
June 2016 Volume 19, Number 2

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

Fragmentation 2

Resource Discovery in IoT 13

The IANA Transition 26

Fragments 29

Call for Papers 30

Supporters and Sponsors 31

F r o m T h e E d i t o r

A major design feature of the Internet Protocol (IP) is its ability
to run over a variety of underlying network technologies. If you
look through the Request For Comments (RFC) document series,
you will find numerous specifications of the form “IP over xxx,”
where “xxx” is anything from Ethernet to X.25, Frame Relay,
Bluetooth, WiFi, and even “Avian Carriers” (pigeons), the latter being
one of the more famous April Fools RFCs. Because each of these
technologies has different capabilities in terms of how much data
can be carried in a “packet” or datagram, IP employs the concept of
fragmentation and reassembly in cases where the originating data-
gram is larger than what the underlying network medium can support.
In our first article, Geoff Huston explains fragmentation and
reassembly for both IPv4 and IPv6. Special thanks go to Mansour
Ganji of Vodafone New Zealand for suggesting this topic.

We’ve covered various aspects of the Internet of Things (IoT) in previ-
ous editions of this journal. This time, Akbar Rahman and Chonggang
Wang discuss ongoing work within the Internet Engineering Task
Force (IETF) and elsewhere to develop Resource Discovery mecha-
nisms for IoT devices.

The long-awaited proposal to transition the Internet Assigned
Numbers Authority (IANA) Stewardship Functions from the U.S.
Government to a new entity was finally submitted in early March
of this year. Vint Cerf explains the history and background of this
process. At the end of his article you will find pointers to further
information about this important Internet milestone.

As always, we welcome your feedback, suggestions, book reviews,
articles, and sponsorship support. You can contact us by e-mail to
ipj@protocoljournal.org and visit our website for subscription
information, back issues, author guidelines, sponsor information, and
much more.

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

http://www.cisco.com/ipj
http://ipj@protocoljournal.org
mailto:ole%40protocoljournal.org%20?subject=

The Internet Protocol Journal
2

Fragmentation
by Geoff Huston, APNIC

O ne of the more difficult design exercises in packet-switched
network architectures is that of the design of packet frag-
mentation. In this article I will examine Internet Protocol

(IP) packet fragmentation in detail and look at the design choices
made by IP Version 4, and then compare that with the design choices
made by IP Version 6.

Packet-switched networks dispensed with a constant time base, in
turn allowing individual packets to be sized according to the needs of
the application as well as the needs of the network. Smaller packets
have a higher ratio of packet header to payload, and are conse-
quently less efficient in data carriage. On the other hand, within a
packet-switching system the smaller packet can be dispatched faster,
reducing the level of head-of-line blocking in the internal queues
within a packet switch and potentially reducing network-imposed
jitter as a result. Larger packets allow larger data payloads, in turn
allowing greater carriage efficiency. Larger payloads per packet also
allows a higher internal switch capacity when measured in terms of
data throughput. But larger packets take longer to be dispatched,
potentially causing increased jitter.

Various network designs have adopted various parameters for packet
size. Ethernet, standardized in the mid-1970s, adopted a variable
packet size, with supported packet sizes of between 64 and 1,500
octets. Fiber Distributed Data Interface (FDDI), a fibre ring local
network, used a packet size of up to 4,478 octets. Frame Relay used
a variable packet size of between 46 and 4,470 octets. The choice of
variable-sized packets allows applications to refine their behaviour.
Jitter and delay-sensitive applications, such as digitised voice, may
prefer to use a stream of smaller packets to attempt to minimise jitter,
while reliable bulk data transfer may choose a larger packet size to
increase carriage efficiency. The nature of the medium may also have
a bearing on this choice. If there is a high Bit Error Rate (BER) prob-
ability, then reducing the packet size minimises the impact of sporadic
errors within the data stream, possibly increasing throughput.

IPv4 and Packet Fragmentation
In designing a network protocol that is intended to operate over a
wide variety of substrate carriage networks, the designers of IP could
not rely on a single packet size for all transmissions. Instead the IP
designers of the day provided a packet-length field in the IP Version
4 header[1]. This field was a 16-bit octet count, allowing for an IP
packet to be anywhere from the minimum size of 20 octets (cor-
responding to an IP header without any payload) to a maximum of
65,535 octets. So IP itself supports a variable size packet format. But
which packet size should an implementation use?

The Internet Protocol Journal
3

The tempting answer is to use the maximum size permitted by the
network interface of the local device, with the caveat that an appli-
cation may nominate the explicit use of smaller-sized packets. But
there is a complication here. The Internet was designed as an “inter-
network” network system, allowing an IP packet to undertake an
end-to-end journey from source to destination across numerous dif-
ferent networks. For example, consider a host connected to a FDDI
network, which is connected to an Ethernet network. The FDDI-
connected host may elect to send a 4,478-octet packet, which will fit
into a FDDI network, but the packet switch that attempts to pass the
packet into the Ethernet network will be unable to do so because it
is too large.

The solution adopted by IPv4 was forward fragmentation. The basic
approach is that any IP router that is unable to forward an IP packet
into the next network because the packet is too large for this network
may split the packet into a set of smaller IP fragments, and forward
each of these fragments. The fragments continue along the network
path as autonomous packets, and the addressed destination host is
responsible for reassembling these fragments back into the original
IP packet.

The behaviour is managed by a 32-bit field in the IPv4 header, which
is subdivided into three sub-fields (Figure 1).

Figure 1: IPv4 Packet Header
Fragmentation Fields

Type of Service Total LengthIHLVersion

Protocol

Source Address

Destination Address

Options Padding

Header ChecksumTime To Live

Fragment OffsetFlags*Identification

* Flags: bit 0
bit 1
bit 2

–
–
–

Reserved
Don’t Fragment
More Fragments

The first sub-field is a 16-bit packet identifier which allows fragments
that share a common packet-identifier value to be identified as frag-
ments of the same original packet.

The second sub-field is a 3-bit vector of flags. The first bit is unused.
The second is the Don’t Fragment flag. If this flag is set the packet
cannot be fragmented, and must be discarded when it cannot be for-
warded. The third bit is the More Fragments field, and is set for all
fragments except the final fragment.

The Internet Protocol Journal
4

The third sub-field is the fragmentation offset value that is the off-
set of this fragment from the start of the IP payload of the original
packet, measured in octawords (64-bit units).

For example, a router attempting to pass a 1320-octet IP packet into
a network whose maximum packet size is 532 octets would need to
split the IP packet into three parts. The first packet would have a
fragmentation offset of 0 and the More Fragments bit set. The total
length would be 532 octets, and the IP payload would be 512 octets,
making a total of 532 octets for the packet. The second packet would
have a fragmentation offset value of 64, the More Fragments bit set,
total length of 532, and an IP payload of 512 octets, making a total
of 532 octets for the packet. The third packet would have a fragmen-
tation offset value of 128, the More Fragments bit clear, total length
of 296, and an IP payload of 276 octets, making a total of 296 octets
for the packet (Figure 2).

Figure 2: Example of IPv4 Packet Fragmentation

Type of Service Total Length = 1320IHLVersion

Protocol

Source Address

Destination Address

1300 Octets of Data

Header ChecksumTime To Live

Fragment Offset = 00 0 0Identification = 1956

Original IP Packet
Type of Service Total Length = 532IHLVersion

Protocol

Source Address

Destination Address

512 Octets of Data

Header ChecksumTime To Live

Fragment Offset = 00 0 1Identification = 1956

1st Fragment

Type of Service Total Length = 532IHLVersion

Protocol

Source Address

Destination Address

512 Octets of Data

Header ChecksumTime To Live

Fragment Offset = 640 0 1Identification = 1956

2nd Fragment

Type of Service Total Length = 296IHLVersion

Protocol

Source Address

Destination Address

276 Octets of Data

Header ChecksumTime To Live

Fragment Offset = 1280 0 0Identification = 1956

3rd Fragment

Fragmentation

The advantage of this approach is that as long as it is permissible to
fragment the IP packet, all packet flows are “forward,”meaning that
the sending host is unaware that packet fragmentation is occurring,
and all the IP fragment packets continue to head towards the original
destination, where they are reassembled.

Fragmentation continued

The Internet Protocol Journal
5

Another advantage is that while the router performing the fragmen-
tation has to expend resources to generate the packet fragments, the
ensuing routers on the path to the destination have no additional
processing overhead, assuming that they do not need to further frag-
ment these IP fragments. Fragments can be delivered in any order, so
the fragments may be passed along parallel paths to the destination.

