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F r o m  T h e  E d i t o r

 

The Internet Protocol Journal

 

 continues to be a forum for discussion of
current and emerging technologies. In this issue, we first look at 

 

con-
tent networking.

 

 One can describe the Internet as a system of
interconnected devices, but equally as a collection of information, called

 

content,

 

 that resides on a distributed set of 

 

servers

 

 and is accessed by
numerous 

 

clients.

 

 Our first article is by Christophe Deleuze.

Engineers are hard at work planning for an eventual transition to the
next version of IP — IPv6. We’ve published several articles about IPv6
in previous editions. This time, François Donzé describes the automatic
address configuration feature of IPv6. Of note is also the increasing glo-
bal support for IPv6 deployment, (refer to “Fragments” on page 31). 

Our final article returns to our recurring theme: adding security to exist-
ing Internet protocols. Because many malicious attacks on the Internet
are perpetrated by “spoofing” information in one form or another, it
makes sense to look at the 

 

Domain Name System

 

 (DNS), a critical com-
ponent of the Internet infrastructure. Today, it is possible to create
systems which provide fake answers to DNS queries. Miek Gieben ex-
plains what is being done to address this issue in his tutorial on
DNSSEC, the secure version of the DNS protocols.

Please take a moment to renew or update your subscription to this jour-
nal. You can do so by visiting 

 

www.cisco.com/ipj

 

 and clicking on the
“Subscription Information” link on the left. You will need to supply
your subscription ID and e-mail address in order to gain access to your
database record. If you have any questions, please send a note to

 

ipj@cisco.com

 

.

This is the 25th edition of IPJ. The journal now has more than 32,000
subscribers world-wide, and is available on paper and electronically on
our Website in PDF and HTML format. The Website, located at

 

www.cisco.com/ipj

 

, contains all our back issues, and will soon offer
a cumulative index in ASCII format that will make it easier to find par-
ticular articles. As always, we welcome your feedback.

 

 

—Ole J. Jacobsen, Editor and Publisher

 

ole@cisco.com
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Content Networks

 

by  Christophe Deleuze

 

he Internet is constantly evolving, in both usage patterns and
underlying technologies. In the last few years, there has been a
growing interest in 

 

content-networking

 

 technologies. Various
differing systems can be labelled under this name, but they all share the
ability to access objects in a location-independent manner. Doing so im-
plies a shift in the way communications take place on the Internet.

 

The Classic Internet Model

 

The Internet protocol stack comprises three layers, shown in Figure 1.
The network layer is implemented by IP and various routing protocols.
Its job is to bring datagrams hop by hop to their destination host, as
identified by the destination IP address. IP is “best effort,” meaning that
no guarantee is made about the correct delivery of datagrams to the des-
tination host.

The transport layer provides an end-to-end communication service to
applications. Currently two services are available: a reliable ordered
byte stream transport, implemented by the 

 

Transmission Control Proto-
col

 

 (TCP), and an unreliable message transport, implemented by the

 

User Datagram Protocol

 

 (UDP).

 

Figure 1: The Three
Layers of the Internet

Protocol Stack

 

Above the transport layer lies the application layer, which defines appli-
cation message formats and communication semantics. The Web uses a
client-server application protocol called 

 

Hypertext Transfer Protocol

 

(HTTP)

 

[10]

 

.

A design principle of the Internet architecture is the “end-to-end princi-
ple,” which states that everything that can be done in the end hosts
should be done there, and not in the network itself

 

[8]

 

. That is why IP ser-
vice is so crude, and transport and application layer protocols are
implemented only in the end hosts.
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Application objects, such as Web pages, files, etc. (we will simply call
those “objects”) are identified by URLs. (Actually URLs identify “re-
sources” that can be mapped to different objects called “variants.” A
variant is identified by a URL and a set of request header values, but in
order to keep things simple, we will not consider this in the following.)
URLs for Web objects have the form 

 

http://host:port/path

 

. This
means that the server application lives on a host with 

 

hostname

 

 (or pos-
sibly IP address) on port 

 

N

 

 (with default value of 80), and knows the
object under the name 

 

path.

 

 Thus URLs, as their name implies, tell
where the object can be found. To access such an object, a TCP connec-
tion is open to the server running on the specified host and port and the
object named path is requested.

 

Content Networks

 

Content networks aim to provide location-independent access to an ob-
ject, most commonly because they handle some kind of (possibly
dynamic) replication of the objects. By design, URLs are not suited to
identify objects available on several places on the network.

Handling such replication and location-independent access usually in-
volves breaking the end-to-end principle at some point. Communication
is no more managed end to end: intermediate network elements operat-
ing at the application layer (whose most common types are “proxies”)
are involved in the communication. (Content networks are not the only
case where this principle is violated.)

In the same way that IP routers relay IP datagrams (that is, network
layer protocol data units), routing them to their destination according
to network layer information, those application layer nodes relay appli-
cation messages, using application layer information (such as content
URLs) to decide where to send them. This is often called 

 

content
routing.

 

So the goal of a content network is to manage replication, handling two
different tasks: 

 

distribution

 

 ensures the copying and synchronization of
the instances of an object from an 

 

origin server

 

 to various 

 

replica serv-
ers,

 

 and 

 

redirection

 

 allows users to find on instance of the object
(possibly the one closest to them.) (By “replica,” we mean any server of
any kind other than the origin that is able to serve an instance of the ob-
ject. This term often has a narrower meaning, not applying, for
example, to caching proxies.) This is illustrated in Figure 2.



 

Content Networks: 

 

continued
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Figure 2: Elements of a
Content Network

 

Various kinds of content networks exist, differing in the extent to which
they handle these tasks and in the mechanisms they use to do so. There
are many possible ways to classify them. In this article, we use a
classification based on who owns and administers the content network.
We thus find three categories: content networks owned by network op-
erators, content providers, and users.

 

Network Operators’ Content Networks

 

Network operators (also called 

 

Internet Service Providers,

 

 or ISPs) of-
ten install caching proxies in order to save bandwidth

 

[11]

 

. Clients send
their requests for objects to the proxy instead of the origin server. The
proxy keeps copies of popular objects in its cache and can answer di-
rectly if it has the requested object in cache. (To be precise, such a
caching proxy does not cache objects, but server responses.) If this is not
the case, it gets the object from the origin server, possibly stores a copy
in its cache, and sends it back to the client.

This caching proxy scheme can be used recursively, making those prox-
ies contact parent proxies for requests they cannot fulfill from their local
store. Such hierarchies of caching proxies actually lead to constructing
content-distribution trees. This makes sense if the network topology is
tree-like, although there are some drawbacks, including the fact that less
popular objects (those not found in any cache) experience delays, which
increase with the depth of the tree. Another problem is with origin serv-
ers whose closest tree node is not the root.

The Squid caching proxy

 

[5]

 

 can be configured to choose the parent
proxy to query for a request based on the domain name of the re-
quested URL (or to get the object directly for the origin server). This
allows setting up multiple logical trees on the set of proxies, a limited
form of content routing.
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Such manual configuration is cumbersome, especially because domain
names do not necessarily (and actually most do not) match network to-
pology. Thus the administrator must know where origin servers are in
the network to use this feature effectively.

The same effects can be achieved, to some extent, in an automatic and
dynamic fashion using ICP, the 

 

Internet Cache Protocol

 

 [16, 15]

 

. ICP al-
lows a mesh of caching proxies to cooperate by exchanging hints about
the objects they have in cache, so that a proxy missing an object can
find a close proxy that has it. One advanced feature of ICP allows you
to select among a mesh of proxies the one that has the smallest 

 

Round-
Trip Time

 

 (RTT) to the origin server.

One design flaw of ICP is that it identifies objects with URLs. We men-
tioned previously that a URL actually identifies a resource that can be
mapped to several different objects called variants. Thus information
provided by ICP is of little use for resources that have multiple variants.
However, in practice most resources have only one variant, so this
weakness does little harm.

Users normally configure their browsers to use a proxy, but automatic
configuration is sometimes possible. Multiple proxies can be used by a
client with protocols such as the 

 

Cache Array Routing Protocol

 

(CARP)

 

[14]

 

. To avoid configuration issues, a common trend is for ISPs to
deploy 

 

interception proxies.

 

 Network elements such as routers running
the Cisco 

 

Web Cache Communication Protocol

 

 (WCCP)

 

[6,7]

 

 redirect
HTTP traffic to the proxy, without the users knowing. The proxy then
answers client requests pretending to be the origin server. This poses nu-
merous problems, as discussed in [12].

Caching proxies have limited support for ensuring object consistency.
Either the origin server gives an expiration date or the proxy estimates
the object lifetime based on the last modification time, using an heuris-
tic known as 

 

adaptive TTL

 

 (time to live).

