of information. Thus, even a computer that uses BOOTP can-
not boot on a new network until the administrator manually changes
information in the database. 

Can protocol software be devised that allows a computer to join a new
network without manual intervention? Yes—several such protocols ex-
ist. For example, IPX and IPv6 can generate a protocol address from the
computer’s hardware address. To make automatic generation work cor-
rectly, the hardware address must be unique. Furthermore, if the
hardware address and protocol address are not the same size, it must be
possible to translate the hardware address into a protocol address that is
also unique.
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The AppleTalk protocols use a bidding scheme to allow a computer to
join a new network. When a computer first boots, the computer chooses
a random address. For example, suppose computer C chooses address
17. To ensure that no other computer on the network is using the ad-
dress, C broadcasts a request message and starts a timer. If no other
computer is using address 17, no reply will arrive before the timer ex-
pires; C can begin using address 17. If another computer is using 17, the
computer replies, causing C to choose a different address and begin
again. 

Choosing an address at random works well for small networks and for
computers that run client software. However, the scheme does not work
well for servers. To understand why, recall that each server must be lo-
cated at a well-known address. If a computer chooses an address at
random when it boots, clients will not know which address to use when
contacting a server on that computer. More important, because the ad-
dress can change each time a computer boots, the address used to reach
a server may not remain the same after a crash and reboot. 

A bidding scheme also has the disadvantage that two computers can
choose the same network address. In particular, assume that computer B
sends a request for an address that another computer (for example, A) is
already using. If A fails to respond to the request for any reason, both
computers will attempt to use the same address, with disastrous results.
In practice, such failures can occur for a variety of reasons. For exam-
ple, a piece of network equipment such as a bridge can fail, a computer
can be unplugged from the network when the request is sent, or a com-
puter can be temporarily unavailable (for instance, in a hibernation
mode designed to conserve power). Finally, a computer can fail to an-
swer if the protocol software or operating system is not functioning
correctly. 

DHCP 
To automate configuration, the Internet Engineering Task Force (IETF)
devised the Dynamic Host Configuration Protocol (DHCP). Unlike
BOOTP, DHCP does not require an administrator to add an entry for
each computer to the database that a server uses. Instead, DHCP pro-
vides a mechanism that allows a computer to join a new network and
obtain an IP address without manual intervention. The concept has been
termed plug-and-play networking. More important, DHCP accommo-
dates computers that run server software as well as computers that run
client software: 

• When a computer that runs client software is moved to a new
network, the computer can use DHCP to obtain configuration
information without manual intervention. 

• DHCP allows nonmobile computers that run server software to be
assigned a permanent address; the address will not change when the
computer reboots. 
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DHCP: continued
To accommodate both types of computers, DHCP cannot use a bidding
scheme. Instead, it uses a client-server approach. When a computer
boots, the computer broadcasts a DHCP Request to which a server
sends a DHCP Reply. (The reply is classified as a DHCP offer message
that contains an address the server is offering to the client.) 

An administrator can configure a DHCP server to have two types of ad-
dresses: permanent addresses that are assigned to server computers, and
a pool of addresses to be allocated on demand. When a computer boots
and sends a request to DHCP, the DHCP server consults its database to
find configuration information.

If the database contains a specific entry for the computer, the server re-
turns the information from the entry. If no entry exists for the computer,
the server chooses the next IP address from the pool, and assigns the ad-
dress to the computer.

In fact, addresses assigned on demand are not permanent. Instead,
DHCP issues a lease on the address for a finite period of time. (When
the administrator establishes a pool of addresses for DHCP to assign,
the administrator must also specify the length of the lease for each
address.) 

When the lease expires, the computer must renegotiate with DHCP to
extend the lease. Normally, DHCP will approve a lease extension. How-
ever, a site may choose an administrative policy that denies the
extension. (For example, a university that has a network in a classroom
might choose to deny extensions on leases at the end of a class period to
allow the next class to reuse the same addresses.) If DHCP denies an ex-
tension request, the computer must stop using the address. 

Optimizations in DHCP 
If the computers on a network use DHCP to obtain configuration infor-
mation when they boot, an event that causes all computers to restart at
the same time can cause the network or server to be flooded with re-
quests. To avoid the problem, DHCP uses the same technique as
BOOTP: each computer waits a random time before transmitting or re-
transmitting a request. 