To complete the IPv4 story we must describe the IPv4 behaviour
when the Don’t Fragment bit is set. The router that is attempting to
fragment such a packet is forced to discard it. Under these circum-
stances the router is expected to generate an Internet Control Message
Protocol (ICMP) “Unreachable” error (type 3, code 4), and in later
versions of the IP specification it was expected to add the Maximum
Transmission Unit (MTU) of the next-hop network into the ICMP
packet. The original sender would react to receiving such an ICMP
message by changing its local maximum packet size associated with
that particular destination address, and thus it would “learn” a via-
ble packet size for the path between the source and destination.

Evaluating IPv4 Fragmentation
A case has been made that the IP approach to fragmentation con-
tributed to its success. This design allowed transport protocols to
operate without consideration of the exact nature of the under-
lying transmission networks, and avoid additional protocol over-
head in negotiating an optimal packet size for each transaction.
Large User Datagram Protocol (UDP) packets could be transmitted
and fragmented in real time as required without requiring any form
of end-to-end network path packet size discovery. This approach
allowed IP to be used on a wide variety of substrate networks with-
out requiring extensive tailoring.

But it wasn’t all good news.

Cracks in the IP fragmentation story were described in a 1987 paper
by Kent and Mogul, “Fragmentation Considered Harmful.”[2]

TCP has always attempted to avoid IP fragmentation. The initial open-
ing handshake of Transmission Control Protocol (TCP) exchanges
the local and remote Maximum Segment Size (MSS), and the sender
will not send a TCP segment larger than that notified by the remote
end at the start of the TCP session. The reason that TCP attempted
to avoid fragmentation was that fragmentation was inefficient under
conditions of packet loss in a TCP environment. Lost fragments can
be repaired only by resending the entire packet, including resend-
ing all those fragments that were successfully transmitted in the first
place. TCP can perform a data repair more efficiently if it limits its
packet size to one that does not entail packet fragmentation.

This form of fragmentation also posed vulnerabilities for hosts.
For example, an attacker could send a stream of fragments with a
close to maximally sized fragment offset value, and random packet
identifier values.

The Internet Protocol Journal
6

If the receiving host believed that the fragments represented genuine
incoming packets, then a credulous implementation might generate
a reassembly buffer for each received fragment that may represent a
memory buffer starvation attack. It is also possible, either through
malicious attack or by poor network operation, that fragments may
overlap or overrun, and the task of reassembly requires care and
attention in implementation of fragment reassembly.

Lost fragments represent a slightly more involved problem than lost
packets. The receiver has a packet reassembly timer upon the receipt
of the first fragment, and will continue to hold this reassembly state
for the reassembly time. The reassembly timer is a factor in the maxi-
mal count of packets in flight, because the packet identifier cannot
be recycled within a period defined by the sender-received path delay
plus the reassembly timer of the receiver. For higher-delay high-
capacity network paths, this limit of 65,535 packets in flight can be
a potential performance bottleneck[3].

Fragmentation also consumes router processing time, forcing the
processing of oversized packets from a highly optimised fast path
into a processor queue.

And then there is the “middleware problem.” Filters and firewalls
perform their function by applying a set of policy rules to the packet
stream. But these rules typically require the presence of the transport
layer header. How can a firewall handle a fragment? One option is
to pass all trailing fragments through without inspection, but this
process exposes the internal systems to potential attack[4]. Another
option is to have the firewall rebuild the original packet, apply the
filter rules, and then refragment the packet and forward it on if the
packet is accepted by the filter rules. However, this process now
exposes the firewall to various forms of memory starvation attack.
Network Address Translators (NATs)[5] that use the transport-level
port addresses as part of the NAT binding table have a similar prob-
lem with trailing fragments. The conservative approach is for the
NAT to reassemble the IP packet at the NAT, apply the NAT trans-
form, and then pass the packet onward, fragmenting as required.

IPv6 and Fragmentation
When it came time to think about the design of what was to become
IPv6, the forward fragmentation approach was considered to be
a liability, and while it was not possible to completely discard IP
packet fragmentation in IPv6, there was a strong desire to redefine
its behaviour.

The essential change between IPv4 and IPv6 is that in IPv6 the Don’t
Fragment bit is always on, and because it’s always on, it’s not explic-
itly contained in the IPv6 packet header (Figure 3). There is only one
fragmentation flag in the Fragmentation Header, the More Fragments
bit, and the other two bits are reserved. The other change was that
the packet-identifier size was doubled in IPv6, using a 32-bit packet
identifier field.

Fragmentation continued

The Internet Protocol Journal
7

Figure 3: IPv6 Packet Header and
Fragmentation Header

Flow LabelTraffic ClassVersion

Protocol

Source Address

Destination Address

Headers

IPv6 Packet Header

Header ChecksumTime To Live

Hop LimitNext HeaderPayload Length

Fragment Offset Res MReservedNext Header

IPv6 Fragmentation Header

Payload Length

An IPv6 router cannot fragment an IPv6 packet, so if the packet is too
large for the next hop the router is required to generate an ICMPv6
type 2 packet, addressed to the source of the packet with a Packet
Too Big (PTB) code, and also providing the MTU size of the next
hop. While an IPv6 router cannot perform packet fragmentation, the
IPv6 sender may fragment an IPv6 packet at the source.

Evaluating IPv6 Packet Fragmentation
The hope was that these IPv6 changes would fix the problems seen
with IPv4 and fragmentation.

Our experience appears to point to a different conclusion.

The first problem is that there is widespread ICMP packet filtering in
today’s Internet. For IPv4 this approach was basically a reasonable
defense tactic, and if you were willing to have a packet fragmented
you cleared the Don’t Fragment bit before sending the packet so that
you didn’t rely on receiving an ICMP message to indicate a path
sender MTU problem. But in IPv6 the equivalent Don’t Fragment
bit function is jammed in the “on” position, and fragmentation can
be performed only if the original sender receives the ICMPv6 PTB
message and then resends the packet fragmented into a size that meets
the specified MTU size. But when ICMPv6 PTB messages are filtered,
the large packet is silently discarded within the network without any
discernible trace. Attempts by the sender to time out and resend the
large IPv6 packet will meet with the same fate, so this situation can
lead to a wedged state.

This scenario has been seen in the context of the HTTP protocol,
where the path MTU is smaller than the MTU of the host systems at
either end. The TCP handshake completes because none of the open-
ing packets is large. The opening HTTP GET packet also makes it
through because this packet is normally not a large one.

The Internet Protocol Journal
8

However, the first response may be a large packet. If it is silently dis-
carded because of the combination of fragmentation required and
ICMPv6 filtering, then neither the client nor the server can repair
the situation. The connection hangs.

The second problem is that the ICMPv6 PTB message is sent back-
wards to the source from the interior of a network path. Oddly
enough, the IPv6 ICMP PTB message is perhaps the one critical
instance in the entire IP architecture in which the IP source address
is interpreted by anything other than the intended destination. The
problems here include path asymmetry, in that the source address
may be unreachable from the point of the generation of the ICMP
packet. There is also the case of tunneling IP-in-IP. Because IPv6 frag-
mentation can be performed only at the source, should the ICMP
message be sent to the tunnel ingress point or to the original source?
Using the tunnel ingress assumes that the tunnel egress performs
packet reassembly, potentially burdening the tunnel egress. This situ-
ation is further confounded in the cross protocol case of IPv6-in-IPv4
and IPv4-in-IPv6.[6]

The third problem is the combination of IPv6 packet fragmentation
and UDP. UDP is an unreliable datagram delivery service, so a sender
of a UDP packet is not expected to cache the packet and be pre-
pared to resend it. A UDP packet-delivery error can occur only at the
level of the application, not at the IP or UDP protocol level. So what
should a host do upon receipt of an ICMP PTB message if resend-
ing the IP packet is not an option? Given that the sender does not
cache sent UDP packets, the packet header in the ICMPv6 message
is unhelpful. Because the original packet was UDP, the sender does
not necessarily have a connection state, so it is not clear how this
information should be retained and how and when it should be used.
How can a receiver even tell if an ICMPv6 PTB packet is genuine?
If the sender adds an entry into its local IPv6 forwarding table, it is
exposing itself to a potential resource starvation problem. A high
volume flow of synthetic PTB messages has the potential to bloat the
local IPv6 forwarding table. If the sender ignores the PTB message,
the application is left to attempt to recover the transaction.

