
November 2016 Volume 19, Number 3

You can download IPJ
back issues and find

subscription information at:
www.protocoljournal.org

ISSN 1944-1134

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

Internet E-Mail Security 2

SDN Complexity and
Reality 31

Thank You 42

Supporters and Sponsors 43

F r o m T h e E d i t o r

Publication of this journal is made possible by numerous individuals
and organizations. Every year in late August we initiate a sponsorship
renewal campaign. This year our funding fell short of our sponsorship
target, so we delayed publication of the September issue until now.
If you are a subscriber, you should have received an e-mail asking
for a donation. I am happy to say that many subscribers responded
to that request (see page 42), and with the help of these individuals
and our corporate sponsors we are now ready to deliver to you this
November issue. This will be the third and final issue in 2016, but we
hope to return to our regular quarterly publication schedule in 2017.
We still need more individual and corporate sponsors, so please ask
your company to sign up for a sponsorship or make a donation at
http://tinyurl.com/IPJ-donate

We are pleased to welcome two new members of our Editorial
Advisory Board. David Conrad is the Chief Technical Officer at the
Internet Corporation for Assigned Names and Numbers (ICANN),
and Cullen Jennings is a Cisco Fellow at Cisco Systems, Inc. We are
grateful to Fred Baker, who has left Cisco Systems and our Editorial
Advisory Board, and we wish him every success in the future.

A large percentage of Internet traffic is electronic mail. In our first
article, William Stallings gives an overview of the many enhancements
that are designed to make e-mail communication more secure and
reliable in the face of an increasing amount of spam and other attack
vectors.

Previous articles in IPJ have covered various aspects of Cloud
Computing and Software-Defined Networks (SDNs). In our second
article, Russ White and Shawn Zandi take a criticial look at the com-
plexity of these technologies.

As always, we welcome your feedback, suggestions, book reviews,
articles, and sponsorship support. You can contact us by sending
an e-mail to ipj@protocoljournal.org and visit our website for
subscription information, back issues, author guidelines, sponsor
information, and much more.

—Ole J. Jacobsen, Editor and Publisher
ole@protocoljournal.org

http://www.cisco.com/ipj
http://tinyurl.com/IPJ-donate
mailto:ipj%40protocoljournal.org?subject=
mailto:ole%40protocoljournal.org%20?subject=

The Internet Protocol Journal
2

Comprehensive Internet E-Mail Security
by William Stallings, Independent Consultant

F or both organizations and individuals, e-mail is pervasive and
vulnerable to a wide range of security threats. In general terms,
e-mail security threats can be classified as follows:

• Authenticity-related threats: Could result in unauthorized access
to an enterprise’s e-mail system. Another threat in this category is
deception, in which the purported author isn’t the actual author.

• Integrity-related threats: Could result in unauthorized modifica-
tion of e-mail content.

• Confidentiality-related threats: Could result in unauthorized dis-
closure of sensitive information.

• Availability-related threats: Could prevent end users from being
able to send or receive e-mail messages.

To assist in addressing these threat categories, the National Institute
of Standards and Technology (NIST) has issued SP 800-177[1], which
recommends guidelines for enhancing trust in e-mail. The document
is both a survey of available standardized protocols and a set of rec-
ommendations for using these protocols to counter security threats
to e-mail usage.

For an understanding of the topics in this article, it is useful to have
a basic grasp of the Internet mail architecture, which is currently
defined in RFC 5598[2]. The discussion now provides an overview of
the basic concepts.

At its most fundamental level, the Internet mail architecture consists
of a user world in the form of Message User Agents (MUA), and the
transfer world, in the form of the Message Handling Service (MHS),
which is composed of Message Transfer Agents (MTA). The MHS
accepts a message from one user and delivers it to one or more other
users, creating a virtual MUA-to-MUA exchange environment. This
architecture involves three types of interoperability. One is directly
between users: messages must be formatted by the MUA on behalf
of the message author so that the message can be displayed to the
message recipient by the destination MUA. There are also interop-
erability requirements between the MUA and the MHS—first when
a message is posted from an MUA to the MHS and later when it is
delivered from the MHS to the destination MUA. Interoperability
is required among the MTA components along the transfer path
through the MHS.