The DHCP protocol has two steps: one in which a computer broadcasts
a DHCP Discover message to find a DHCP server, and another in
which the computer selects one of the servers that responded to its mes-
sage and sends a request to that server. To avoid having a computer
repeat both steps each time it boots or each time it needs to extend the
lease, DHCP uses caching. When a computer discovers a DHCP server,
the computer saves the server’s address in a cache on permanent storage
(for example, a disk file). Similarly, once it obtains an IP address, the
computer saves the IP address in a cache. When a computer reboots, it
uses the cached information to revalidate its former address. Doing so
saves time and reduces network traffic. 
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DHCP Message Format 
Interestingly, DHCP is designed as an extension of BOOTP. As Figure 2
illustrates, DHCP uses a slightly modified version of the BOOTP mes-
sage format. 

Figure 2: DHCP Message
Format

Most of the fields in a DHCP message have the same meaning as in
BOOTP; DHCP replaces the 16-bit UNUSED field with a FLAGS field,
and uses the OPTIONS field to encode additional information. For ex-
ample, as in BOOTP, the OP field specifies either a Request or a
Response. To distinguish among various messages that a client uses to
discover servers or request an address, or that a server uses to acknowl-
edge or deny a request, DHCP uses a message type option. That is, each
message contains a code that identifies the message type. 

DHCP and Domain Names 
Although DHCP makes it possible for a computer to obtain an IP ad-
dress without manual intervention, DHCP does not interact with the
Domain Name System. As a result, a computer cannot keep its name
when it changes addresses. Interestingly, the computer does not need to
move to a new network to have its name change. For example, suppose
a computer obtains IP address 192.5.48.195  from DHCP, and sup-
pose the domain name system contains a record that binds the name
x.y.z.com  to the address. Now consider what happens if the owner
turns off the computer and takes a two-month vacation during which
the address lease expires. DHCP may assign the address to another com-
puter. When the owner returns and turns on the computer, DHCP will
deny the request to use the same address. Thus, the computer will ob-
tain a new address. Unfortunately, the Domain Name System (DNS)
continues to map the name x.y.z.com  to the old address.

OP HLEN HOPSHTYPE

0 16 24 318

SECONDS ELAPSED FLAGS

CLIENT IP ADDRESS

YOUR IP ADDRESS

SERVER IP ADDRESS

ROUTER IP ADDRESS 

TRANSACTION IDENTIFIER

CLIENT HARDWARE ADDRESS (16 OCTETS)
•
•
•

•
•
•

•
•
•

•
•
•

SERVER HOST NAME (64 OCTETS)

BOOT FILE NAME (128 OCTETS)

OPTIONS (VARIABLE)
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DHCP: continued
For several years, researchers have been considering how DHCP should
interact with the DNS. Although a dynamic DNS update protocol has
been defined, it has not been widely deployed. Thus, many sites that use
DHCP do not have a mechanism to update a DNS database. From a
user’s perspective, the lack of communication between DHCP and DNS
means that when a computer is assigned a new address, the computer’s
name changes. 

Summary 
The bootstrapping sequence loads a generic image into a computer, ei-
ther from secondary storage or over the network. Before application
software can use TCP/IP protocols, the image must be configured by
supplying values for internal parameters such as the IP address and sub-
net mask, and for external parameters such as the address of a default
router; the process is known as configuration. Initially, separate proto-
cols were used to obtain each piece of configuration information. Later,
the BOOTstrap Protocol, BOOTP, was invented to consolidate sepa-
rate requests into a single protocol. A BOOTP response provides
information such as the computer’s IP address, the address of a default
router, and the name of a file that contains a boot image. 

The Dynamic Host Configuration Protocol (DHCP) extends BOOTP.
In addition to permanent addresses assigned to computers that run a
server, DHCP permits completely automated address assignment. That
is, DHCP allows a computer to join a new network, obtain a valid IP
address, and begin using the address without requiring an administrator
to enter information about the computer in a server’s database. When
DHCP allocates an address automatically, the DHCP server does not as-
sign the address forever. Instead, the server specifies a lease during which
the address may be used. A computer must extend the lease, or stop us-
ing the address when the lease expires. 