If it makes little sense in the context of an attempt to fragment a UDP
packet, it makes less sense to fragment a TCP packet. In the context
of a TCP session, a received ICMPv6 PTB message can be interpreted
as a redefinition of the remote end MSS value, and the outgoing TCP
segments can be reframed to conform to this MSS.

Wither Fragmentation?
The basic problem here is that the network was supposed to operate
at the IP level and be completely unaware of transport, implying that
IP-level fragmentation was meant to work in a manner that does not
involve transport protocol interaction.

Fragmentation continued

The Internet Protocol Journal
9

So much of today’s network (firewalls, filters, etc.) is transport-aware
and the trailing fragments have no transport context, meaning that
transport-aware network middleware needs to reassemble the packet,
and this process could represent a problem and a Denial of Service
(DoS) vulnerability in its own right.

So is fragmentation worth it at all?

I’d still say that it’s more useful to have it than not. But the IPv4
model of forward fragmentation in real time has proved to be more
robust than the IPv6 model because the IPv4 model requires only
that traffic flows in one direction and is an IP-level function. It has
its problems, and no doubt the papers that warned that IP fragmen-
tation was “harmful” were sincere in taking that view[2]. But it is
possible to make it worse, and the IPv6 model requiring a backward
ICMPv6 message from the interior of the network was in retrospect
a decision that did just that!

So what should we do now?

It is probably not a realistic option to try to alter the way that
IPv6 manages fragmentation. There was an effort in 2013 in one
of the IETF’s IPv6 Working Groups to deprecate the IPv6 Fragment
Header[7]. That’s possibly an overreaction to the problem of packet
fragmentation and IPv6, but there is no doubt that the upper-level
protocols simply should not assume that IPv6 fragmentation oper-
ates in the same manner as IPv4, or even operates in a reliable manner
at all!

The implication is that transport protocol implementations, and
even applications, should try to manage their behaviour on the
assumption that ICMP message filtering is sufficiently prevalent that
it is prudent to assume that all ICMP messages are dropped. The
result is a default assumption that large IPv6 packets that require
fragmentation are silently dropped.

How can we work around this problem and operate a network that
uses variable-sized packets but cannot directly signal when a packet is
too large? RFC 4281[8] describes a Path MTU Discovery process that
operates without relying on ICMP messages, and IPv6 TCP imple-
mentations should rely on this mechanism to establish and maintain
a viable MTU size that can support packet delivery. In this way TCP
can manage the path MTU and the application layer need not add
explicit functions to manage persistent silent drop of large segments.

Path MTU Discovery
Path MTU discovery was specified in RFC 1191[9]. The approach was
to send packets with the Don’t Fragment bit set. When a router on
the path is unable to forward the packet because it is too large for
the next hop, the Don’t Fragment field directs the router to discard
the packet and send a Destination Unreachable ICMP message with
a code of “Fragmentation Required and DF set” (type 3, code 4).

The Internet Protocol Journal
10

RFC 1191 advocated the inclusion of the MTU of the next-hop net-
work in the next field of the ICMP message.

A host receiving this form of ICMP message should store the new
MTU in the local forwarding table, with an associated time to allow
the entry to time out. Also the host should identify all active TCP ses-
sions that are connected to the same destination address as given in
the IP packet header fragment of the ICMP message, and notify the
TCP session of the revised path MTU value.

RFC 1981[10] defined much the same behaviour for IPv6, relying
on the MTU information conveyed in the ICMPv6 PTB message in
exactly the same manner as its IPv4 counterpart.

The problem of filtered ICMP messages is a difficult one, and atten-
tion has turned to path MTU Discovery ideas that do not rely on
an ICMP message to operate correctly. RFC 4821 describes a mecha-
nism that refines the RFC 1191 ICMP-based process by adding an
alternate process that is based on detection and reporting of packet
loss as an inference of path MTU problems when there is no ICMP
feedback. This process uses a probe procedure that attempts to
establish a working MTU size through probing the path with various
sized packets to establish the upper-bound MTU. The trade-off here
is the number of round-trip intervals taken to perform the probes and
the accuracy of the path MTU estimate.

Because these probes take time, the entire exercise tends to be of value
only in long-held TCP and TCP-like flows. For shorter sessions the
pragmatic advice is to clamp the local MTU to a conservative value
(1,280 is a good first choice for IPv6, and RFC 4821 also suggests
1,024 for IPv4) and try to avoid the entire issue of fragmentation in
the first place.

UDP is a different story. The lightweight UDP protocol shim does
not admit much in the way of additional functions, and one possible
approach is to insist that UDP-based applications limit themselves to
the local MTU size, or to be even more conservative, limit themselves
to the 1,280-octet IPv6 minimum unfragmented packet size.

The major issue with such advice for UDP lies in the Domain Name
System (DNS). Efforts to improve the security of the DNS with
Domain Name System Security Extensions (DNSSEC) have added
additional data into DNS responses. In addition, if you want to
maintain the lightweight efficiency of the DNS, then it’s not possi-
ble to keep DNSSEC responses under 1500 octets all the time, let
alone under 1,280 octets. One option here is to insist that larger DNS
responses use TCP, but this option imposes some considerable cost
overhead on the operation of the DNS. What the DNS has chosen to
do appears to represent a reasonable compromise.

Fragmentation continued

The Internet Protocol Journal
11

The first part of the approach is that the management of the packet
MTU is passed into the application layer. The application convention-
ally operates with a maximum UDP payload size that assumes that
UDP fragmentation is working, and a DNS query normally offers an
Extension Mechanisms for DNS (EDNS) buffer size of 4,096 octets.
The responder uses this information to assemble its UDP response
of up to 4,096 octets in length, a process that conventionally causes
the source to perform UDP packet fragmentation for large responses.
This fragmented response may not reach the querier for a variety of
reasons, in which case the EDNS buffer size is dropped back to a more
conservative value that is not expected to trigger UDP fragmentation,
but may not be able to contain the complete response. The intended
result is that if the network cannot complete a UDP transaction that
entails a fragmented UDP response, the transaction is repeated using
a smaller maximum UDP packet size, and the truncated response
explicitly signals to the client to retry the query using TCP[12]. This
process is protocol-agnostic, in that it operates as intended in the case
of IPv4 forward fragmentation, where trailing fragments are filtered
out by middleware, and in the case of IPv6, where there is no forward
fragmentation, and it operates whether or not the responder receives
any ICMP PTB messages.

Conclusion
What we have learned through all this discussion is that packet frag-
mentation is extremely challenging, and is sensibly avoided if at all
possible.

Rather than trying to bury packet fragmentation to an IP-level func-
tion performed invisibly at the lower levels of the protocol stack,
a robust approach to packet fragmentation requires a more careful
approach that lifts the management of Path MTU into the end-to-end
transport protocol and even into the application.

IPv6 UDP-based applications that want a lightweight operation
should look at keeping their UDP packets under the IPv6 1,280-octet
unfragmented packet limit. And if that’s not possible, then the appli-
cation itself needs to explicitly manage Path MTU, and not rely on
the lower levels of the protocol stack to manage it.

IPv6 TCP implementations should never assume that IPv6 PTB mes-
sages are reliably delivered. High-volume flows should use RFC 4821
Path MTU Discovery and management procedures to ensure that the
TCP session can avoid Path MTU blackholing. For short flows, MSS
clamping still represents the most viable approach.

I’m not sure that we should go as far as deprecating IP fragmenta-
tion in IPv6. The situation is not that dire. But we should treat Path
MTU with a lot more respect, and include explicit consideration of
the trade-offs between lightweight design and robust behaviour in
today’s network.

The Internet Protocol Journal
12

References
 [1] Jon Postel, “Internet Protocol,” RFC 791, September 1981.

 [2] Kent, C. and J. Mogul, “Fragmentation Considered Harmful,”
Proc. SIGCOMM ’87 Workshop on Frontiers in Computer
Communications Technology, August 1987.

 [3] Matt Mathis, Ben Chandler, and John W. Heffner, “IPv4
Reassembly Errors at High Data Rates,” RFC 4963, July 2007.

 [4] G. Ziemba, D. Reed, and P. Traina, “Security Considerations
for IP Fragment Filtering,” RFC 1858, October 1995.

 [5] Geoff Huston, “Anatomy: A Look Inside Network Address
Translators,” The Internet Protocol Journal, Volume 7, No. 3,
September 2004.

 [6] Pekka Savola, “MTU and Fragmentation Issues with In-the-
Network Tunneling,” RFC 4459, April 2006.