The Internet Protocol Journal
3

Figure 1: Function Modules and
Standardized Protocols Used

Between Them in the Internet
Mail Architecture

Message
Author

SMTP

(SMTP, local)SMTP

(IMAP, POP, local)

ESMTP (Submission)ESMTP (Submission)

Message
Handling Service

(MHS)

Message
Transfer Agent

(MTA)

Mail
Submission

Agent (MSA)

Message
User Agent

(MUA)

Message
Store
(MS)

Message
User Agent

(MUA)

Mail
Delivery

Agent (MDA)

Message
Recipient

Message
Transfer Agent

(MTA)SMTP

Message
Transfer Agent

(MTA)

Figure 1 illustrates the key components of the Internet mail architec-
ture, which include the following:

• Message User Agent (MUA): Operates on behalf of user actors and
user applications. It is their representative within the e-mail ser-
vice. Typically, this function is housed in the user’s computer and
is referred to as a client e-mail program or a local network e-mail
server. The author MUA formats a message and performs initial
submission into the MHS via a Mail Submission Agent (MSA). The
recipient MUA processes received mail for storage and/or display
to the recipient user.

• Mail Submission Agent (MSA): Accepts the message submitted by
an MUA and enforces the policies of the hosting domain and the
requirements of Internet standards. This function may be located
together with the MUA or as a separate functional model. In the
latter case, the Simple Mail Transfer Protocol (SMTP) is used
between the MUA and the MSA.

• Message Transfer Agent (MTA): Relays mail for one application-
level hop. It is like a packet switch or IP router in that its job
is to make routing assessments and move the message closer to
the recipients. Relaying is performed by a sequence of MTAs until
the message reaches a destination MDA. An MTA also adds trace
information to the message header. SMTP is used between MTAs
and between an MTA and an MSA or MDA.

The Internet Protocol Journal
4

• Mail Delivery Agent (MDA): The MDA is responsible for transfer-
ring the message from the MHS to the Message Store (MS).

• Message Store (MS): An MUA can employ a long-term MS. An MS
can be located on a remote server or on the same machine as the
MUA. Typically, an MUA retrieves messages from a remote server
using the Post Office Protocol (POP) or the Internet Message
Access Protocol (IMAP).

As will be seen subsequently, an important element in securing e-mail
is the use of public-key cryptography. In turn, the use of public-
key cryptography depends on the use of Public-key Certificates. In
essence, a public-key certificate consists of a public key plus a user ID
of the key owner, with the whole block signed by a trusted third party.
A common scheme for the creation and use of public key certificates
is by means of a third party known as a Certificate Authority (CA).
A CA is an entity that is trusted by the user community, such as a
government agency or a financial institution. The essential elements
in the CA scheme include:

1. Client software creates a pair of keys, one public and one private.
The client prepares an unsigned certificate that includes a user ID
and the user’s public key. The client then sends the unsigned certifi-
cate to a CA in a secure manner.

2. A CA creates a signature by calculating the hash code of the
unsigned certificate and encrypting the hash code with the CA’s pri-
vate key; the encrypted hash code is the signature. The CA attaches
the signature to the unsigned certificate and returns the now-signed
certificate to the client.

3. The client may send its signed certificate to any other user. That
user may verify that the certificate is valid by calculating the hash
code of the certificate (not including the signature), decrypting the
signature using the CA’s public key, and comparing the hash code
to the decrypted signature.

If all users subscribe to the same CA, then there is a common trust of
that CA. All user certificates can be placed in the directory for access
by all users. In addition, users can transmit their certificate directly to
other users. In either case, when B is in possession of A’s certificate,
B has confidence that messages it encrypts with A’s public key will be
secure from eavesdropping and that messages signed with A’s private
key are unforgeable.

If there is a large community of users, it may not be practical for all
users to subscribe to the same CA. Because it is the CA that signs
certificates, each participating user must have a copy of the CA’s own
public key to verify signatures. This public key must be provided
to each user in an absolutely secure (with respect to integrity and
authenticity) way so that the user has confidence in the associated
certificates.

Internet E-Mail Security continued

The Internet Protocol Journal
5

Thus, with many users it may be more practical for there to be
numerous CAs, each of which securely provides its public key to
some fraction of the users. In practice, there is not a single CA but
rather a hierarchy of CAs. This setup complicates the problems of
key distribution and trust, but the basic principles are the same.

Several issues with the use of CAs should be mentioned. As can be
deduced from the preceding paragraph, a hierarchical CA system can
become cumbersome and not scale well. Nevertheless, this scheme is
still the preferred one, and it is recommended by SP 800-177. A sepa-
rate issue is one of security. The global CA ecosystem has become
subject to attack in recent years, and has been successfully compro-
mised more than once. One way to protect against CA compromises
is to use the Domain Name System (DNS) to allow domains to specify
their intended certificates or vendor CAs. Such uses of DNS require
that the DNS itself be secured with Domain Name System Security
Extensions (DNSSEC) as described subsequently.