 

Content Providers’ Content Networks

 

Contrary to ISPs whose main goal is to save bandwidth, content provid-
ers want to make their content widely available to users, while staying
in control of the delivery (including ensuring that users are not deliv-
ered stale objects). We can again roughly classify such content networks
in three subcategories:

•

 

Server farms:

 

 Locally deployed content networks aimed at providing
more delivery capacity and high availability of content

•

 

Mirror sites:

 

 Distributed content networks making content available
in different places, thus allowing users to get the content from a close
mirror

•

 

Content-Delivery Networks

 

 (CDNs): Mutualized content networks
operated for the benefit of numerous content providers, allowing
them to get their content replicated to a large number of servers
around the world at lower cost.



 

Content Networks: 

 

continued
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Server Farms

 

Server farms are made of a load-balancing device (we will call it a

 

switch

 

) receiving client requests and dispatching them to a series of serv-
ers (the 

 

physical

 

 servers). The whole system appears to the outside
world as a single 

 

logical

 

 server. The goal of a server farm is to provide
scalable and highly available service. The switch monitors the physical
servers and uses various load metrics in its dispatching algorithm. Be-
cause the switch is a single point of failure, a second switch is usually set
up in a hot failover standby mode, as shown in Figure 3.

 

Figure 3: Server Farm

 

Some switches are called 

 

Layer 4 switches

 

 (4 is the number of the trans-
port layer in the 

 

OSI Reference Model

 

), meaning they look at network
and transport layer information in the first packet of a connection to de-
cide to which physical server the incoming connection should be
handed. They establish a state associating the connection with the cho-
sen physical server and use it to relay all packets of the connection. The
exact way the packets are sent to the physical servers varies. It usually
involves some form of manipulation of IP and TCP headers in the pack-
ets (like 

 

Network Address Translation

 

 [NAT] does) or IP encapsulation.
These tricks are not necessary if all the physical servers live on the same
LAN.

More complex 

 

Layer 7 switches

 

 (7 is the number of the application
layer in the OSI Reference Model) look at application layer informa-
tion, such as URL and HTTP request headers. They are sometimes
called 

 

content switches.

 

 On a TCP connection, application data is avail-
able only after the connection has been opened. A proxy application on
the switch must thus accept the connection from the client, receive the
request, and then open another connection with the selected physical
server and forward the request. When the response comes back, it must
copy the bytes from the server connection to the client connection.

Router

Physical Servers

Logical Server

Local
Balancer

Backup

Sw

Sw

S1

S2

S3

Internet



 

T h e  I n t e r n e t  P r o t o c o l  J o u r n a l

 

7

 

Such a splice of TCP connections consumes much more resources in the
switch than the simple packet manipulation occurring in Layer 4
switches. Bytes arrive at one connection and are handed to the proxy
application, which copies them to the other connection—all of this in-
volving multiple kernel mode-to-user mode memory copy operations
and CPU context switches. Various optimizations are implemented in
commercial products. The simplest one is to put the splice in kernel
mode. After it has sent the request to the physical server, the proxy ap-
plication asks the kernel to splice the two connections, and forgets
about them. Bytes are then copied between the connections directly by
the kernel, instead of being given to the proxy application and back to
the kernel.

It is even possible to actually merge the two TCP connections, that is,
simply relay packets at the network layer to establish a direct TCP con-
nection between the client and the physical server. This requires
manipulating TCP sequence numbers (in addition to addresses and
ports) when relaying packets, because the two connections will not have
used the same initial sequence numbers. This can be much more com-
plex (or even impossible) to perform if TCP options differ in the two
connections.

 

Mirror Sites

 

In such a content network, a set of servers are installed in various places
in the Internet, and they are defined as 

 

mirrors

 

 of the master server.
Synchronization is most commonly performed periodically (often every
night), using FTP or specialized tools such as 

 

rsync

 

[4]

 

.

Redirection is performed by the users themselves for most sites. The
master server, to which the user initially connects, displays a list of mir-
rors with geographic information and suggests that users choose a
mirror close to themselves, by simply clicking on the associated link.

This process can be automated sometimes. One trick is to store the
user’s choice in a 

 

cookie,

 

 such that the next time the user connects to
the master site, the information provided in the cookie will be used to
issue an 

 

HTTP redirect

 

 (an HTTP server response asking the client to
retry the request on a new URL) to the previously selected site.

Other schemes involve trying to find which of the mirrors is closest to
the user based on information provided in the user request (such as pre-
ferred language) or indicated by network metrics. Such schemes were
not very common for simple mirror sites, but today many commercial
products allowing for this kind of “global load balancing” are available.

In any case (except if redirection is automatic and 

 

Domain Name Sys-
tem

 

 [DNS] based—this is discussed in the next section) the URLs of
objects change across mirrors.



 

Content Networks: 

 

continued
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CDNs

 

Most content providers cannot afford to own numerous mirror sites.
Having servers in different places around the world costs lots of money.
Operators of CDNs own a large replication infrastructure (Akamai, the
biggest one, claims to have 15,000 servers) and get paid by content pro-
viders to distribute their content. By mutualizing the infrastructure,
CDNs are able to provide very large reach at affordable costs.

CDN servers do not store entire sites of all the content providers, but
rather cache a subset according to local client demand. Such servers are
called 

 

surrogates.

 

 They manage their disk store like proxies do, and
serve content to clients like mirrors do (that is, contrary to proxies, they
act as the authoritative source for the content they deliver).

Because the number of surrogates can be so large, and because of the
argument that “no user configuration is necessary,” CDNs typically in-
clude complex redirection systems that allow them to perform
automatic and user-transparent redirection to the selected surrogate.
The selection is based on information about surrogate loads and on net-
work metrics collected by various ways such as routing protocol
information, RTTs measured by network probes, etc. The client is made
to connect to the selected surrogate either by sending it an HTTP redi-
rect message, or by using the DNS system: when the client tries to
resolve the host name of the URL in an IP address to connect to, it is
given back the address of the selected surrogate instead. Using the DNS
ensures that the URL is the same for all object copies. In this case,
CDNs actually turn URLs into location-independent identifiers.

In addition to proxy-like on-demand distribution, content can also be
“pushed” in surrogates in a proactive way. Synchronization can be per-
formed by sending invalidation messages (or updated objects) to
surrogates.

CDN principles are also being used in private intranets for building 

 

En-
terprise CDNs 

 

(ECDNs).

 

Users’ Content Networks

 

User-operated content networks are better known as 

 

Peer-to-Peer 

 

(P2P)
networks. In these networks, the costly replication infrastructure of
other content networks is replaced by the users, who make some of
their storage and processing capacities available to the P2P network.
Thus, no big money is needed, and no one has control over the content
network.

One advantage P2P networks have over other content networks is that
they are usually built as overlay networks and do not strive for trans-
parent integration with the current Web. Thus they are free to build
new distribution (some of them allow downloading files from multiple
servers in parallel) and redirection mechanisms from scratch, and even
to use their own namespace instead of being stuck with HTTP and
URLs.
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P2P networks basically handle the distribution part of replication in a
straightforward way: the more popular an object is, the more users will
have a copy of it, thus the more copies of the object will be available on
the network. More complex mechanisms can be involved, but this is the
basic idea.

The redirection part of replication is more problematic with most cur-
rent P2P networks. It can be handled by a central directory as in

 

Napster:

 

 every user first connects to a central server, updates the direc-
tory for locally available objects, and then looks up the directory for
locations of objects the user wants to access. Of course, such a central
directory poses a major scalability and robustness problem.

 

Gnutella

 

 and 

 

Freenet,

 

 for example, use a distributed searching strategy
instead of a centralized directory. A node queries neighbors that them-
selves query neighbors, and so on until either one node with the
requested object is found or a limit on the resources consumed by the
search has been hit. Although there is no single point of failure, such a
scheme is no more scalable that the central directory. It seems easy to
perform denial-of-service attacks by flooding the network with re-
quests. Additionally, you can never be sure you have found the object
even if someone has it.

These examples are primitive and have serious flaws, but much re-
search work is being performed on this topic; refer to [13] for a
summary.

Although they are currently used mainly for very specific file-sharing ap-
plications, P2P networks do provide new and valuable concepts and
techniques. For example, 

 

Edge Delivery Network

 

 is a commercially
available software-based ECDN inspired by Freenet. Various projects
use a 

 

scatter/gather

 

 distribution scheme, useful for very large files: users
download several file chunks in parallel from other currently download-
ing users, thus refraining from using server resources for long periods of
time.

Some projects attempt to integrate P2P principles in the current Web ar-
chitecture and protocols. Examples are [3] and [1].