 [7] Bonica, R. W. Kumari, R. Bush, and H. Pfeifer, “IPv6 Fragment
Header Deprecated,” Internet Draft, work in progress, draft-
bonica-6man-frag-deprecate, July 2013.

 [8] Matt Mathis and John W. Heffner, “Packetization Layer Path
MTU Discovery,” RFC 4821, March 2007.

 [9] Jeffrey C. Mogul and Stephen E. Deering, “Path MTU
Discovery,” RFC 1191, November 1990.

 [10] Stephen E. Deering, Jack McCann, and Jeffrey Mogul, “Path
MTU Discovery for IP Version 6,” RFC 1981, August 1996.

 [11] Mukesh Gupta, Stephen E. Deering, and Alex Conta, “Internet
Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification,” RFC 4443, March 2006.

 [12] Paul Vixie, Joao Damas, and Michael Graff, “Extension
Mechanisms for DNS (EDNS(0)),” RFC 6891, April 2013.

 [13] Godred Fairhurst and Lars Eggert, “Unicast UDP Usage
Guidelines for Application Designers,” RFC 5405, November
2008.

GEOFF HUSTON, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where
he was responsible for building the Internet within the Australian academic and
research sector in the early 1990s. He is author of numerous Internet-related books,
and was a member of the Internet Architecture Board from 1999 until 2005. He
served on the Board of Trustees of the Internet Society from 1992 until 2001. At
various times Geoff has worked as an Internet researcher, an ISP systems architect,
and a network operator. E-mail: gih@apnic

Fragmentation continued

https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc4963
https://tools.ietf.org/html/rfc1858
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-29/anatomy.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-29/anatomy.html
https://tools.ietf.org/html/rfc4459
https://tools.ietf.org/html/rfc4821
https://tools.ietf.org/html/rfc1191
https://tools.ietf.org/html/rfc1981
https://tools.ietf.org/html/rfc4443
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc5405
mailto:gih%40apnic?subject=

The Internet Protocol Journal
13

Resource Discovery in the Internet of Things
by Akbar Rahman and Chonggang Wang,
 InterDigital Communications, Inc.

T he World Wide Web (WWW or Web) is a global collection
of connected documents and other resources that reside on
the Internet. The introduction of the Internet of Things (IoT)

is expected to dramatically increase the size of the Web in the near
future and thus necessitates a fundamental change to the existing
mechanisms of discovering resources. In IoT, the vision is that a sig-
nificant number of new types of devices (or “things”) such as fridges,
car sensors, traffic lights, and so on will be dynamically connected
to the Web for communication and control. These IoT devices will
have radically different characteristics from existing Web servers
and users. This article looks at a key protocol development occur-
ring in the Internet Engineering Task Force (IETF) for allowing IoT
devices to discover resources via a new logical node called a Resource
Directory (RD).

Resource Discovery in the Traditional Web
The basic unit of addressing on the Web is the Uniform Resource
Identifier (URI), which identifies a resource[1]. The resource may, for
example, be a restaurant-review website page for a human user to
read. Or in a more abstract form, the resource may be a software
process to be triggered by a Business-to-Business (B2B) Web appli-
cation as part of an automated stock market trading system. The
key challenge in all cases is how users can quickly find the correct
URI for the resource that they are interested in out of all possible
URIs in the entire Web space. This process is referred to as resource
discovery.

The most well-known and powerful resource discovery mechanism
in the current Web is the one employed by Web search engines such
as Baidu, Bing, Google, Yahoo, etc. Specifically, search engines use
the mechanism of Web crawlers (also called spiders, ants, or robots)
to periodically browse the Web to create a dynamic index of the
resources of most publicly available websites. A website is defined
as a server that hosts resources users can access with the Hypertext
Transfer Protocol (HTTP)[2]. Human users can then send a search
request, via a Web browser client, to look up the specific resources
that they are interested in.

Figure 1 shows the overall resource discovery process based on Web
crawlers. Figure 1 is given in the context of a search engine, but aca-
demic researchers, market research companies, and others follow
very similar processes. However, unlike a search engine, these other
entities typically do not send crawlers to cover the entire Web to
discover all possible resources. Instead, they send crawlers to cover
parts of the Web to discover the specific type of resource that they
are interested in.

The Internet Protocol Journal
14

Figure 1: Overview of Traditional Resource Discovery Process by Web Search Engines

The Web

Web Browser Client
(with Human User)

(6) List of URIs That
 Answer Search
 Request

(3) Web Search Request

(4) Lookup Index

(5) List of URIs
 That Answer
 Query

(2) Create
 Index

Optimized
Index

Search Engine Complex

Query
Servers

(1) Web Crawlers Discover
 and Copy Websites

Website #1

Website #2 Website #n

Bulk
Database

For example, a market research company may send its Web crawlers
to discover all the resources related to a specific type of product in a
given geographic area as part of a pricing comparison study.

In Figure 1, Web crawlers start crawling out from the search engine
server to an initially provisioned seed list of URIs. This seed list typi-
cally consists of very popular websites with a lot of URIs to other sites
(that is, hyperlinks). From these initial websites, the Web crawlers
then crawl outward to all connected hyperlinks. At each new web-
site that it discovers, the Web crawler creates a copy of the website,
which it sends back to the search engine[3]. The search engine records
all the received information in a bulk database and later processes
it to create an optimized index for fast lookups. Then when a given
search request comes from a Web browser client looking for some
specific resource, the search engine can go quickly through its index
using its own proprietary algorithm to find one or more matches.

Finally, the search engine will return to the client a list of URIs and
selected application content pertaining to the resources that match
the client’s search parameters. This information is then displayed
on the user’s Web browser interface. Human users will then select
(“click”) the URI(s) that they want to visit.

Resource Discovery in IoT continued

The Internet Protocol Journal
15

Following are some key observations about resource discovery in the
traditional Web:

• In terms of network configuration, the search engine functionality,
or whichever entity dispatches the Web crawler, is typically located
on a set of centralized servers and related databases with high-
speed and large-bandwidth Internet connectivity. The resources
that the Web crawlers discover may be widely distributed across
the entire Internet. The Web browser-based clients that interface
with the human users and send the search (lookup) requests are
typically located at the edge of the network.

• Search engines primarily use a pull model to get resource informa-
tion. In this approach, the receiving node (that is, search engine)
goes out and explicitly requests information (via Web crawlers)
from the sending node (content websites). However, a small num-
ber of URIs such as the initial seed list of URIs (for example, very
popular websites) may be obtained without using the pull model,
but these URIs are always a small fraction of the URIs in a search
engine index.

• The list of resources the search engine returns for a given Web
search (lookup) request may vary from a few URIs to potentially
hundreds or even thousands of URIs. The order that these URIs
are presented to the human user via the search engine Web inter-
face is called the ranking of the resources. This ranking is critical
because when a large number of URIs are returned to users for a
given search request, users will typically select (“click”) only the
top few ranked URIs.

• The ranking of resources is ultimately an algorithmic decision
internal to the search engine. However, it can be affected by exter-
nal input such as Search Engine Optimization (SEO) techniques
that website developers use to try to get search engines to rank
their specific URIs higher than other URIs with similar applica-
tion content. For example, a simple SEO technique is to have
website content clearly tagged (titles, section headings, etc.) and
correlated to the website metadata. This metadata is an impor-
tant input for the search index engine. A more sophisticated SEO
technique is to have hyperlinks to a given website from as many
other websites as possible because search engines consider this
factor a measure of content popularity. There are many other
SEO techniques[4].

The Resource Discovery Problem in IoT
As mentioned previously, a key characteristic of current Web dis-
covery technology is the use of Web crawlers to fan out and
discover resources across the Internet. The implicit assumption in
this approach is that Web servers are always active and available
for Web crawlers that arrive in an unscheduled manner to discover
easily. However, this assumption conflicts with the expected nature
of many IoT devices that may have only intermittent connectivity
to the Web.

The Internet Protocol Journal
16

The primary reason for this intermittent connectivity is that many
IoT devices have a limited power supply (for instance, battery or solar
power). To conserve their power they may “wake up” or become
active only when required to perform a specific function. For exam-
ple, a fire-detection sensor acting as a mini Web server may wake up
and connect to the Web only to send a warning message to a remote
controller when it senses a certain amount of smoke in its vicinity.
At most other times, the fire-detection sensor is “asleep” (that is,
in a low power state and not active) and unreachable via the Web.
A secondary reason for intermittent connectivity is that many IoT
devices are connected to the Web by low-power and lossy wireless
networks. These wireless networks are more susceptible to interfer-
ence and temporary loss of connectivity than traditional wired or
cellular networks[5].