For Further Study 
Details about BOOTP can be found in reference [1], which compares
BOOTP to RARP and serves as the official protocol standard. Refer-
ence [2] tells how to interpret the vendor-specific area, and reference [3]
recommends using the vendor-specific area to pass the subnet mask.
Most uses of BOOTP have been replaced by DHCP. Reference [4] con-
tains the specification for DHCP, including a detailed description of
state transitions. A related document, [5], specifies the encoding of
DHCP options and BOOTP vendor extensions. Finally, reference [6]
discusses the interoperability of BOOTP and DHCP. The chair of the
DHCP working group, Ralph Droms, and Ted Lemon have written a
book about DHCP [7]. 
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Book Review
The Elements of Networking Style The Elements of Networking Style, by M. A. Padlipsky, originally pub-

lished by Prentice-Hall, 1985, ISBN 0132681110; now available from
iUniverse, 2000, ISBN 0595088791. 

Sometime in the autumn of 1986, I read Padlipsky on a flight from Bos-
ton to San Francisco, and about 15 minutes into it I began to get
enraged. A few minutes later, I was snickering. By the time the atten-
dants came around with profferings of alleged comestibles, I was
laughing aloud, and a gentleman sitting near the window was grateful
that there was a vacant seat between us. 

Padlipsky brought together several strands that managed to result in the
perfect chord for me over 15 years ago. I reread this slim volume (made
up of a Foreword, 11 chapters (each a separate arrow from Padlipsky’s
quiver) and three appendixes (made up of half a dozen darts of various
lengths and a sheaf of cartoons and slogans) several months ago, and
have concluded that it is as acerbic and as important now as it was 15
years ago. 

The instruments Padlipsky employs are a sharp wit (and a deep admira-
tion for François Marie Arouet), a sincere detestation for the ISO
Reference Model, a deep knowledge of the Advanced Research Projects
Agency Network (ARPANET)/Internet, and wide reading in classic sci-
ence fiction. 

Arouet is better known by his pen name, Voltaire. He was a social
rebel, a political agitator, and an acerbic satirist comparable to Swift.
Isaiah Berlin, in a lecture published in Salmagundi 27 [1974], remarks: 

“Voltaire is the central figure of the Enlightenment, because he
accepted its basic principles and used all his incomparable wit
and energy and literary skill and brilliant malice to propagate
the principles and spread havoc in the enemy’s camp. Ridicule
kills more surely than savage indignation...” 

Padlipsky is pungent and sharp and witty ... and knowledgeable. His
critiques of X.25, of the International Organization for Standardiza-
tion (ISO) seven-layer cake, and of the standards process in general, are
still relevant. 

History 
In the early 1970s, the CCITT (now the ITU), made up of PTTs and
monolithic telcos, fixed upon a putative standard for a network inter-
face protocol, X.25. First approved in 1976, and revised in 1977, 1980,
1984, 1988, and 1992, X.25 was unsatisfactory in its original form and
remains less than effective.
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One of the greatest drawbacks is that it is basically a store-and-forward
mechanism, meaning that it has an intrinsic delay and (as noted by
Sangoma Technologies) this delay is typically 0.6 seconds. It also re-
quires a great deal of buffering space. 

Padlipsky’s “Critique of X.25” (Mitre Corporation Report, M82-50,
September 1982; RFC 874 12 August 1983) is revised as Chapter 9 in
The Elements of Networking Style. Padlipsky has restored, however, his
original title: “Low Standards.” 

Flush with the failure of X.25, the Consultative Committee for Interna-
tional Telegraph and Telephone (CCITT) moved ahead. 

In 1977, the British Standards Institute proposed to ISO that an archi-
tecture was needed to define the communications infrastructure. To me,
this, as with International Federation for Information Processing (IFIP),
CCITT, and similar efforts, shows how “the road to hell is paved with
good intentions.” Because X.25 was unsatisfactory, the IFIP Working
Group was set up in the hope that that the technological community
could forestall the highly political arena of ISO. (It didn’t.) 

ISO set up a technical committee [ISO/TC 97/SC 16]. The next year
(1978), ISO published its “Provisional Model of Open Systems Archi-
tecture” [ISO/TC 97/SC 16 N 34]. This was labeled a “Reference
Model,” and referred to as the Open Systems Interconnection Refer-
ence Model (OSIRM or ISORM—pronounced “eye-sorm”—by
Padlipsky). 