 

Conclusion

 

Current networks have been designed and deployed as ad-hoc solutions
of specific problems occurring in the current architecture of the net-
work. Caching proxies lack proper means to ensure consistency, but
CDNs tricks the DNS to turn URLs into location-independent
identifiers. P2P networks are mostly limited to file-sharing applications.

Content networks implement mechanisms to ensure distribution of con-
tent to various locations, and redirection of users to a close copy. They
often have to break the end-to-end principle in order to do so, mainly
because current protocols assume each object is available in only one
statically defined location.



 

Content Networks: 
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Probably the first step in building efficient distribution and redirection
mechanisms for providing an effective replication architecture is the set-
ting up of a proper replication-aware namespace. Applications would
pass an object name to a name resolution service and be given back one
or more locations for this object. The need for such a location-indepen-
dent namespace was anticipated a long time ago. URLs are actually
defined as one kind of 

 

Uniform Resource Identifier 

 

(URI), another one
being Uniform Resource Names (URNs) intended to provide such
namespaces. A URN IETF working group [2] has been active for a long
time, and recently published a set of RFCs (3401 to 3406).

Work on the topic of content networking has also been performed by
the now closed Web Replication and Caching (WREC) IETF working
group, which issued a taxonomy in [9]. An interesting survey of current
work on advanced content networks is [13].
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IPv6 Address Autoconfiguration
by  François Donzé, HP

 ince 1993 the Dynamic Host Configuration Protocol (DHCP)[1]

has allowed systems to obtain an IPv4 address as well as other in-
formation such as the default router or Domain Name System

(DNS) server. A similar protocol called DHCPv6[2] has been published
for IPv6, the next version of the IP protocol. However, IPv6 also has a
stateless autoconfiguration protocol[3], which has no equivalent in IPv4. 

DHCP and DHCPv6 are known as stateful protocols because they
maintain tables within dedicated servers. However, the stateless auto-
configuration protocol does not need any server or relay because there is
no state to maintain. 

This article explains the IPv6 stateless autoconfiguration mechanism
and depicts its different phases. 

Scope of IPv6 Addresses 
Every IPv6 system (other than routers) is able to build its own unicast
global address. A unicast address refers to a unique interface. A packet
sent to such an address is treated by the corresponding interface—and
only by this interface. This type of address is directly opposed to the
multicast address type that designates a group of interfaces. Most of this
article deals with unicast addresses. For simplicity, we will omit the uni-
cast qualifier when there is no ambiguity. 

Address types have well-defined destination scopes: global, site-local
and link-local. Packets with a link-local destination must stay on the
link where they have been generated. Routers that could forward them
to other links are not allowed to do so because there has been no
verification of uniqueness outside the context of the origin link. 

Similarly, border-site routers cannot forward packets containing site-lo-
cal addresses to other sites or other organizations. The IETF is currently
working on a way to remove or replace site-local addresses. Hence, this
article will refrain from any other reference to this address type. Finally,
a global address has an unlimited scope on the worldwide Internet. In
other words, packets with global source and destination addresses are
routed to their target destination by the routers on the Internet. A fun-
damental feature of IPv6 is that all Network Interface Cards (NICs) can
be associated with several addresses. 

At minimum, a NIC is associated with a single link-local address. But in
the most common case a NIC is assigned a link-local and at least one
global address. The following command displays the configuration of
network interface eth1  on a Red Hat system. This interface is associ-
ated with two IPv6 addresses. One of them starts with fe80::  and the
other with 3ffe: . The scope of the first one is the link and the second
has a global scope. 

S
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root# ip address list eth1 
3: eth0: <BROADCAST,MULTICAST,UP mtu 1500 qdisc pfifo_fast qlen 100 
link/ether 00:0c:29:c2:52:ff brd ff:ff:ff:ff:ff:ff 
inet6 fe80::20c:29ff:fec2:52ff/10 scope link 

inet6 3ffe:1200:4260:f:20c:29ff:fec2:52ff/64 scope global  

Creation of the Link-Local Address 
An IPv6 address is 128 bits long. It has two parts: a subnet prefix repre-
senting the network to which the interface is connected and a local
identifier, sometime called token. In the simple case of an Ethernet me-
dium, this identifier is usually derived from the EUI-48 Media Access
Control (MAC) address using an algorithm described later in this arti-
cle. The subnet prefix is a fixed 64-bit length for all current definitions.
Because IPv4 manual configuration is a well-known pain, one could
hardly imagine manipulating IPv6 addresses that are four times longer.
Moreover, a DHCP server is not always necessary or desired; in the case
of a remote control finding the DVD player, a DHCP environment is
not always suitable. 

Because the prefix length is fixed and well-known, during the initializa-
tion phase of IPv6 NICs, the system builds automatically a link-local
address. After a uniqueness verification, this system can communicate
with other IPv6 hosts on that link without any other manual operation. 

For a system connected to an Ethernet link, the build and the validation
of the link-local address is the following: 

1. An identifier is generated, supposedly unique on the link. 

2. A tentative address is built. 

3. The uniqueness of this address on the link is verified. 

4. If unique, the address from phase 2 is assigned to the interface. If not
unique, a manual operation is necessary.

Although a local policy can decide to use a specific token, the most
common method to obtain a unique identifier on an Ethernet link is by
using the EUI-48 MAC address and applying the modified IEEE EUI-64
standard algorithm. A MAC address (IEEE 802) is 48 bits long. The
space for the local identifier in an IPv6 address is 64 bits. The EUI-64
standard explains how to stretch IEEE 802 addresses from 48 to 64
bits, by inserting the 16 bits 0xFFFE at the 24th bit of the IEEE 802. 

By doing so, transforming MAC address 00-0C-29-C2-52-FF  using
the EUI-64 standards leads to 00-0C-29-FF-FE-C2-52-FF . Using IPv6
notation, we get 000C:29FF:FEC2:52FF . Recall that the notation of
IPv6 addresses requires 16-bit pieces to be separated by the character
“: ”. Then, it is necessary (RFC 3513) to invert the universal bit (“u”
bit) in the 6th position of the first octet. Thus the result is:
020c:29ff:fec2:52ff . 
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Universal uniqueness of IEEE 802 and EUI-64 is given by a “u” bit set
to 0. This global uniqueness is assured by IEEE, which delivers those
addresses for the entire planet. Inverting the “u” bit allows ignoring it
for short values in the manual configuration case, as explained in para-
graph 2.5.1 of RFC 3513[4]. 

The second phase of creating automatically a link-local address is to
prepend the well-known prefix fe80::/64  to the identifier resulting
from phase one. In our case we obtain fe80::20c:29ff:fec2:52ff .
This address is associated with the interface and tagged “tentative.” Be-
fore final association, it is necessary to verify its uniqueness on the link.
The probability of having a duplicate address on the same link is not
null, because it is recognized that some vendors have shipped batches of
cards with the same MAC addresses.

This is the goal of the third phase, called Duplicate Address Detection
(DAD). The system sends ICMPv6 packets on the link where this
detection has to occur. Those packets contain Neighbor Solicitation
messages. Their source address is the undefined address “:: ” and the
target address is the tentative address. A node already using this
tentative address replies with a Neighbor Advertisement message. In
that case, the address cannot be assigned to the interface. If there is no
response, it is assumed that the address is unique and can be assigned to
the interface. 

We are reaching the last step of the automatic generation of a link-local
address. This phase removes the “tentative” tag and formally assigns
the address to the network interface. The system can now communi-
cate with its neighbors on the link. 

Global Prefixes
In order to exchange information with arbitrary systems on the global
Internet, it is necessary to obtain a global prefix. Usually (but not neces-
sarily), the identifier built during the first step of the automatic link-local
autoconfiguration process is appended to this global prefix. 

However, before assigning this global address, the system verifies again
that no duplicate address exists on the link. DAD is performed for all
addresses before they are assigned to an interface, because uniqueness in
one prefix does not automatically assure uniqueness in any other avail-
able prefixes. 

Generally, global prefixes are distributed to the companies or to end us-
ers by Internet Service Providers (ISPs). 

Random Identifiers 
The EUI-48-to-EUI-64 transform process is attractive because it is sim-
ple to implement. However, it generates a privacy problem. Global
unicast as well as link-local addresses may be built with an identifier de-
rived from the MAC address. A Website tracking where a node
frequently attaches can collect private information such as the time
spent by employees in the enterprise or at home.
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Because a MAC address follows the interface it is attached to, the
identifier of an IPv6 address does not change with the physical location
of the Internet connection. Hence it is possible to trace the movements
of a portable laptop or Personal Digital Assistant (PDA) or other mo-
bile IPv6 device. 