Another key difference between IoT devices and other Web infra-
structure is that most IoT devices may be deployed in semi-closed
networks. For example, the IoT devices such as a lighting or heat-
ing control system in a home may have Internet connectivity
only through a fire-walled home gateway. So the IoT devices and
their associated resources may be accessible by the home owner
through a smart phone control application with the proper secu-
rity credentials from anywhere in the Internet. However, Web
crawlers dispatched by a search engine will not discover the home
IoT devices because they will not be able to traverse the fire-walled
home gateway.

Therefore, the current pull model of Web discovery cannot be applied
directly to the expected deployments of IoT networks. In other
words, current Web crawler technology is unable to reliably dis-
cover a significant percentage of IoT devices that may be asleep or
unconnected for significant periods of time, or may be located in
semi-closed networks. The result is that traditional Web discov-
ery techniques will not produce accurate discovery results for IoT
scenarios.

Resource Directories to Solve the IoT Discovery Problem
The solution currently being standardized in the IETF to address the
IoT resource discovery problem is based on a new logical network
node called the Resource Directory (RD)[6, 7]. The RD idea was origi-
nally conceived and validated in the European Union (EU)-funded
SENSEI research program before coming to the IETF for standardiza-
tion[8]. The RD is defined in [6] to be applicable to a given domain and
not the entire Web. The domain is a logical grouping of IoT devices
that are related to an RD. An RD may support multiple domains.
The details of defining the extent of a given domain boundary,
however, are left to implementation and are not specified. Typically,
the RD domains specified in IETF use cases are building-wide, cam-
pus-wide, or city-wide. The domain concept maps well into the
expected deployment model of IoT devices in semi-closed networks.

Resource Discovery in IoT continued

The Internet Protocol Journal
17

In the simplest case, there would be a one-to-one mapping be-
tween each semi-closed network and a domain. The RD approach
thus provides a distributed resource discovery mechanism for IoT
scenarios. Figure 2 shows some typical RD domains.

Figure 2: Typical Resource
Directory Domains

Resource Directory
(RD-n)

Bus-1

Bus-2

Bus-n

Resource Directory
(RD-1)

Scanner-1 Scanner-n

RD-1 Domain
(Office)

RD-n Domain
(City Buses)

The Web

Copier

The resource registration step is done in a push fashion by IoT devices
acting as mini Web servers pushing their resource information into
the RD resource database. Figure 3 shows the architecture of a given
RD. All the IoT devices acting as Web servers will first register their
resources (URIs) via a registration interface.

Discovery can then be performed on the registered resources by an
IoT client using the lookup interface. Mutual authentication, encryp-
tion, and access control are required for both the registration and
lookup interfaces to ensure security and privacy of the entire resource
discovery process.

A given device may use both the registration interface (as a Web server)
and the lookup interface (as a client). The client may be located any-
where in the Web, but must have some knowledge regarding which
specific RD to direct the resource discovery request to. For example,
a newly installed home light controller may perform a lookup on its
own home RD to find all the lights installed in the house.

The Internet Protocol Journal
18

Or, a national smart-grid controller may perform a lookup on
a known RD in a remote city to find all the electric transformers
located in that city.

Figure 3: IoT Resource Directory
Architecture (adapted from [6])

Resource
Directory

(RD)
Client

Lookup (Discovery)
Interface

Registration
Interface

Domain
of RD

IoT
Server #2

IoT
Server #1

IoT
Server #n

IoT devices communicate with the RD using a Representational
State Transfer (REST)-based protocol similar to HTTP but optimized
for IoT. This protocol is referred to as the Constrained Application
Protocol (CoAP)[9]. The resource information pushed by the IoT serv-
ers into the RD uses CoAP messages with a specific payload format
termed the Link Format[7]. Only the URI, hyperlinks, and some meta-
data are sent from the IoT device to the RD. Application content is
not sent to the RD. Table 1 shows a comparison of the main resource
discovery features of a traditional Web search engine and an IoT RD.

Resource Directory Protocol Considerations
As mentioned previously, CoAP is a Web transfer protocol, similar
to HTTP, but optimized for IoT scenarios. CoAP provides a request/
response interaction model between clients and servers. It supports
key Web concepts such as URIs and Internet media types. CoAP
messages are sent over User Datagram Protocol (UDP), and the
CoAP header is encoded in a simple binary format. A CoAP request
consists of a method (that is, GET, PUT, POST, and DELETE) that is
applied to a resource identified by its URI, and a payload described
by an Internet media type as well as other metadata.

CoAP messages may easily be interworked with HTTP in the forward
or reverse directions via special cross-protocol proxies[9]. In addition,
CoAP uses Datagram Transport Layer Security (DTLS)[10] to provide
a secure session between the communicating parties.

In CoAP, every physical IoT device is assumed to have one or
more resources, each identified by a URI. A resource may contain
application information gathered by the IoT device (for example,
temperature), or may be a method to control the device (for
example, turn it ON/OFF). An example CoAP request and response
pair is shown in Table 2.

Resource Discovery in IoT continued

The Internet Protocol Journal
19

Table 1: Comparison of Resource Discovery Features of Web Search Engine versus IoT Resource Directory

Characteristic
Traditional Web Search Engine

(for example, Google)
IoT Resource Directory

(1) How is resource information initially
received by node?

Mainly pulled from target website by
Web crawlers after initial visit

Mainly pushed by target IoT devices
directly to RD (usually after power-up)

(2) How is updated resource information
transferred to node?

Pulled from target website by Web
crawlers that revisit according to their
search engine policy

Pushed by target IoT device directly to RD
according to their own update policy

(3) What resource information is
transferred to node?

The entire website (that is, URIs,
hyperlinks, metadata, and most
application content)

URIs, hyperlinks, and metadata
(but no application content is transferred)

(4) What transfer protocols are
supported?

HTTP CoAP (Also some limited HTTP support
exists. Further possible enhancements are
discussed in [12].)

(5) What is the scope of a client discovery
request for resources?

Global
(that is, covers entire Internet)

Local within given RD domain
(for example, city-wide)

(6) Typical end user that generates query
for resources.

Human user (via a Web browser client)
sends a search request

IoT device (that is, acting as both the client
and end user) sends lookup request

May also be used occasionally by human
user (for example, via a CoAP-enabled
Web browser client as part of management
activities)

(7) Are resource discovery results
ranked?

Yes No
(but being discussed as a future
enhance-ment in [12])

(8) Are the resource discovery results
machine readable?

No (but may support it in the future
with further adoption of Semantic
Web concept)

Yes (that is, results strictly follow Link
Format[7])

Table 2: Example CoAP GET Request and Response

Request GET coap://heater.net/temperature

Note:
Where
 Method = GET
 URI = coap://heater.net/temperature
 URI-Scheme component = coap://
 URI-Host component = heater.net (or alternatively may be an IP address and Port Number)
 URI-Path component = /temperature

Response 2.05 Content
“22.3 C”

Note:
Where
 Response code = 2.05 (indicating successful processing)
 Payload = 22.3 Celsius (C) temperature reading

The Internet Protocol Journal
20

Resource Discovery in IoT continued

The following sections describe the key protocol steps and security
characteristics related to RDs.

Finding the Resource Directory
The first step is for the IoT devices, or End Points (EPs) as they are
called in [6], to find the appropriate RD. The most dynamic method
for finding the RD is using IP multicast. Specifically, the device sends a
CoAP multicast message to the CoAP IPv4 or IPv6 addresses reserved
for this purpose[11]. An alternative method would be, for example,
factory preprovisioning of the RD information in the device.

Assuming the IP multicast method of finding the RD, each device
(EP) sends a CoAP GET request to a specific URI-Path as shown in
Figure 4. Specifically, the CoAP GET request is sent by multicast to
the reserved “/.well-known/core” URI-Path. (Note that the URI-
Scheme and URI-host components are not shown for simplicity in
this and subsequent figures.) All the devices in the domain will then
get this request because it is sent by IP multicast[11]. However, only
the RD will reply because the request URI has a query string for
resource type (rt) added to the end (that is, ?rt=core.rd*), indicat-
ing that the message is meant for the RD. The RD then responds
indicating its URI-Path (that is, /rd) for subsequent registration or
lookup requests[6].