For the reader who needs an introduction or refresher on concepts
of public-key cryptography, authentication, and digital signatures,
a Crypto Portal white paper[3] provides a quick and easy overview.
A useful overview of CA and public-key certificate concepts is NIST
SP 800-32[4].

Trustworthy E-Mail
The following protocols and standards are described in and recom-
mended by SP 800-177:

• STARTTLS: An SMTP security extension that enables an SMTP
client and server to negotiate the use of Transport Layer Security
(TLS) to provide private, authenticated communication across the
Internet.

• Secure Multipurpose Internet Mail Extensions (S/MIME): Provides
authentication, integrity, nonrepudiation (via digital signatures)
and confidentiality (via encryption) of the message body carried in
SMTP messages.

• DNS-Based Authentication of Named Entities (DANE): Designed
to overcome problems in the Certificate Authority (CA) system by
providing an alternative channel for authenticating public keys
based on DNSSEC, with the result that the same trust relationships
used to certify IP addresses are used to certify servers operating on
those addresses.

• Sender Policy Framework (SPF): Enables a domain owner to spec-
ify the IP addresses of MTAs that are authorized to send mail on its
behalf. SPF uses the DNS to allow domain owners to create records
that associate the domain name with a specific IP address range of
authorized MTAs. It is a simple matter for receivers to check the
SPF text record (TXT) in the DNS to confirm that the purported
sender of a message is permitted to use that source address and
reject mail that does not come from an authorized IP address.

The Internet Protocol Journal
6

• DomainKeys Identified Mail (DKIM): Enables e-mail actors
(authors or operators) to affix their domain name to the message
reliably, using cryptographic techniques, so that filtering engines
can develop an accurate reputation for the domain. The MTA can
sign selected headers and the body of a message. This signature
validates the source domain of the mail and provides message body
integrity.

• Domain-based Message Authentication, Reporting, and Confor-
mance (DMARC): Publishes a requirement for the author domain
name to be authenticated by DKIM and/or SPF, for that domain’s
owner to request recipient handling of nonauthenticated mail using
that domain, and for a reporting mechanism to send reports from
recipients back to domain owners. DMARC lets senders know the
proportionate effectiveness of their SPF and DKIM policies, and
signals to receivers what action should be taken in various indi-
vidual and bulk attack scenarios.

Figure 2 shows how these components interact to provide mes-
sage authenticity and integrity. Not shown, for simplicity, is that
S/MIME also provides message confidentiality by encrypting mes-
sages. Together, these protocols provide a comprehensive Internet
e-mail security strategy. This article provides an overview of each.

STARTTLS
A significant security-related extension for SMTP is STARTTLS,
defined in RFC 3207[5]. STARTTLS enables the addition of confi-
dentiality and authentication in the exchange between SMTP agents.
This addition enables SMTP agents to protect some or all of their
communications from eavesdroppers and attackers by invoking a
Transport Layer Security (TLS) session within the SMTP connection.
STARTTLS has been widely deployed, and is supported by Amazon,
Facebook, Google, Microsoft, Yahoo, and others[6]. A 2014 study
by Facebook, which sends several billions of e-mails daily, found
that 76% of host names that receive Facebook e-mails support
STARTTLS[7].

TLS is a security layer implemented just above TCP. TLS is an Internet
Standard that replaces Secure Sockets Layer (SSL) with essentially
the same functionality[8]. With TLS in place, an application has a TLS
socket address and communicates to the TLS socket address at the
remote application. These addresses are distinct from those used by
the same application running directly over TCP. The security func-
tions provided by TLS are transparent to the application and also to
TCP. Thus, neither TCP nor the application needs to be modified to
invoke the security features of SSL. TLS provides three categories of
security, confidentiality, and authentication.

If the client does initiate the connection over a TLS-enabled port, the
server may prompt with a message indicating that the STARTTLS
option is available.