RFC 3041[5] allows the generation of a random identifier with a limited
lifetime. Because IPv6 architecture permits multiple suffixes per inter-
face, a single network interface is assigned two global addresses, one
derived from the MAC address and one from a random identifier. A
typical policy for use of these two addresses would be to keep the
MAC-derived global address for inbound connections and the random
address for outbound connections. A reason for not using it for in-
bound connections is the need to update the DNS just as frequently as it
is changes. 

Such a system, with two different global addresses—one of which
changes regularly—becomes very difficult to trace. 

By default, Microsoft enables this feature on Windows XP and Win-
dows Server 2003. The random-identifier-based global addresses of
Microsoft systems have the address type “temporary.” EUI-64 global
addresses have type “public.” Those types as well as other information
can be displayed in a cmd.exe  DOS-box with the command line:

netsh interface ipv6 show address

IPv6 Routers 
By definition, a router is a node that forwards IP packets not explicitly
addressed to it. IPv6 routers are certainly compliant with this definition
but, in addition, they regularly advertise information on the links to
which they are connected—provided they are configured to do so.
These advertisements are Internet Control Message Protocol Version 6
(ICMPv6) Router Advertisement (RA) messages, sent to the multicast
group ff02::1 . All the systems on a link must belong to this group,
and nodes configured for autoconfiguration, among other things, ana-
lyze the option(s) of those messages. They might contain any routing
prefix(es) for this segment. 

Router Solicitation 
Upon reception of one of those RA messages and according to local al-
gorithm policy, an autoconfiguring node not already configured with
the corresponding global address will prepend the advertised prefix to
the unique identifier built previously. 

However, the advertisement frequency, which is usually about ten sec-
onds or more, may seem too long for the end user. In order to reduce
this potential wait time, nodes can send Router Solicitation (RS) mes-
sages to all the routers on the link. Nodes that have not configured an
address yet use the unspecified address “:: ”. In response, the routers
must answer immediately with a RA message containing a global prefix.
This router solicitation corresponds to ICMPv6 messages of type RS,
sent to the all-router multicast group: ff02::2 . All routers on the link
must join this group. 
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Thus, a node soliciting on-link routers in such a way is able to extract a
prefix and build its global address. Note that this method using an ad-
vertised prefix is possible only for end nodes. Today IPv6 routers are
usually manually configured. The reason is obvious: a stateless auto-
matic configuration requires the advertisement of a prefix. This prefix is
sent by a router. The router sending the prefix must be fully configured
to do so. The easiest way to break this seemingly unsolvable problem is
to manually configure IPv6 routers. However, some automatic meth-
ods are being developed[6]. 

Conclusion 
Stateless address autoconfiguration is a new concept with IPv6. It gives
an intermediate alternative between a purely manual configuration and
stateful autoconfiguration. In addition to ease of use with no dedicated
server or relay, this mechanism removes problems that have not been
discussed here, such as the mismatch between the DCHP server and the
router (prefix topology) or the IPv4 need to readdress subnets that have
outgrown their prefix. Moreover, automatic renumbering (prefix
change) is also possible on nodes using stateless autoconfiguration. 
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DNSSEC: The Protocol, Deployment, and a Bit of Development
by  Miek Gieben, NLnet Labs

“One Key to rule them all,
one Key to find them,
one Key to bring them all
and in the Resolver bind them.”

—Modified from Lord of the Rings.

he Domain Name System (DNS) (RFCs 1034 and 1035) is a
highly successful and critical part of the Internet infrastructure.
Without it the Internet would not function. It is a globally dis-

tributed database, whose performance critically depends on the use of
caching.

Unfortunately the current DNS is vulnerable to so-called spoofing at-
tacks whereby an attacker can fool a cache into accepting false DNS
data. Also various man-in-the-middle attacks are possible. The Domain
Name System Security Extension (DNSSEC) is not designed to end
these attacks, but to make them detectable by the end user. Or more
technically correct: detectable by the security-aware resolver doing the
work for the end user. This saves users from doing online banking on
the wrong server even if a secured connection is used and the address in
the browser looks correct.

DNSSEC is about protecting the end user from DNS protocol attacks.
In order to make it work, zone owners (such as .com , .net , .nl , etc.)
need to deploy DNSSEC in their zones. End users then need to update
their resolvers to become security-aware (that is, understand DNSSEC)
and add some trusted keys. These keys are called anchored keys; they
are configured in the resolver and cannot be changed or updated very
easily. If this is all configured, the end user will (finally) be able to de-
tect attacks.

DNSSEC, as defined in (hopefully soon-to-be-obsoleted) RFC 2535,
adds data origin authentication and data integrity protection to the
DNS. The Public Key Infrastructure (PKI) in DNSSEC may be used as a
means of public key distribution, which may be used by other proto-
cols. IP Security (IPSec) and the Secure Shell (SSH) protocol, for
example, are already considering the use of DNSSEC to carry their key-
ing material.

In the course of early-deployment experiments carried out by various
organizations, it became evident that RFC 2535 introduced an adminis-
trative key-handling and maintenance nightmare. This in turn would
mean the DNSSEC deployment would never start (or be successful, for
that matter).

T
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The IETF DNSEXT working group decided to fix this problem, and to
incorporate all drafts and RFCs written since RFC 2535 into a new
DNSSEC specification.

This (still ongoing) effort became known as the RFC 2535bis DNSSEC
specification. This work has resulted in three drafts, each handling a
specific part of the new specification. These drafts follow:

1. dnssec-intro[1] provides an introduction into DNSSEC.

2. dnssec-records[2] introduces the new records for use in DNSSEC.

3. dnssec-protocol[3] is the main document, which details all the proto-
col changes.

The documents are now almost ready (July 2004) to be submitted to
the Internet Engineering Steering Group (IESG) for review. It is hoped
that soon after this is done the drafts will become RFCs. It could be that
2004 will be the year of DNSSEC.

In this article I use the terms domain and zone. These are important
concepts in the DNS and in DNSSEC. The difference between a zone
and a domain is worth highlighting. A domain is a part of the DNS tree.
A zone contains the domain names and data that that domain contains
except for the domain names and data that are delegated elsewhere.
Also refer to [4].

Consider, for instance, the .com domain, which includes everything
that ends in .com . CNN.com is in the .com  domain. The .com  zone,
however, is the entity handled by VeriSign.

One other important concept in DNS is the Resource Record (RR) and
the Resource Record Set (RRset). An RR in DNS is, for instance:

www.example.org. IN A 127.0.0.1

... where www.example.org  is the “ownername” or “name.” IN  is the
class (IN stands for Internet). A 127.0.0.1  is the type (together with
its rdata). A stands for “address.” This 3-tuple (name, class, type) to-
gether make up the resource record. RRset are all the RRs that have an
identical name, class and type. Only the rdata is different. Thus:

www.example.org. IN A 127.0.0.1
www.example.org. IN A 192.168.0.1

... together form a RRset, but:

www.example.org. IN A 127.0.0.1
www.example.org. IN MX mail.example.org.

... do not (their type is different). In the DNS an RRset is considered
atomic and the smallest data item. In DNSSEC each RRset gets a
signature.
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What Is DNSSEC?
DNSSEC adds data origin authentication and data integrity to the DNS.
To achieve this, DNSSEC uses public key cryptography; (almost) every-
thing in DNSSEC is digitally signed.

Public key cryptography uses a single key split in two parts: a private
and a public component. The private component, also known as the
private key, must be kept secret. The public component (the public key)
can be made public. Both these keys can be used for cryptographic op-
erations, albeit with different goals.

If a message is scrambled with the public key, it can be decrypted only
with the private key. This is called encryption of the message and it en-
sures that only the holder of the private key can read the original
message. When the private key is used to scramble a message, every-
body can use the available public key to decipher the message. This last
operation is called (digitally) signing a message (for increased speed usu-
ally a hash of the message is signed). In this case you know where the
message comes from (authenticated data origin in cryptographic jar-
gon). An added benefit of signing messages is that when the data is
mangled during transport the signature is no longer valid. This last
property is called authenticated data integrity. A more lengthy introduc-
tion on public key cryptography can be found at [10]. In DNSSEC only
digital signatures (signing) are used, and nothing is ever encrypted.

For every secure zone there must be a public key in the DNS for use by
DNSSEC. Each zone administrator generates a key to be used for secur-
ing a zone. The private key is (of course) kept private and is used in the
“signing process” to create the signatures. The public key is published in
DNSSEC as a DNSKEY record, which is the zone key. The generated
signatures are published as RRSIG records.