Figure 4: Finding a Resource
Directory (adapted from [6])

EP
(IoT Server) RD

GET /.well-known/core?rt=core.rd*

2.05 Content “</rd>; rt=core.rd”

Registering Resources
After finding the RD, each IoT device (EP) will register its own
resources to the RD using the RD registration interface as shown
in Figure 5. This registration is accomplished by each device sending
a CoAP POST request directly to the RD with its list of URIs (that is,
/sensor...) in the message payload, along with a query string
identifying the registering device (that is, ?ep=node1). The message
payload containing the list of URIs being registered is formatted
in the Link Format[7]. The RD then responds with the resulting
URI-Path (that is, /rd/4521) that it created to store the resources
of the device[6].

The Internet Protocol Journal
21

Figure 5: Registration of URIs
to a Resource Directory

(adapted from [6]) EP
(IoT Server) RD

POST /rd?ep=node1 “</sensors...”

2.01 Created Location: /rd/4521

Resource Lookup (Discovery) by Client
The RD also supports a lookup interface for clients to make a dis-
covery request on the RD database. The client may be located in the
RD domain or may be outside of it. The client is aware of a given
RD because it used the locating mechanism described previously, or
it may have learned of the RD through other methods (for example,
preprovisioning). Figure 6 shows a typical resource lookup request
where a client is interested in finding all URIs related to “temper-
ature.” Specifically, the client will send a GET request to the RD
Lookup interface indicating that it is interested in the resource type
of temperature in the query string (that is, ?rt=temperature). The
RD will then respond with a message containing the list of URIs
of all the devices that it has in its registration database that match
this criterion[6]. The response message is formatted using the Link
Format[7].

Figure 6: Resource Lookup
(Discovery) Request Sent to a

Resource Directory
(adapted from [6]) RDClient

GET /rd-lookup/res?rt=temperature

2.05 Content <coap://[FDFD::123]:61616/temp>;rt=”temperature”

Other types of lookup requests may also be sent. For example, the
RD may be queried to find out all the URIs supported by a given IoT
device. Or, the RD may be queried to find out the identities of all the
IoT devices in a given domain. The great majority of lookup requests
to the RD will be sent by other IoT devices, without any human in
the loop, for automated command and control. However, resource
lookup requests may also be sent occasionally by humans via a
CoAP-enabled Web browser interface for management activities.

The Internet Protocol Journal
22

Resource Directory Security Characteristics
Both the RD registration and lookup interfaces are protected by
multiple layers of security to ensure that only authorized parties can
access the RD. Specifically, mutual authentication is first required
between the RD and any device attempting to access it. This authen-
tication is accomplished using either preshared encryption keys, raw
public keys, or X.509 security certificates as the security creden-
tials[9]. The appropriate credentials are used in the initial handshake
of the DTLS session establishment to perform mutual authentica-
tion between the RD and the device or client accessing it. After
the mutual authentication is completed, the cipher suite to be used
for the DTLS session is negotiated. Then all subsequent messages
exchanged between the RD and the device or client are securely
encrypted via DTLS so that no unauthorized third party can decipher
the communications[6].

In addition to the DTLS security, the RD will also perform a fine-
grained access control of any device attempting to communicate with
it. Access control will be performed separately on the RD registra-
tion and lookup interfaces. Access control may be performed at the
domain, device, or resource level[6]. This control is especially impor-
tant on the lookup interface for privacy and security reasons. For
example, in a hospital setting many medical devices such as blood
pressure monitoring devices may be registered to a RD, but only
authorized medical staff should be able to discover a given device
for privacy reasons. Or in a home setting, a visitor may be allowed
to freely discover the television, but will be blocked from discovering
the front door lock for security reasons.

Examples of Resource Directory Implementations
In parallel with the ongoing standardization efforts in the IETF for
the RD protocol[6, 12], there are several open source and commercial
instances of RDs that have successfully interoperated with various
IoT devices. Some examples are briefly described in the following
paragraphs.

The Californium open source software project is a popular CoAP
framework for IoT deployments. It is written in the Java pro-
gramming language and specifically includes support for back-end
infrastructure as part of its project scope. As such, it has released
software loads that implement RD functionality that can be run on
general-purpose servers[13].

On the commercial front, ARM, the semiconductor and software
company, has released several products for the IoT market. One
of its products is a middleware offering called the “mbed Device
Server.” This middleware includes support of RD functionality.
This middleware software can run on various server hardware
platforms[14].

Resource Discovery in IoT continued

The Internet Protocol Journal
23

Another company that has done a lot of RD development work is
Ericsson, the telecommunications equipment and service provider.
Ericsson has done early prototyping and research[15] in the RD
concept starting from the initial EU SENSEI project days[8]. The com-
pany has also participated in an open source software project for a
cloud-based IoT gateway that includes RD functionality[16].

Alternative Approaches to Discovery
The RD is not the only approach to the discovery problem for IoT
networks. There are other methods such as Domain Name Service
– Service Discovery (DNS-SD), which allows lookup of a given ser-
vice via DNS[17]. Another method is Universal Plug and Play (UPnP),
which allows discovery of devices in home networks[18].

The key difference between these other discovery methods and the
RD approach is that the RD is geared towards resource discovery
in the context of a REST-based Web model, meaning discovery of
URIs and related metadata. The other existing discovery approaches
are mainly oriented to discovering IP addresses, ports, and related
parameters. So they are complementary to the URI discovery methods
but cannot replace them. The only other widely used URI discov-
ery scheme is the Web crawler approach described previously, which
has the shortcomings in IoT deployments as described in Table 1.

Conclusion
The existing REST-based Web architecture and protocols have been
extremely successful and a driving force behind the explosive growth
of the Internet during the last 20 years. Search engines like Google
and Bing, which use Web crawlers to discover resources (that is, URIs)
efficiently, constitute a key part of the success of the Web. However,
the existing model of resource discovery is expected to undergo
radical changes with the addition in the future of an increasing
number of IoT devices acting as both mini Web servers and
clients. The IETF is currently standardizing protocol support for
the Resource Directory, which will be optimized for distributed IoT
resource discovery.

It is expected that an increasing number of discovery requests in the
future will be handled by RDs for scenarios involving IoT devices.
In parallel, human users will continue to heavily use traditional Web
search engines like Google. There is also expected to be some cross-
usage because traditional Web browsers may start to support CoAP
software modules (plug-ins) and hence allow human users to make
direct queries to RDs. However, a limiting feature of this interaction
will be the security and privacy requirements of IoT deployments.
Specifically, many IoT resources such as personal health-monitoring
devices will have sensitive information that is not meant for public
distribution, and they may also be located in semi-closed networks.
Strong security and privacy is supported by the current RD model,
which requires strict mutual authentication, encryption, and access
control for both registration and discovery of IoT resources.

The Internet Protocol Journal
24

References
 [1] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter, “Uniform

Resource Identifier (URI): Generic Syntax,” RFC 3986, January
2005.

 [2] Roy Fielding and Julian Reschke, “Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing,” RFC 7230, June
2014.

 [3] The Web Robots Pages: http://www.robotstxt.org/

 [4] “What Is SEO, Search Engine Optimization?,”
 http://searchengineland.com/guide/what-is-seo

 [5] Dominique Barthel, Mischa Dohler, Thomas Watteyne, and Tim
Winter, “Urban WSNs Routing Requirements in Low Power
and Lossy Networks,” RFC 5548, May 2009.

 [6] Z. Shelby, et al., “CoRE Resource Directory,” Internet Draft,
work in progress, March 2016.

 draft-ietf-core-resource-directory-07.txt

 [7] Zach Shelby, “Constrained RESTful Environments (CoRE)
Link Format,” RFC 6690, August 2012.

 [8] S. Jokic, et al., “Evaluation of an XML Database Based Resource
Directory Performance,”

 http://www.smartsantander.eu/downloads/
Presentations/XML_RD_Telfor_2011_v1.0Srdjan.pdf

 [9] Zach Shelby, Carsten Bormann, and Klaus Hartke, “The
Constrained Application Protocol (CoAP),” RFC 7252, June
2014.

 [10] Eric Rescorla and Nagendra Modadugu, “Datagram Transport
Layer Security Version 1.2,” RFC 6347, January 2012.

 [11] Esko Dijk and Akbar Rahman, “Group Communication for
the Constrained Application Protocol (CoAP),” RFC 7390,
October 2014.