Internet E-Mail Security continued

The Internet Protocol Journal
7

Figure 2: The Interrelationship of DNSSEC, SPF, DKIM, DMARC, DANE, and S/MIME for Assuring Message Authenticity
and Integrity

Receiving
MTA

Receiver
MUA

Sending
MTA

Sender
MUA

Receiver
DNS

Sender
DNS

msg

sig

msg

sig
msg

sig

msg
Sender’s S/MIME

Signing Key
(Private Key)

DMARC TXT Tells Receiving MTA

That Sender Uses DKIM and SPF

Receiver MUA
Verifies S/MIME

Signature

DNSSEC Secured

DKIM TXT RR Provides Sending
MTA’s Public Key to

Receiving MTA

DNSSEC Secured

MTA’s DKIM
Signing Key

DANE = DNS-based Authentication of Named Entities
DKIM = DomainKeys Identified Mail
DMARC = Domain-based Message Authentication, Reporting, and Conformance
DNSSEC = Domain Name System Security Extensions
SPF = Sender Policy Framework
S/MIME = Secure Multi-Purpose Internet Mail Extensions
TLSA RR = Resource Record

SPF TXT Specfie
s

Sender’s IP
 Address

DKIM
Signature

DANE TLSA RR Specifie
s

SMTP TLS Certif
icate

The client can then issue the STARTTLS command in the SMTP com-
mand stream, and the two parties proceed to establish a secure TLS
connection. Many e-mail providers and servers now have STARTTLS
enabled[9, 10], including Amazon, Comcast, Dropbox, Facebook,
Google, Microsoft, and Yahoo.

As described in SP 800-177, STARTTLS may be vulnerable to a Man-
In-The-Middle (MITM) attack when it is initiated as a request by the
server. In this case, the MITM receives the STARTTLS request from
the server reply to a connection request, and scrubs it out.

The Internet Protocol Journal
8

The initiating client sees no TLS upgrade request and proceeds with
an unsecured connection. However, SP 800-177 takes the position
that some security is better than no security and that until TLS is
available everywhere and automatically invoked, TLS-capable serv-
ers must prompt clients to invoke the STARTTLS command. TLS
clients should attempt to either use STARTTLS initially or issue the
command when requested.

S/MIME
Secure/Multipurpose Internet Mail Extension (S/MIME) is a secu-
rity enhancement to the MIME Internet e-mail format standard[11].
S/MIME is a complex capability that is defined in many documents.
The most important documents relevant to S/MIME include the
following [12−19]:

• RFC 5750, S/MIME Version 3.2 Certificate Handling: Specifies
conventions for X.509 certificate usage by S/MIME v3.2.

• RFC 5751, S/MIME Version 3.2 Message Specification: The
principal defining document for S/MIME message creation and
processing.

• RFC 4134, Examples of S/MIME Messages: Gives examples of
message bodies formatted using S/MIME.

• RFC 2634, Enhanced Security Services for S/MIME: Describes
four optional security service extensions for S/MIME.

• RFC 5652, Cryptographic Message Syntax (CMS): Describes CMS.
This syntax is used to digitally sign, digest, authenticate, or encrypt
arbitrary message content.

• RFC 3370, CMS Algorithms: Describes the conventions for using
several cryptographic algorithms with the CMS.

• RFC 5752, Multiple Signatures in CMS: Describes the use of mul-
tiple, parallel signatures for a message.

• RFC 1847, Security Multiparts for MIME—Multipart/Signed and
Multipart/Encrypted: Defines a framework within which security
services may be applied to MIME body parts. The use of a digital
signature is relevant to S/MIME, as explained subsequently.

S/MIME functionality is built into most modern e-mail software and
interoperates between them. S/MIME provides four message-related
services: authentication, confidentiality, compression, and e-mail
compatibility.

Internet E-Mail Security continued

The Internet Protocol Journal
9

Authentication is provided by means of a digital signature. Most
commonly RSA with SHA-256 is used. The sequence is as follows:

1. The sender creates a message.

2. SHA-256 is used to generate a 256-bit message digest of the
message.

3. The message digest is encrypted with RSA using the sender’s pri-
vate key, and the result is appended to the message. Also appended
is identifying information for the signer, which will enable the
receiver to retrieve the signer’s public key.

4. The receiver uses RSA with the sender’s public key to decrypt and
recover the message digest.

5. The receiver generates a new message digest for the message and
compares it with the decrypted hash code. If the two match, the
message is accepted as authentic.

The combination of SHA-256 and RSA provides an effective digital
signature scheme. Because of the strength of RSA, the recipient is
assured that only the possessor of the matching private key could
have generated the signature. Because of the strength of SHA-256,
the recipient is assured that no one else could generate a new message
that matches the hash code and, hence, the signature of the original
message.

Although signatures normally are found attached to the message or
file that they sign, it is not always the case: Detached signatures are
supported. A detached signature may be stored and transmitted sep-
arately from the message it signs. This option is useful in several
contexts. A user may wish to maintain a separate signature log of
all messages sent or received. A detached signature of an executable
program can detect subsequent virus infection. Finally, detached sig-
natures can be used when more than one party must sign a document,
such as a legal contract. Each person’s signature is independent and is
therefore applied only to the document. Otherwise, signatures would
have to be nested, with the second signer signing both the document
and the first signature, and so on.