If RRsets in DNSSEC do not have a valid signature, they are labeled bo-
gus by the resolver. Bogus data should not be trusted, because probably
somebody is trying to conduct a spoof attack. DNSSEC further distin-
guishes between:

• Verifiable secure—The data has signatures that are valid.

• Verifiable unsecure*—The data has no signatures.

• Old-style DNS—A non-DNSSEC lookup is done.

* Yes, Unsecure. This word has somehow evolved from “insecure.”

Verifiable secure data is data that has valid signatures, and the key used
to create those signatures is trusted (anchored in the resolver). Verifiable
unsecure data is data for which we know for sure we do not need to do
signature validation. Old-style DNS is the current (insecure) method of
getting DNS data.

The signing of data in DNSSEC is comparable to the Gnu Privacy
Guard (GPG) signing of e-mail. If I trust a public key from someone, I
can use that key to verify the GPG signature and authenticate the origin
of the e-mail.
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The problem with both DNSSEC and GPG lies in the “...If I trust the
public key from someone.” GPG solves this with public key servers, key
signing parties at various events and thus the creation of a web of trust.
For DNSSEC such solutions are impractical. DNSSEC uses a different,
but very elegant mechanism called the chain of trust.

The chain of trust makes it possible to start with a root zone key, the
highest possible key in the DNS tree, and following cryptographic
pointers to lower zones. Each pointer is validated with the previous vali-
dated zone key. (The root key is the key used in the root zone of the
Internet; it is the key used in the .  (dot) zone. It could take a while be-
fore the root is signed.)

By using this mechanism only the root key is needed to validate all
DNSSEC keys on the Internet. With these DNSSEC keys the DNS data
in each zone can then be validated. So, unlike GPG, we need to distrib-
ute only one key. This can be done by publishing it on the World Wide
Web or in a newspaper or putting an ad on TV, etc.

One of the current items in the DNSSEC community is to outline proce-
dures and guidelines on how to update this root and other keys.

Chain of Trust
To start securely resolving in DNSSEC, a root key must be anchored in
the resolver at your local computer or nameserver. Only when a re-
solver knows and trusts a zone key can it validate the signatures
belonging to that zone. Because of the chain of trust, a resolver has to
carry only a few zone keys to be able to validate DNSSEC data on the
Internet.

The chain of trust works by following “secured pointers,” which are
called secured delegation in DNSSEC. A special, new record called the
Delegation Signer (DS) record delegates trust from a parental key to a
child’s zone key.

The DS record holds a hash (Secure Hash Algorithm 1 [SHA-1]) of a
child’s zone key. This DS record is signed with the zone key from the
parent. By checking the signature of the DS record, a resolver can vali-
date the hash of the child’s zone key. If this is successful, the resolver
can compare this (validated) hash with the (yet-to-be-validated) hash of
the child’s zone key. If these two hashes match, the child’s real zone key
can be used for validation of data in the child’s zone. Note: by success-
fully following a secured delegation, the amount of trust a resolver has
in the parental key is transferred to a child’s key. This is the crux of the
chain of trust.
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Figure 1: nlnetlabs.nl  is a
secured delegation under .nl .

RTSIG(x)y denotes that a
signature over a data x is

created with key y.

In Figure 1 the following takes place.

The .nl  zone contains the following:

nl. IN SOA (soa-parameters)
; the zone key
nl. IN DNSKEY NLkey
nl. IN RRSIG(DNSKEY)NLkey
nl. IN RRSIG(SOA)NLkey

nl. IN NS ns5.domain-registry.nl.
; this NS is authoratitive
nl. IN RRSIG(NS) NLkey

nlnetlabs.nl. IN NS open.nlnetlabs.nl.
; no RRSIG here (nonauthoritative data is not signed)

; DS record with a hash of the child's zone key
nlnetlabs.nl.  DS  hash(LabsKey)
; The signature of the parent
nlnetlabs.nl.  RRSIG(DS)NLkey

Note: It is important to see that we now have linked a parental signa-
ture to something that is almost the key of the child.

And the nlnetlabs.nl  zone has the following:

nlnetlabs.nl. IN SOA (soa-parameters)
; The zone key
nlnetlabs.nl. IN DNSKEY LabsKey
nlnetlabs.nl. IN RRSIG(SOA)Labskey
; The (self) signature of the zone key
nlnetlabs.nl.   IN  RRSIG(DNSKEY)Labskey
nlnetlabs.nl. IN NS open.nlnetlabs.nl.
nlnetlabs.nl. IN RRSIG(NS)LabsKey

So the chain of trust looks like the following:

.nl DNSKEY —> nlnetlabs.nl DS —> nlnetlabs.nl DNSKEY

... and with that last key we can validate the data in the nlnet-
labs.nl zone.

.nl
DNSKEY NLkey
RRSIG (DNSKEY) NLkey
DS (LabsKey)
RRSIG (DS) NLkey

nlnetlabs.nl
DNSKEY LabsKey
RRSIG (DNSKEY) LabsKey
data
RRSIG (data) LabsKey

sidn.nl
data

{
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With this “trick” all keys from all the secure .nl  zones can be chained
from the .nl  “master” key. So instead of one million (the number of
zones in .nl  currently) we need to configure only one key.

As you might have guessed, getting the root zone signed as soon as pos-
sible will make it possible to have one key that validates all other keys
on the Internet.

We can also look at it from the resolver side. A resolver wants to get an
answer. With DNSSEC it has to deal with signatures, keys, and DS
records, but those are “side issues”; it still wants an answer.

Suppose .nl  is secured and a secure delegation to nlnetlabs.nl ex-
ists. Our resolver has the key of .nl  anchored. The nameservers of the
root zone are also known to the resolver. We further assume the root is
not signed. The resolver wants to resolve the address (A record) of
www.nlnetlabs.nl . What does the actual resolving process look like
in DNSSEC? Numerous steps need to be performed:

1. Go to a root server and ask our question.

2. The root server does not know anything about www.nlnet-

labs.nl , but it does know something about .nl . The root
nameserver refers us to the .nl  nameservers. This kind of answer is
called a referral.

3a. Notice that we have a key for .nl  anchored.

3b. Go to the .nl  nameserver and ask the .nl  DNSKEY.

4a. Compare the two DNSKEYs. Continue with the secure lookup
only if they match.

The .nl  DNSKEY is now validated.

4b. Optionally, the RRSIG on the DNSKEY also can be checked.

5. Ask a .nl  nameserver our question.

6. The .nl  nameserver is also oblivious about www.nlnetlabs.nl ,
but it does know something about nlnetlabs.nl . It returns a
secure referral consisting of a DS record plus the RRSIG and some
nameservers.

7. The resolver now checks the signature on the DS record. If the sig-
nature is valid, the hash of the nlnetlabs.nl  zone key is ok. The
nameservers in the referral do not have any signatures on them.

The hash of the nlnetlabs.nl  DNSKEY is validated with the
.nl  DNSKEY.

8. Go to the nameserver as specified in the referral and ask for the
nlnetlabs.nl  DNSKEY.

9. Hash the DNSKEY of nlnetlabs.nl  and compare this hash with
the hash in the DS record. If they match continue with the secure
lookup.

The nlnetlabs.nl  DNSKEY is now validated.

10. Ask the nameserver of nlnetlabs.nl our question.
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11. The nameserver now responds with an answer consisting of the A
record of www.nlnetlabs.nl  and an RRSIG made with the
nlnetlabs.nl  DNSKEY.

12. The resolver now uses the already validated nlnetlabs.nl  DNS-
KEY to check the RRSIG. If that signature is valid the RR with the
answer is ok and can be given to the application.

13. After these steps we find out that the address of www.nlnet-

labs.nl  is 213.154.224.1. We also know it is not a spoofed
answer.

This looks like a lot of work and it is—a recursive resolver is a compli-
cated piece of software. Keep in mind, though, that only steps 3ab, 4ab,
7, 8, 9, and 12 are needed for DNSSEC; the rest is how resolving is
done in the DNS today.

Deployment
As mentioned earlier, each zone owner generates its own key. To make
the secure delegation actually work, this key must somehow be securely
transferred to the parent, which is usually the local registry. The regis-
try must have procedures in place to determine whether or not the
uploaded key really belongs to the domain it claims to come from. Dur-
ing the Secure Registry (SECREG) experiment[5] NLnet Labs has
researched the impact DNSSEC has on registries.

But even before the key can be actually uploaded to the parent, a zone
administrator still has to do some work; the DNS zone must be signed.
This process, called zone signing, turns a DNS zone into a DNSSEC
zone.

The signing is done offline; first you sign, and then you load the zone.
This setup was chosen because at the time (late 1990) computers were
not fast enough to generate the signature in real time. Currently it
would be possible to do this, but having a server sign every answer it
gives is a Denial-of-Service (DoS) attack waiting to happen. Especially
root servers will be unable to do this.