 [12] A. Rahman, “Advanced Resource Directory Features,” Internet
Draft, work in progress, March 2016.

 draft-rahman-core-advanced-rd-features-02.txt

 [13] Californioum (Cf) CoAP Framework:
 http://www.eclipse.org/proposals/technology.

californium/

 [14] ARM mbed Device Server:
 https://www.mbed.com/en/development/cloud/

mbed-device-server/

Resource Discovery in IoT continued

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc7230
http://www.robotstxt.org/
http://searchengineland.com/guide/what-is-seo
https://tools.ietf.org/html/rfc5548
https://tools.ietf.org/html/rfc6690
http://www.smartsantander.eu/downloads/Presentations/XML_RD_Telfor_2011_v1.0Srdjan.pdf
http://www.smartsantander.eu/downloads/Presentations/XML_RD_Telfor_2011_v1.0Srdjan.pdf
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc7390
http://www.eclipse.org/proposals/technology.californium/
http://www.eclipse.org/proposals/technology.californium/
https://www.mbed.com/en/development/cloud/mbed-device-server/
https://www.mbed.com/en/development/cloud/mbed-device-server/

The Internet Protocol Journal
25

 [15] Ericsson Research Blog: Having a headache using legacy IoT
devices?

 https://www.ericsson.com/research-blog/internet-of-
things/headache-using-legacy-iot-devices/

 [16] Ericsson Research Blog: A Computational Engine for the Internet
of Things.

 https://www.ericsson.com/research-blog/internet-of-
things/computational-engine-internet-things/

 [17] Stuart Cheshire and Marc Krochmal, “DNS-Based Service
Discovery,” RFC 6763, February 2013.

 [18] Wikipedia, “Universal Plug and Play”:
 https://en.wikipedia.org/wiki/Universal_Plug_and_Play

 [19] David Lake, Ammar Rayes, and Monique Morrow, “The Internet
of Things,” The Internet Protocol Journal, Volume 15, No. 3,
September 2012.

 [20] William Stallings, “The Internet of Things: Network and Security
Architecture,” The Internet Protocol Journal, Volume 18, No. 4,
December 2015.

AKBAR RAHMAN is a Principal Engineer at InterDigital Communications and is
based in the company’s office in Montreal, QC, Canada. He has been closely involved
in IoT protocol development at IETF for several years. He has multiple IETF RFCs
published in the areas of IoT and Internet architecture. He has a BASc degree from the
University of Waterloo, Canada.
E-mail: Akbar.Rahman@InterDigital.com

CHONGGANG WANG is a Member of Technical Staff at InterDigital Communi-
cations and is based in the company’s office in King of Prussia, PA, USA. He
is Editor-in-Chief of the IEEE IoT Journal, and a Distinguished Lecturer for
the IEEE Communications Society. He has a PhD from the Beijing University of Posts
and Telecommunications.
E-mail: Chonggang.Wang@InterDigital.com

http://www.ericsson.com/research-blog/internetof-things/headache-using-legacy-iot-devices/
http://www.ericsson.com/research-blog/internetof-things/headache-using-legacy-iot-devices/
https://www.ericsson.com/research-blog/internet-of-things/computational-engine-internet-things/
https://www.ericsson.com/research-blog/internet-of-things/computational-engine-internet-things/
https://tools.ietf.org/html/rfc6763
https://en.wikipedia.org/wiki/Universal_Plug_and_Play
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-57/153-internet.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-57/153-internet.html
http://ipj.dreamhosters.com/wp-content/uploads/issues/2015/ipj18-4.pdf
http://ipj.dreamhosters.com/wp-content/uploads/issues/2015/ipj18-4.pdf
mailto:Akbar.Rahman%40InterDigital.com?subject=
mailto:Chonggang.Wang%40InterDigital.com?subject=

The Internet Protocol Journal
26

The IANA Transition
by Vint Cerf, Google

I n this article I will explore the notable proposal sent in March
2016[0] by the Internet Corporation for Assigned Names and
Numbers (ICANN) to the U.S. Department of Commerce,

National Telecommunication and Information Agency (NTIA) to
end the long-standing contractual relationship between ICANN
and NTIA for the conduct of the Internet Assigned Numbers
Authority functions (“IANA functions”)[1, 2]. ICANN was formed in
late 1998 in response to a White House “White Paper” issued by Ira
Magaziner, then a senior advisor for policy to President Bill Clinton.
ICANN would undertake to form a private sector entity to carry
out the coordinated assignment of Internet domain names, Internet
addresses, and the maintenance of parameter registries needed for
the operation of the suite of protocols used in the Internet.

These functions had been managed by Jonathan Postel acting as the
IANA at University of Southern California’s Information Sciences
Institute (and other earlier institutions where Postel had worked)
under various government contracts. By 1996, the Internet was
experiencing its so-called “dot boom” and the potential scale and
liabilities of carrying out the IANA functions led to a serious effort
to institutionalize the operation. For lack of space, I will leave out
two years of community debate and fast-forward to the creation of
ICANN to fulfill these functions. ICANN was conceived as a multi-
stakeholder organization drawing on input from the private sector,
civil society, governments of the world, and the technical community
for the development of policy for the IANA functions and for the
coordination of the multiple parties having a role in managing these
unique identifiers and parameters.

In 1998, many organizations were involved in the evolution and
operation of the Internet, its Domain Name System (DNS), Internet
address allocation, and standards development. The Internet Society,
founded in 1991, housed the standards-oriented Internet Architecture
Board (IAB) and the Internet Engineering Task Force (IETF). There
were then three Regional Internet Registries (RIRs)[3] for Internet
address allocation—RIPE-NCC, APNIC, and ARIN—and two more
to follow later (LACNIC and AFRINIC). There were nominally
13 DNS Root Server operators providing top-level domain name res-
olution. Verisign generated and distributed the official domain name
root zone based on input from IANA and, under the terms of the
NTIA/ICANN contract, authorization from NTIA. Many domain
name registries and registrars were created to support DNS operation.

The original plan was for ICANN to operate under NTIA oversight
for a few years and then operate as an independent organization.
In fact, the contractual obligations extended from 1998 to the
present.

The Internet Protocol Journal
27

In March 2014, however, NTIA proposed that this contractual rela-
tionship for the IANA functions should be ended and ICANN be
allowed to perform the IANA functions independently. In March
2016, ICANN delivered to NTIA its consolidated proposal from all
the constituent parties for the transition from the present contractual
relationship to independent operation. The two-year effort leading
to this comprehensive proposal was not without considerable debate
among all the parties. Many ideas were surfaced, analyzed, argued
over, adopted, adapted, or discarded, leading to a consolidated result.
The Department of Commerce and the U.S. Congress will be evaluat-
ing the proposed new modus operandi in the weeks ahead.

Some fears have been voiced that the complex proposal poses risks
that authoritarian governments within the ICANN Governmental
Advisory Committee (GAC) or through some external means might
wrest control of ICANN from its multi-stakeholder constituencies.
While the proposal should be evaluated on all its merits, I am per-
suaded the terms and conditions of the proposed operating practices
are well protected against such an outcome. A great many condi-
tions must be satisfied before the more extraordinary powers of the
sole designator can be exercised. The headquarters of ICANN will
remain in the U.S. The many entities that cooperate with ICANN
to manage core Internet identifier administration have expressed full
support for the proposal.

If I have any trepidation about the proposal, it is associated with
its general complexity. As the former chairman of ICANN, I am no
stranger to the evolution of ICANN’s structure and processes and
their relative intricacy. The new proposal adds its own unique aspects
to this tendency, and it remains to be seen how well the system will
work. However, ICANN has shown a remarkable ability to reform
and adapt when necessary, and I believe that capacity is preserved
under the new proposal. There is still a good deal of work ahead to
actually implement what is ultimately approved, but I am confident
this community is capable of achieving a successful outcome.

[Ed.: An earlier version of this article appeared in Communications
of the ACM, Volume 59, No. 5, May 2016.]

References
 [0] “Plan to Transition Stewardship of Key Internet Functions Sent

to the U.S. Government,”
 https://www.icann.org/news/announcement-2016-

03-10-en

 [1] “NTIA Announces Intent to Transition Key Internet Domain
Name Functions,”

 https://www.ntia.doc.gov/press-release/2014/ntia-
announces-intent-transition-key-internet-domain-
name-functions

https://www.icann.org/news/announcement-2016-03-10-en
https://www.icann.org/news/announcement-2016-03-10-en
https://www.ntia.doc.gov/press-release/2014/ntia-announces-intent-transition-key-internet-domain-name-functions
https://www.ntia.doc.gov/press-release/2014/ntia-announces-intent-transition-key-internet-domain-name-functions
https://www.ntia.doc.gov/press-release/2014/ntia-announces-intent-transition-key-internet-domain-name-functions

The Internet Protocol Journal
28

 [2] “NTIA Finds IANA Stewardship Transition Proposal Meets
Criteria to Complete Privatization,”

 https://www.ntia.doc.gov/press-release/2016/iana-
stewardship-transition-proposal-meets-criteria-
complete-privatization

 [3] Daniel Karrenberg, Gerard Ross, Paul Wilson, and Leslie Nobile,
“Development of the Regional Internet Registry System,” The
Internet Protocol Journal, Volume 4, No. 4, December 2001.