In general, it was based on work done by Mike Canepa’s group at Hon-
eywell Information Systems, which came up with a seven-layered
architecture, which itself owed a great deal to IBM’s proprietary Sys-
tems Network Architecture (SNA). SNA had been announced in 1974,
and its seven layers do not correspond exactly to OSI/ISORM’s. TC 97/
SC 16 turned over proposal development to the American National
Standards Institute (ANSI), to which Canepa and his technical lead,
Charlie Bachman, presented their layered model. 

This, in turn, was the only proposal presented to the ISO subcommittee
at a meeting in Washington in March 1978. It was accepted and pub-
lished immediately. A “refined” version of the ANSI submission to ISO
appeared in June 1979. This published version is nearly identical to
Honeywell’s of 1977.

Rage and Ridicule
While he eschews the history I’ve outlined here, Padlipsky is enraged by
the standards process and its results. As Dave Walden and Alex McK-
enzie (both then at BBN, both now retired) pointed out in 1979, both
virtual circuit and datagram services are valuable. “An international
standard would do well to support both.” [IEEE Computer, Septem-
ber 1979]. 
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Book Review: continued
The 1977–1979 models were such that extant host-host protocols did
not fit ISORM. ISO was trying to construct a set of geometric figures
that would be a “tidy model.” The ARPANET workers, of whom
Padlipsky was one, were interested in getting things to actually work.
They were into pushing bits around the system. 

The irascible Padlipsky has described the OSI system as two high rises
with parking garages. The two high-rises are seven-story buildings; the
parking garages are the three-story X.25 structures. 

John Quarterman once pointed out: 

“OSI specified before implementation. So specification took
forever and implementation never happened, except for bits
and pieces. In addition, heavy government backing (by the EC,
now the EU, and various national governments) led some OSI
participants to attempt to substitute official authority for
technical capability. OSI and TCP/IP started at about the same
time (1977). OSI wandered off into the weeds and TCP/IP won
the race. Those governments that backed OSI bet on the wrong
horse.” 

TCP/IP had clearly “won the race” by the early 1980s; it took till 1994
for the U.S. government to recognize the de facto standard by rescind-
ing its Federal Information Processing Standards (FIPS). At that time,
too, the Defense Data Network (DDN) was made up of IP router nets,
not X.25-based nets.

In a totally different vein, there’s Chapter 11: “An Architecture for Se-
cure Packet-Switched Networks” (based on a presentation to the Third
Berkeley Workshop on Distributed Data Management and Network-
ing, August 1978). Here, Padlipsky suggests per-host processes. It was a
really good notion. 

Padlipsky’s rants—and many of the chapters are just that—precede
Quarterman’s remarks by nearly a decade. But they are worth reading
(and rereading). 

I’m glad The Elements of Networking Style is available again.

—Peter H. Salus
peter@matrix.net
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Call for Papers
The Internet Protocol Journal (IPJ) is published quarterly by Cisco
Systems. The journal is not intended to promote any specific products
or services, but rather is intended to serve as an informational and
educational resource for engineering professionals involved in the
design, development, and operation of public and private internets and
intranets. The journal carries tutorial articles (“What is…?”), as well as
implementation/operation articles (“How to…”). It provides readers
with technology and standardization updates for all levels of the
protocol stack and serves as a forum for discussion of all aspects of
internetworking.

Topics include, but are not limited to:

• Access and infrastructure technologies such as: ISDN, Gigabit Ether-
net, SONET, ATM, xDSL, cable, fiber optics, satellite, wireless, and
dial systems

• Transport and interconnection functions such as: switching, routing,
tunneling, protocol transition, multicast, and performance

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
trouble-shooting, and mapping

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed systems,
network computing, and Quality of Service

• Application and end-user issues such as: e-mail, Web authoring,
server technologies and systems, electronic commerce, and applica-
tion management

• Legal, policy, and regulatory topics such as: copyright, content
control, content liability, settlement charges, “modem tax,” and
trademark disputes in the context of internetworking

In addition to feature-length articles, IPJ will contain standardization
updates, overviews of leading and bleeding-edge technologies, book
reviews, announcements, opinion columns, and letters to the Editor.