In DNSSEC a zone can have multiple keys. The signed zone then has
multiple signatures per RRset (one for each key). There is no protocol
limit on the number of keys. Here we sign with only one zone key. Also
signatures in DNSSEC have a start and end date, that is, before and af-
ter a certain date interval the signature can no longer be used for
validation.

If you use DNSSEC, you must re-sign your zone to generate new signa-
tures with a new validity interval.

The signing of a zone consists of the following steps:

1. The zone key is added to the zone file.

2. The zone file is sorted.
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3. Each owner name (for example, a host name) in the zone gets a Next
SECure (NSEC) record. (Refer to the section “Authenticated Denial
of Existence.”)

4. For each secured delegation, a DS record is added.

5. The entire zone is then signed with the private key of the zone. Each
authoritative RRset gets a signature, including the newly generated
NSEC records.

Berkeley Internet Name Domain (BIND)[6] version 9—a popular imple-
mentation of the DNS protocols—contains a tool dnssec-signzone,
which does steps 2 through 5 automatically; we only (manually) need to
add the zone key to the zone file. The net result is that we have a big-
ger, signed, DNSSEC zone. A typical DNSSEC zone is 7 to 10 times
larger than its DNS equivalent.

Experiments have shown that this does not pose much of a problem,
even for such so-called country code Top Level Domains (ccTLDs) as
.nl . The signed .nl  zone was 350 megabytes, slightly more than a half
a CD-ROM. And even if scaling problems are occurring, 64-bit ma-
chines would certainly help.

A few years ago there was much concern about the signing time. There
was fear that it would be impossible to sign large zones, such as .com .

Experiments disproved this fear. Furthermore, a zone can be split up in
pieces and each piece can be signed on a different machine. Later all the
signed pieces can be put back together. Signing DNS zones is a highly
parallel process.

After signing the zone, it can be loaded in the nameserver. If a resolver
is DNSSEC-aware and has been configured with a trusted key that has a
chain of trust to the zone key, it can validate the answers. If an answer
does not validate, something is wrong and the DNS data must not be
used.

The actual Internet-wide deployment of DNSSEC can happen incre-
mentally. Each zone can decide to join independently. It is expected that
initially DNSSEC is deployed in subsections of the Internet. These so-
called Islands of Trust can appear anywhere on the Internet or even in
intranets. The only requirement is that the key of the island of trust is
distributed to the resolver. Resolvers configured with the key of a cer-
tain island of trust are called the resolvers of interest. Of course when
DNSSEC is widely deployed on the Internet all resolvers are resolvers of
interest and will have that key preconfigured.

Authenticated Denial of Existence
As mentioned previously, all records are signed offline. When a
nameserver receives a query it looks up the answer plus the signature
and returns the two (RRSIG + RRset) to the resolver. The signature is
thus not created in real time. How can a secure-aware nameserver then
respond to a query for something it does not know (that is, give an NX-
DOMAIN answer)? The only way to have offline signing and
NXDOMAIN answers work together is to somehow sign the data you
do not have.
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In DNSSEC this is accomplished by the Next SECure (NSEC) record.
This NSEC record holds information about the next record; it spans the
nonexistence gaps in a zone, so to say. For this to work, a DNSSEC
zone must be sorted (this is where that requirement stems from). To
clarify this, consider an example.

We have a DNS zone, with (for the sake of clarity only the NSEC
records are shown):

a.nl
d.nl
e.nl

Next we generate (with the signer) our DNSSEC zone:

a.nl
a.nl NSEC d.nl (span from a.nl  to d.nl )

d.nl
d.nl NSEC e.nl (span from d.nl  to e.nl )

e.nl
e.nl NSEC a.nl (loop back to a.nl )

1. If a resolver asks information about b.nl, the nameserver tries to look
up the record fails. Instead it finds a.nl . It must then return: a.nl

NSEC d.nl  together with the signature. The resolver must then be
smart enough to process this information and conclude that b.nl

does not exist. If the signature is valid, we have an authenticated
denial of existence. These NSEC records together with their signa-
tures are the major cause of the zone size increase in DNSSEC.

Road to the DS Record
This section briefly considers the history of DNSSEC and, in particular,
why the DNSEXT working group has invented this peculiar DS record,
which can only exist at the parent side of a zone cut.

In RFC 2535 the DS record did not exist, and this is the reason that the
key management in RFC 2535-DNSSEC is very, very cumbersome. In
2000 NLnet Labs ran its first experiment to test deployment of DNS-
SEC in the Netherlands. Because .nl.nl  was chosen as the zone under
which the secure tree would grow, this experiment became known as
the nl-nl-experiment. With this experiment it was shown that the cur-
rent DNSSEC standard (the soon-to-be-obsoleted RFC 2535) was
difficult to deploy[7].

An update of a zone key in a child zone required up to 11 (coordinated
and sequential) steps with the parent zone. The .nl  zone now has more
than 1 million delegations, so updating all the child zones would re-
quire more than 11 million steps. Because these updates could be quite
frequent (once a month is typical), this is clearly an administrative
nightmare.
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Worse yet, if .nl  lost its private key, all child-zone administrators
would have to be notified and they would have to resubmit their public
key for re-signing with the new .nl  key. And because under these con-
ditions the DNS may have been hacked and is thus untrusted, .nl  is
limited in its communication through the Internet; e-mail may not be
the preferred method. A telephone call would be more safe, but what
kind of organization can make up to one million phone calls in a few
days ..?

After various failed attempts (sig@parent[8]) to fix this behavior, the DS
record was introduced[1,3]. With this record the administration night-
mare is solved, because DS introduces an indirection from the parent
zone to a child’s zone key.

If .nl  loses its private key, it can easily resign its own zone, without
contacting all its children. The DS to child key indirection is still valid,
and only the signature of the DS record needs to be updated. This is a
local operation.

To test this new DNSSEC specification, a new experiment was set up,
which would build a shadow DNSSEC tree in the .nl  zone. This exper-
iment, called SECREG, was to test the new procedures in DNSSEC
and, of course, the new DS record. Detailing the conclusions of this ex-
periment is beyond the scope of this article, but in short the conclusion
was that the new DNSSEC procedures do not pose much difficulty. At
some point, more than 15,000 zones were delegated from the secure
tree. A writeup of the experiment and the conclusions can be found in
“DNSSEC in NL”[5].

Settings and Parameters in DNSSEC
DNSSEC brings many new parameters to the DNS, including crypto-
graphic ones such as key sizes, algorithm choices, and key and signature
lifetimes. Because DNS never has involved cryptography, the best val-
ues for these parameters are still open for debate. There is, however,
some documentation and knowledge available on this topic (refer to [9]
for instance).

One of the major issues is how large (bit length) to make a zone key
and how often to re-sign a zone file. The current view is that a parent
zone should use larger keys and re-sign more often than a child zone.
Also the signature lifetime should be shorter in a parent zone.

Because a parent zone has a DS record (and signature) of a child’s zone
key, it can decide how long this DS RRSIG must be valid. The shorter
this validity interval is, the better protected the child. If a cracker steals a
child’s zone key, it can forge DNS data. This data looks genuine be-
cause the cracker has access to the private key. As long as there is a
valid chain of trust to this hijacked key, the child is vulnerable. This
chain of trust is broken as soon as the RRSIG of the DS record expires.
This argues in favor of a very short parental RRSIG over the DS record. 



T h e  I n t e r n e t  P r o t o c o l  J o u r n a l
2 7

However, making this interval too short opens the door for accidental
mishaps. If a child zone makes an error and somehow the chain of trust
is broken, it has until the RRSIG expires to fix the problem. This would
recommend a longer signature lifetime. In DNSSEC these and other
trade-offs have to be made.

The IETF DNSOP working group is currently addressing these parame-
ters and their trade-offs. The current data came (and comes) from
workshops and early test deployments.

Outlook and Prospects
Because DNSSEC requires some additions to the (cc/g)TLD registration
process, it could be a while before ccTLDs are capable of deploying
DNSSEC. If the protocol is completed this year (2004), it will probably
take a few years before registries can advertise DNSSEC domain names.

It is important to consider what DNSSEC actually wants to accom-
plish; it makes spoofing attacks in the DNS visible—and nothing more.
It is not a PKI with all the extra features because key revocation is, for
instance, not implemented in DNSSEC. Seen in this light, the protec-
tion of private keys in DNSSEC is important, but when a private key is
compromised we are just back to plain old DNS.