 [4] IANA Stewardship Transition Coordination Group:
 http://www.ianacg.org/

 [5] NTIA IANA Functions’ Stewardship Transition:
 https://www.icann.org/stewardship

VINTON G. CERF is Vice President and Chief Internet Evangelist for Google. He
contributes to global policy development and continued spread of the Internet.
Widely known as one of the “Fathers of the Internet,” Cerf is the co-designer of the
TCP/IP protocols and the architecture of the Internet. He has served in executive
positions at MCI, the Corporation for National Research Initiatives and the Defense
Advanced Research Projects Agency (DARPA), and on the faculty of Stanford
University.

Cerf served as Chairman of the Board of the Internet Corporation for Assigned
Names and Numbers (ICANN) from 2000 to 2007 and has been a Visiting Scientist
at the Jet Propulsion Laboratory since 1998. He served as founding President of the
Internet Society (ISOC) from 1992 to 1995. Cerf is a Fellow of the IEEE, ACM, and
American Association for the Advancement of Science, the American Academy of
Arts and Sciences, the International Engineering Consortium, the Computer History
Museum, the British Computer Society, the Worshipful Company of Information
Technologists, and the Worshipful Company of Stationers, and he is a member of
the National Academy of Engineering. He currently serves as Past President of the
Association for Computing Machinery and Chairman of the American Registry for
Internet Numbers (ARIN), and he has completed a term as Chairman of the Visiting
Committee on Advanced Technology for the U.S. National Institute of Standards
and Technology. President Obama appointed him to the National Science Board in
2012.

Cerf is a recipient of numerous awards and commendations in connection with
his work on the Internet, including the U.S. Presidential Medal of Freedom, U.S.
National Medal of Technology, the Queen Elizabeth Prize for Engineering, the
Prince of Asturias Award, the Tunisian National Medal of Science, the Japan Prize,
the Charles Stark Draper Award, the ACM Turing Award, Officer of the Legion
d’Honneur, and 25 honorary degrees. In December 1994, People magazine identified
Cerf as one of that year’s “25 Most Intriguing People.” His personal interests include
fine wine, gourmet cooking, and science fiction. Cerf and his wife, Sigrid, were mar-
ried in 1966 and have two sons, David and Bennett. vint@google.com

The IANA Transition continued

https://www.ntia.doc.gov/press-release/2016/iana-stewardship-transition-proposal-meets-criteria-complete-privatization
https://www.ntia.doc.gov/press-release/2016/iana-stewardship-transition-proposal-meets-criteria-complete-privatization
https://www.ntia.doc.gov/press-release/2016/iana-stewardship-transition-proposal-meets-criteria-complete-privatization
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-11/regional-internet-registries.html
http://www.ianacg.org/
https://www.icann.org/stewardship
mailto:vint%40google.com?subject=

The Internet Protocol Journal
29

Fragments

RACI
The RIPE Academic Cooperation Initiative (RACI) connects mem-
bers of the academic community with the RIPE community by
inviting students and researchers to present at meetings organized by
the RIPE NCC. Successful applicants receive complimentary tickets,
travel and accommodation to meetings and the opportunity to pres-
ent their work to some of the leading technical figures in the Internet
world. Examples of relevant topics include:

• Network Measurement and Analyses

• IPv6 Deployment

• BGP Routing

• Network Security

• Internet Governance

• Peering and Interconnectivity

• The Internet of Things

For more information about RACI, including the application process
and deadlines, visit: http://ripe.net/raci

NTIA Issues IANA Transition Proposal Report
On 9 June 2016, The National Telecommunications and Information
Administration (NTIA) issued its assessment report on the IANA
Stewardship Transition Proposal. (Ed.: See article on page 26). In
order to be accepted, the proposal needed to be shown to have broad
community support and address the following four principles:

• Support and enhance the multistakeholder model

• Maintain the security, stability, and resiliency of the Internet DNS

• Meet the needs and expectations of the global customers and part-
ners of the IANA services

• Maintain the openness of the Internet

The NTIA further stipulated that “it would not accept a proposal
that replaces its role with a government-led or intergovernmental
organization solution.” After thorough review the NTIA reports that
it finds that “the IANA Stewardship Transition Proposal meets the
criteria necessary to complete the long-promised privatization of the
IANA functions.”

The full report is available at:

https://www.ntia.doc.gov/report/2016/iana-stewardship-
transition-proposal-assessment-report

http://ripe.net/raci
https://www.ntia.doc.gov/report/2016/iana-stewardship-transition-proposal-assessment-report
https://www.ntia.doc.gov/report/2016/iana-stewardship-transition-proposal-assessment-report

The Internet Protocol Journal
30

Call for Papers

The Internet Protocol Journal (IPJ) is a quarterly technical publication
containing tutorial articles (“What is...?”) as well as implementation/
operation articles (“How to...”). The journal provides articles about
all aspects of Internet technology. IPJ is not intended to promote any
specific products or services, but rather is intended to serve as an
informational and educational resource for engineering profession-
als involved in the design, development, and operation of public and
private internets and intranets. In addition to feature-length articles,
IPJ contains technical updates, book reviews, announcements, opin-
ion columns, and letters to the Editor. Topics include but are not
limited to:

• Access and infrastructure technologies such as: Wi-Fi, Gigabit
Ethernet, SONET, xDSL, cable, fiber optics, satellite, and mobile
wireless.

• Transport and interconnection functions such as: switching, rout-
ing, tunneling, protocol transition, multicast, and performance.

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
troubleshooting, and mapping.

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed sys-
tems, cloud computing, and quality of service.

• Application and end-user issues such as: E-mail, Web authoring,
server technologies and systems, electronic commerce, and appli-
cation management.

• Legal, policy, regulatory and governance topics such as: copyright,
content control, content liability, settlement charges, resource allo-
cation, and trademark disputes in the context of internetworking.

IPJ will pay a stipend of US$1000 for published, feature-length arti-
cles. For further information regarding article submissions, please
contact Ole J. Jacobsen, Editor and Publisher. Ole can be reached at
ole@protocoljournal.org or olejacobsen@me.com

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

mailto:ole%40protocoljournal.org?subject=
mailto:olejacobsen%40me.com?subject=
http://creativecommons.org/

The Internet Protocol Journal
31

Supporters and Sponsors
Publication of this journal is made possible by:

Individual Sponsors

Lyman Chapin, Steve Corbató, Dave Crocker, Jay Etchings, Martin Hannigan, Hagen Hultzsch,
Dennis Jennings, Jim Johnston, Merike Kaeo, Bobby Krupczak, Richard Lamb, Tracy LaQuey Parker,
Bill Manning, Andrea Montefusco, Tariq Mustafa, Mike O’Connor, Tim Pozar, George Sadowsky,
Scott Seifel, Helge Skrivervik, Rob Thomas, Tom Vest, Rick Wesson.

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsor Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

http://www.en.21vianet.com/
mailto:sponsor%40protocoljournal.org?subject=
http://www.internetsociety.org
www.cisco.com
http://icann.org
http://afilias.info/
http://apia.org/
http://labs.verisigninc.com
http://www.auda.org.au
http://www.us.ntt.net/
http://www.apnic.net/
http://www.wide.ad.jp/
http://www.team-cymru.org
http://www.ripe.net
http://www.juniper.net
http://nsrc.org/
http://dyn.com/
http://www.equinix.com
http://comcast.net
https://www.dns-oarc.net
http://de-cix.net
http://www.limelight.com/
http://www.netnod.se/
https://ams-ix.net
http://www.isc.org
http://www.sidn.ni

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Fred Baker, Cisco Fellow
Cisco Systems, Inc.

Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

Dr. Steve Crocker, Chairman
Internet Corporation for Assigned Names and Numbers

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Olaf Kolkman, Chief Internet Technology Officer
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor
Faculty of Environmental and Information Studies,
Keio University, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
NMS
535 Brennan Street
San Jose, CA 95131

ADDRESS SERVICE REQUESTED

http://creativecommons.org/licenses/by-nc-nd/2.0/