Cisco will pay a stipend of US$1000 for published, feature-length
articles. Author guidelines are available from Ole Jacobsen, the Editor
and Publisher of IPJ, reachable via e-mail at ole@cisco.com
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Fragments Stephen D. Crocker Receives 2002 IEEE Internet Award 
The Institute of Electrical and Electronics Engineers (IEEE) has named
Stephen D. Crocker, chief executive officer of Shinkuro, Inc. in Be-
thesda, Md., as recipient of the 2002 IEEE Internet Award. The award
recognizes Crocker for his leadership in the creation of key Internet pro-
tocols. It will be presented on 19 June, at INET 2002, in Arlington, Va. 

In the formative days of the Internet and its predecessor, the ARPA-
NET, Crocker led the development of crucial technologies, processes
and organizations that continue to support the Internet today. At the
University of California at Los Angeles, Crocker and his team devel-
oped protocols for the ARPANET such as the Network Control
Protocol. NCP laid the groundwork for today’s Transmission Control
Protocol (TCP). Crocker also founded and led the Network Working
Group (NWG), which has evolved to become the Internet Engineering
Task Force (IETF). 

In organizing the notes from the first few meetings of NWG, Crocker
was anxious to expand the community and invite further discussion and
responses, and thus named the series Requests for Comments. RFCs re-
main a mainstay of Internet protocol publishing today, and have played
a big part in creating the environment of open and evolving standards
of the Internet. 

“The Internet Society is honored that INET 2002 was chosen as the
venue to present this year’s prestigious IEEE Internet Award,” said
Lynn St. Amour, president and CEO of the Internet Society (ISOC).
“Dr. Stephen Crocker is highly regarded throughout the international
Internet community and we’re pleased that his contributions will be rec-
ognized at INET 2002 in front of his peers.” 

Crocker’s many contributions to the Internet also include extensive
work organizing the standards process of the IETF, where he has served
as area director of security and on the Internet Architecture Board.
Crocker previously worked for the University of Southern California In-
formation Sciences Institute in Marina del Rey, the Aerospace
Corporation in El Segundo, Calif., and at Trusted Information Systems,
Inc., in Glenwood, Md. In 1994, he co-founded CyberCash of Reston,
Va., and served as its senior vice president for development and chief
technology officer. He also has started other ventures including Steve
Crocker Associates in Bethesda, Md.; Executive DSL in Bethesda, Md.;
and Longitude Systems in Chantilly, Va. 

He has served on the Council of Visitors at the Marine Biological Labo-
ratory, as part of the National Research Council Study of Information
Systems Trustworthiness and currently chairs the ICANN Security and
Stability Advisory Committee and the ISOC 2002 Jonathan B. Postel
Service Award Committee. The author of numerous papers, Crocker
also holds patents in relation to his security and electronic commerce
work. 
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He received his bachelor’s degree in mathematics and doctoral degree in
computer science, both from UCLA, he and studied artificial intelli-
gence at the Massachusetts Institute of Technology. 

The IEEE is the world’s largest technical professional society with more
than 377,000 members in approximately 150 countries. Through its
members, the IEEE is a leading authority on areas ranging from aero-
space, computers and telecommunications to biomedicine, electric
power and consumer electronics. Additional information is available at
http://www.ieee.org  

The Internet Society http://www.isoc.org/  is a non-profit, non-gov-
ernmental, open membership organization whose worldwide individual
and organization members make up a veritable “who’s who” of the In-
ternet industry. It provides leadership in technical and operational
standards, policy issues, and education. ISOC is the organizational
home of the International Engineering Task Force, the Internet Archi-
tecture Board, the Internet Engineering Steering Group, and the IETF—
the standards setting and research arms of the Internet community. For
information about INET 2002 please visit http://www.inet2002.org  

Interim Approval for ENUM Provisioning 
The International Telecommunication Union (ITU) and the Internet Ar-
chitecture Board (IAB) recently announced interim approval for a single
domain for ENUM, a technology that builds a bridge between the pub-
lic switched telephone network and the Internet. 

Voice on IP networks today operate by translating telephone numbers
to IP addresses and placing an H.323 or SIP call to the device. The in-
terchange format and translation record has not heretofore been
standardized, limiting the possibility of deployment of multi-corporate
and international Voice on IP services. Under the ENUM proposal,
E.164 numbers can be represented as Internet Domain Names,provid-
ing a scalable and standard way to translate the numbers, and opening
the way to such services. ITU has begun approving delegations for the
purposes of trials. “The lack of an interoperable standard way to turn a
telephone number into an IP Address has been one factor limiting the
deployment of Voice on IP services internationally,” said Leslie Daigle,
Chair of the IAB. 