On the other hand, because DNSSEC does introduce cryptographic ma-
terial in the DNS and allows for the addition of other (non-DNS) keys,
some interesting possibilities emerge. Many technologies on the Inter-
net want to have some kind of simple key distribution mechanism in
place; for example: SSH and IPSec. What DNSSEC promises is a sys-
tem in which we can validate the SSH key from an unknown host with
only one key. If the validation is successful, we are quite certain the SSH
host key comes from the host from which it claims to come. We get this
without any extra effort or cost (from a client’s perspective at least).
The possibilities are probably endless.
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Book Review
Network Management Network Management, MIBs and MPLS by Stephen B. Morris, ISBN

0131011138, Prentice Hall, June 2003. 

Few people would question the need for good network management,
and books about the Simple Network Management Protocol (SNMP)
have been circulating for more than ten years now. But the key differen-
tiator of this book is well recognized in its title—it’s about SNMP in the
context of a Multiprotocol Label Switching (MPLS) network. MPLS is
now recognized as the convergence technology, and an increasing num-
ber of mission-critical services are being deployed over it. World-class
network management is vital to keep these services running to the “five
nines” level we’ve all come to expect. 

Organization
In this book, Stephen Morris offers a very approachable and compre-
hensive look at SNMP and the methodology behind the all-important
Management Information Base (MIB). The first chapter gives the oblig-
atory justification for network management and sets the scene nicely for
the rest of the book. 

It’s amazing to think that SNMP has been around since the late 1980s,
and yet if you ask any MPLS operations person, the odds are that per-
son is still using a Command-Line Interface (CLI) to actually configure
boxes. CLI is a man-machine interface, not a machine-machine inter-
face like SNMP. Even centralized provisioning platforms, such as the
former Orchestream (now Metasolve) VPN Manager, simply created a
friendly Graphical User Interface (GUI) front end for the provisioning
procedure, and then ran CLI scripts frantically in the background. The
drawbacks of CLI configuration are too numerous to list here, but the
basic solution to the problem is to create a scalable and secure machine-
to-machine interface. In the IP world the candidate technology for this is
SNMPv3, and Morris discusses both the MIB structure (the key to scal-
ability) and the security model in Chapter 2. Because premium MPLS-
based services demand secure and robust provisioning, SNMPv3 is the
technology of choice. 

Chapter 3 describes what Morris calls the “Network Management
Problem,” although in fact this is described as a whole set of problems,
some of which are caused by deficiencies in the SNMP architecture,
whereas others are caused by the scale and pace of operations in a mod-
ern network. A specific problem that Morris addresses very sensibly is
the way that the rapid pace of network technology development im-
pacts the ability to manage these networks. In other words, new
technologies tend to appear too quickly for management mechanisms to
be optimized for these protocols. To solve this problem, Morris (a soft-
ware engineer by training) presents a series of “Linked Overviews”
(these describe the properties of a given network technology—MPLS,
Asynchronous Transfer Mode (ATM), etc.—in a procedural frame-
work. In essence this is a kind of recipe for the software developer. In
addition, the text is liberally sprinkled with “Developers Notes” that
I’m sure will provide invaluable help for people trying to write manage-
ment system code. 
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Chapter 4 then takes the approach of solving the “Network Manage-
ment Problem” to a higher, and perhaps longer-term level, with the
proposed development of smarter network management components
and more integrated data frameworks. This culminates in a description
of Directory Enabled Networking, a technology that seemed to flower
briefly in the context of network management a few years ago, but then
was buried when the telecom recession hit the industry. My own feel-
ing is that the time is right for a rebirth of this approach in modern,
converged networks. 

Chapter 5 looks at some real Network Management System (NMS) is-
sues, using the HP OpenView Network Node Manager as a worked
example. Morris is quick to point out that this is not an endorsement of
the product, but because it is the most well-known and widely used
product in this class, it is the logical choice. 

Chapters 6 and 7 look at software components, and Morris’s back-
ground in software development shines through here in the level of
detail, coupled with well-structured explanations. 

Chapter 8 describes a very useful case study of using SNMP to provi-
sion a tunnel through an MPLS network—a task that is typically
performed today using crude CLI techniques. 

Chapter 9 contrasts theory and practice in network management, and
deals with the loose ends of various topics such as end-to-end security
and the integration of a third-party Open Source Software (OSS) us-
ing standardized northbound Element Management System (EMS)
interfaces. 

Recommended 
Overall this is an excellent book that really does deliver what it
claims—a comprehensive and practical look at the latest SNMP tech-
nologies and techniques. In this regard it stays highly focused, and
doesn’t waste time with irrelevant discussion on other topics. For exam-
ple, at first I was disappointed to note that only a page or two of brief
explanation is devoted to topics such as Common Object Request Bro-
ker Architecture (CORBA) and Extensible Markup Language (XML).
But in the context of what this book is trying to tell us, it makes perfect
sense. Each of these topics really needs it own book to cover the topic in
similar detail to Morris’s work. 

Similarly, if you’re expecting a description of emerging IP/MPLS Opera-
tions, Administration, and Maintenance (OA&M), then this book is not
for you. Again, I would defend Morris’s use of Occam’s Razor because
OA&M protocols are usually demanded by network staff, and not by
OSS operatives. In my own opinion, this situation will gradually change
in the next few years, as OA&M is recognized as the “eyes and ears” of
the OSS. Perhaps this would be a good place for Mr. Morris to start his
next book. 

—Geoff Bennett, Heavy Reading
bennett@heavyreading.com
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Fragments
Cooperative Support for Global IPv6 Deployment
The Regional Internet Registries (RIRs), the IPv6 Task Forces and the
IPv6 Forum are working in cooperation to support global IPv6
deployment.

The four RIRs, APNIC, ARIN, LACNIC and the RIPE NCC, are re-
sponsible for the management of global Internet numbering resources,
including IPv4 and IPv6 address space, throughout the world. The RIRs
confirm their commitment and continued support towards the deploy-
ment of IPv6 in cooperation with the IPv6 Task Forces and with the
support of the IPv6 Forum.

The IPv6 Task Forces are focused on rapid IPv6 deployment. They see
the adoption of IPv6 by industry, governments, schools and universities
is particularly important. The extra address space offered by IPv6 will
facilitate the deployment of widespread “always-on” Internet services
including broadband access for all. In addition, IPv6’s built-in encryp-
tion will help improve Internet security and is promoted by many
government institutions globally.

The cooperation among the RIRs and the IPv6 Task Forces includes key
aspects such as:

• Supporting awareness, education and deployment of IPv6;

• Disseminating information on the progress of IPv6 deployment;

• Encouraging dialogue and ensuring the necessary cooperation be-
tween all involved parties;

• Benchmarking IPv6 deployment progress;

• Supporting the adoption of Domain Name Service infrastructure nec-
essary for IPv6;

• Encouraging the participation of all those who are interested in the
IPv6 policy development process.

This cooperative effort between the RIRs and the IPv6 Task Forces rec-
ognises that while IPv4 address space will be available for many years,
new users and usages of the Internet have the potential to rapidly in-
crease the utilisation of IPv4 address space. With the advent of multiple
always-on devices, wireless handhelds and 3G mobile handsets, the In-
ternet community needs to prepare for a sharp increase in IP address
space utilisation. In order to prevent future operational problems, the
global rollout of IPv6 is essential for enabling the development and
adoption of new applications and services.

The rollout of IPv6 on this scale requires significant preparation, partic-
ularly in terms of training and planning. The RIRs and the IPv6 Task
Forces encourage early evaluation by network operators and industry
players, in order to promote the necessary technical dialogue and to fa-
cilitate widespread adoption. Internet Service Providers (ISPs) can
already deploy IPv6 in non-disruptive ways that do not require addi-
tional investment while providing added value to their customers.
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“The RIPE NCC has supported IPv6 from an early stage. We are com-
mitted to ensuring that IPv6 resources are provided to RIPE NCC
members whenever they are required. We will continue to use the long-
established system of address distribution where IP addresses are allo-
cated according to demonstrated need wherever that need is demon-
strated,” stated Axel Pawlik, Managing Director of the RIPE NCC.
“The RIPE NCC is already providing IPv6 training to our members and
other tools required to facilitate IPv6 deployment,” he added.

Jordi Palet, Founding Member of the EU IPv6 Task Force and co-chair
of the IPv6 Forum’s Awareness and Education Working Group, sees the
formalisation of this cooperative support of IPv6 deployment as an im-
portant development. “This cooperative effort ensures the global
recognition of the strategic importance of IPv6 in enabling the contin-
ued development of the Internet and the worldwide information society.
This ongoing coordination will have a positive global benefit for end us-
ers and the industry, by reinforcing the resilience of the Internet while
allowing for the development of ever-improving applications and ser-
vices,” he said.