If desk-mounted computers or servers are given telephone numbers as
well as mnemonic names, this system further enables common tele-
phone handsets to place Voice or Video on IP calls to such computers.
This is a significant step towards integrating Internet-based services with
the global telephone network, and the current agreements between IAB
and ITU will allow trials to take place. 
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Fragments: continued
Patrik Fältström, member of the Internet Engineering Steering Group
(IESG), said that “the integration of the desktop telephone and com-
puter allows corporations to simplify their internal networks.”

Roy Blane, Chair of ITU-T’s Study Group 2, concurred, saying that “In
the long term this protocol may facilitate many new internet services. In
the short term, countries wishing to trial the system can begin work on
developing it.” 

This interim approval is made possible due to cooperation between
ITU, IAB and the IETF. As outlined in the ENUM specification docu-
ment, RFC 2916, sub-domains from a single domain will be delegated
after acceptance by the registries according to the existing assignment of
country codes in the telephone address space. Information on how the
ENUM registration requests will be processed can be found at:
http://www.ripe.net/enum/  

The IETF is an international community of network designers, opera-
tors, vendors, and researchers concerned with the evolution of the
Internet architecture and the smooth operation of the Internet. The
definition of the ENUM protocol, as proposed by the IETF can be
found at http://www.ietf.org/rfc/rfc2916.txt The IETF is an
organized activity of the Internet Society. 

The ITU is a global organization where the public and private sectors
cooperate for the development of telecommunications and the harmoni-
zation of national telecommunications policies. Study Group 2 of the
ITU Telecommunication Standardization Sector (ITU-T), where work
on ENUM is being carried out, is the Lead Study Group on Service
definition, Numbering, Routing and Global Mobility and is responsible
for the operational aspects of service provision, networks and perfor-
mance. More information on the ENUM protocol, and the issues
related to it, can be found at http://www.itu.int/ITU-T/worksem/

enum/index.html  

Committee on ICANN Evolution and Reform posts Recommendations 
Following the publication in February of “President’s Report:
ICANN—The Case for Reform,” by Stuart Lynn, President and CEO
of The Internet Corporation for Assigned Names and Numbers
(ICANN), a committee of the board has been examining the details of
the restructuring proposal, receiving input from the community at large,
and publishing several documents with recommendations. You can find
pointers to all of these documents in the “Announcements” section at
http://www.icann.org 
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Upcoming Events 
INET 2002, the annual conference of the Internet Society, will be held
June 18–21, 2002 at the Crystal Gateway Marriott, in Arlington, Vir-
ginia (5 minutes from downtown Washington, DC).
http://www.inet2002.org/

The IETF will be meeting in Yokohama, Japan, July 15–19, 2002 and
in Atlanta, Georgia, USA, November 17–22, 2002.
http://www.ietf.org/meetings/meetings.html 

ACM SIGCOMM 2002 is the annual conference of the Special Interest
Group on Data Communication (SIGCOMM), a vital special interest
group of the Association for Computing Machinery (ACM). This year,
SIGCOMM will be held in Pittsburg, Pennsylvania, August 19–23.
http://www.acm.org/sigcomm/sigcomm2002/

ICANN will meet in Bucharest, Rumania, June 24–28, 2002 and in
Shanghai, China, October 27–31, 2002.
http://www.icann.org/meetings/

The Asia Pacific Network Information Centre (APNIC) will hold its
next Open Policy Meeting, September 3–6, 2002 in Kitakyushu, Ja-
pan. http://www.apnic.net/meetings/index.html

The next Asia Pacific Regional Internet Conference on Operational
Technologies (APRICOT) will take place February 19–28 in Taipei,
Taiwan. http://www.apricot2003.net/

Errata List
This is the 17th issue of The Internet Protocol Journal. Inevitably, some
minor, and a few major errors have made their way into print since our
June 1998 issue. We are planning to publish a list of correctionson our
Web site in the near future. Since the online material is a reflection of
the printed version, we feel it would be inappropriate to simply “si-
lently” correct the online editions, thereby rewriting history. Instead, a
list of the errors along with the corrections will be presented.

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement. This publication could contain technical inaccuracies or typographical
errors. Later issues may modify or update information provided in this issue. Neither the publisher nor
any contributor shall have any liability to any person for any loss or damage caused directly or
indirectly by the information contained herein.
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