Paul Wilson, APNIC Director General, noted that significant advances
have been taking place in all the RIR regions with respect to IPv6 allo-
cation and policy. “The RIRs are already working with the IANA and
large ISPs to facilitate the delegation of large blocks of IPv6 address
space,” he stated. “In the Asia Pacific region, a number of countries are
taking the lead in terms of IPv6 deployment, and APNIC will continue
to offer its support in these areas, and elsewhere, to allow the entire re-
gion to benefit from IPv6.”

“In the ARIN region, we have received clear direction from the commu-
nity to make all necessary preparations for IPv6 deployment. This
includes work on the allocation policies and procedures, as well as mak-
ing our own services available via IPv6,” stated John Curran, Acting
President of ARIN

“LACNIC is involved in the formation of the Latin American and Car-
ibbean IPv6 Task Force and is active in encouraging the participation of
its members and the community in IPv6 deployment and policy, and
our services are already available over IPv6,” said Raúl Echeberría,
CEO of LACNIC.

“This global cooperation signals another historic milestone to further
accelerate take-up of IPv6 for the global good,” applauded Latif Ladid,
President of the IPv6 Forum.

“The North American IPv6 Task Force supports the worldwide collab-
oration with the RIRs to further support the deployment of IPv6 and
the next generation Internet mobile society using IPv6,” stated Jim
Bound, Chair NAv6TF and IPv6 Forum CTO.

As an IPv6 Forum Board member and an ICANN Address Council
member, Takashi Arano of the Asia Pacific IPv6 Task Force steering
committee supports this collaboration. “Address management, which
the RIRs are in charge of, is one of the crucial components for the com-
mercial deployment of IPv6 and its stable operation.”
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“I hope collaboration between IPv6 Task Forces and the RIRs will re-
sult in the advent of an IPv6-powered ‘everything-everywhere-every
time’ networking world,” he stated.

IPv6 is a new version of the data networking protocols on which the In-
ternet is based. The Internet Engineering Task Force (IETF) developed
the basic specifications during the 1990s. The primary motivation for
the design and deployment of IPv6 was to expand the available “ad-
dress space” of the Internet, thereby enabling billions of new devices
(PDAs, cellular phones, appliances, etc.), new users and “always-on”
technologies (xDSL, cable, Ethernet-to-the-home, fibre-to-the-home,
Power Line Communications, etc.).

The existing IPv4 protocol has a 32-bit address space providing for a
theoretical 232 (approximately 4 billion) unique globally addressable
network interfaces. IPv6 has a 128-bit address space that can uniquely
address 2128  (340,282,366,920,938,463,463,374,607,431,768,211,456)
network interfaces.

The European IPv6 Task Force is a volunteer organisation, with over
500 members, open to all the interested parties in advancing the IPv6
deployment in the European region, in cooperation with the rest of the
world and other related entities. Further information is available on the
IPv6 Task Forces website: http://www.ipv6tf.org

Four RIRs exist today. They provide number resource allocation and
registration services that support the operation of the Internet globally.
The RIRs are independent, not-for-profit organisations that work to-
gether to meet the needs of the global Internet community. They
facilitate direct participation by all interested parties and ensure that the
policies for allocating Internet number resources (such as IP addresses
and Autonomous System Numbers) are defined by those who require
them for their operations.

The RIRs ensure that number resource policies are consensus-based and
that they are applied fairly and consistently. The RIR framework pro-
vides a well-established combination of bottom-up decision-making and
global cooperation that has created a stable, open, transparent and doc-
umented process for developing number resource policies.

The RIR framework contributes to the common RIR goal and purpose
of ensuring fair distribution, responsible management and effective utili-
sation of number resources necessary to maintain the stability of the
Internet. The RIRs currently consist of:

APNIC: Asia Pacific Network Information Centre
http://www.apnic.net

ARIN: American Registry for Internet Numbers
http://www.arin.net

LACNIC: Latin American and Caribbean Internet Addresses Registry 
http://www.lacnic.net

RIPE NCC: RIPE Network Coordination Centre
http://www.ripe.net
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The IPv6 Forum is a world-wide consortium of over 160 leading Inter-
net service vendors, National Research & Education Networks and
international ISPs, with a clear mission to promote IPv6 by improving
market and user awareness, creating a quality and secure New Genera-
tion Internet and allowing world-wide equitable access to knowledge
and technology. The key focus of the IPv6 Forum today is to provide
technical guidance for the deployment of IPv6. IPv6 Summits are hosted
by the IPv6 Forum and staged in various locations around the world to
provide industry and market with the best available information on this
rapidly advancing technology. http://www.ipv6forum.org

The North American IPv6 Task Force is an all-volunteer non-vendor/
service/provider or other entity interest with the IPv6 mission of assist-
ing the North American geography as sub task force of the IPv6 Forum
for deployment, education, awareness, technical analysis/direction, tran-
sition analysis, political/business/economic/social analysis support and
other efforts as required. The members see IPv6 as more important than
their own self-interests. http://www.nav6tf.org

Upcoming Events
The Internet Corporation for Assigned Names and Numbers (ICANN)
will meet in Kuala Lumpur, Malaysia, July 19–23, 2004, and in Cape
Town, South Africa, December 1–5, 2004. For more information see:
http://www.icann.org

ICANN and The International Telecommunications Union (ITU) will
be jointly hosting a workshop on country code Top Level Domains
(ccTLDs), in Kuala Lumpur on 24 July. The purpose of this joint
ICANN/ITU-T open workshop is to focus on the operation and practi-
cal operational issues facing the ccTLDs and to give the opportunity for
ccTLD operators and ITU Member States to share their experiences.
The Workshop is not a policy meeting, but rather it is intended as a fo-
rum for the exchange of views and discussions. Written presentations
are encouraged, but not required. Written presentations can be submit-
ted to ICANN-ITU-T-Workshop@icann.org . Additional information
can be found at the ITU-T website: http://www.itu.int/ITU-T/
worksem/cctld/kualalumpur0704/index.html

The IETF will meet in San Diego, CA, August 1–6, 2004 and in Wash-
ington, DC, November 7–12, 2004. For more information, visit:
http://ietf.org

Useful Links
The following is a list of Web addresses that we hope you will find rele-
vant to the material typically published in the IPJ.

• The Internet Engineering Task Force (IETF). The primary standards-
setting body for Internet technologies. http//:www.ietf.org

• Internet-Drafts are working documents of the IETF, its areas, and its
working groups. Note that other groups may also distribute working
documents as Internet-Drafts. Internet-Drafts are not an archival doc-
ument series.



T h e  I n t e r n e t  P r o t o c o l  J o u r n a l
3 5

These documents should not be cited or quoted in any formal
document. Unrevised documents placed in the Internet-Drafts
directories have a maximum life of six months. After that time, they
must be updated, or they will be deleted. Some Internet-Drafts
become RFCs (see below). http://www.ietf.org/ID.html

• The Request for Comments (RFC) document series. The RFCs form
a series of notes, started in 1969, about the Internet (originally the
ARPANET). The notes discuss man aspects of computer communica-
tion, focusing on networking protocols, procedures, programs, and
concepts but also including meeting notes, opinion, and sometimes
humor. The specification documents of the Internet protocol suite, as
defined by IETF and its steering group the IESG, are published as
RFCs. Thus, the RFC publication process plays in important role in
the Internet standards process. http://www.rfc-editor/org/

• The Internet Society (ISOC) is a non-profit, non-governmental, inter-
national, professional membership organization.
http://www.isoc.org

• The Internet Corporation for Assigned Names and Numbers
(ICANN) “...is the non-profit corporation that was formed to as-
sume responsibility for the IP address space allocation, protocol
parameter assignment, domain name system management, and root
server system management functions.” http://www.icann.org

• The North American Network Operators’ Group (NANOG) “...pro-
vides a forum for the exchange of technical information, and
promotes discussion of implementation issues that require commu-
nity cooperation.” http://www.nanog.org

• The Regional Internat Registries (RIR) provides IP address block as-
signments for Internet Service Providers and others. See page 33 for
links to APNIC, ARIN, LACNIC and RIPE NCC.

• The World Wide Web Consortium (W3C) “...develops interoperable
technologies (specifications, guidelines, software, and tools) to lead
the Web to its full potential as a forum for information, commerce,
communication, and collective understanding.”
http://www.w3.org

• The International Telecommunication Union (ITU) “... is an interna-
tional organization within which governments and the private sector
coordinate global telecom networks and services.”
http://www.itu.int

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement. This publication could contain technical inaccuracies or typographical
errors. Later issues may modify or update information provided in this issue. Neither the publisher
nor any contributor shall have any liability to any person for any loss or damage caused directly or
indirectly by the information contained herein.
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