S/MIME provides confidentiality by encrypting messages using con-
ventional encryption with a secret key, also known as a symmetric
key. Most commonly, Advanced Encryption Standard (AES) with a
128-bit key is used, with the Cipher Block Chaining (CBC) mode.
The key itself is also encrypted, typically with RSA, as explained
subsequently.

As always, one must address the problem of key distribution. In
S/MIME, each symmetric key, referred to as a content-encryption
key, is used only once. That is, a new key is generated as a random
number for each new message. Because it is to be used only once, the
content-encryption key is bound to the message and transmitted with
it. To protect the key, it is encrypted with the receiver’s public key.

The Internet Protocol Journal
10

The sequence can be described as follows:

1. The sender generates a message and a random 128-bit number to
be used as a content-encryption key for this message only.

2. The message is encrypted using the content-encryption key.

3. The content-encryption key is encrypted with RSA using the recipi-
ent’s public key and is attached to the message.

4. The receiver uses RSA with its private key to decrypt and recover
the content-encryption key.

5. The content-encryption key is used to decrypt the message.

As Figure 3 illustrates, both confidentiality and encryption may be
used for the same message. The figure shows a sequence in which a
signature is generated for the plaintext message and appended to the
message. Then the plaintext message and signature are encrypted as
a single block using symmetric encryption and the symmetric encryp-
tion key is encrypted using public-key encryption.

S/MIME allows the signing and message encryption operations to
be performed in either order. If signing is done first, the identity of
the signer is hidden by the encryption. Plus, it is generally more con-
venient to store a signature with a plaintext version of a message.
Furthermore, for purposes of third-party verification, if the signature
is performed first, a third party need not be concerned with the sym-
metric key when verifying the signature.

If encryption is done first, it is possible to verify a signature without
exposing the message content. This option can be useful in a context
in which automatic signature verification is desired, as no private-key
material is required to verify a signature. However, in this case the
recipient cannot determine any relationship between the signer and
the unencrypted content of the message.

When S/MIME is used, at least part of the block to be transmitted
is encrypted. If only the signature service is used, then the message
digest is encrypted (with the sender’s private key). If the confiden-
tiality service is used, the message plus signature (if present) are
encrypted (with a one-time symmetric key). Thus, part of or the
entire resulting block consists of a stream of arbitrary 8-bit octets.
However, many electronic mail systems only permit the use of blocks
consisting of ASCII text. To accommodate this restriction and pro-
vide compatibility, S/MIME provides the service of converting the
raw 8-bit binary stream to a stream of printable ASCII characters,
a process referred to as 7-bit encoding. The scheme typically used
for this purpose is Base64 conversion. Each group of three octets of
binary data is mapped into four ASCII characters.

S/MIME also offers the ability to compress a message. Message
compression has the benefit of saving space for both e-mail transmis-
sion and file storage. Compression can be applied in any order with
respect to the signing and message encryption operations.

Internet E-Mail Security continued

The Internet Protocol Journal
11

RFC 5751 provides the following guidelines:

• Compression of binary encoded encrypted data is discouraged,
since it will not yield significant compression. Base64 encrypted
data could very well benefit, however.

• If a lossy compression algorithm is used with signing, you will need
to compress first, then sign.

Figure 3: Simplified S/MIME Functional Flow

Verify Signature
(e.g., RSA/
SHA-256)

Decrypt
(e.g., RSA)

Msg

Encrypt
(e.g., RSA)

Encrypt
(e.g., AES-128/

CBC)

Decrypt
(e.g., AES-128/

CBC)

One-Time
Secret Key

Secret Key
Generated by Sender

(a) Sender Signs, Then Encrypts Message

(b) Receiver Decrypts Message, Then Verifies Sender’s Signature

Sender’s
Public Key

Sign
(e.g., RSA/
SHA-256)

Sender’s
Private Key

Sig

Msg

Sig

Msg

Sig

Msg

Sig

Msg

Receiver’s
Private Key

Receiver’s
Public Key

The Internet Protocol Journal
12

SP 800-177 recommends the use of certificate chain authentication
against a known certificate authority. Further, SP 800-177 indicates
that users who want more assurance that the public key supplied is
bound to the sender’s domain may use a work-in-progress DANE-
S/MIME mechanism[20], in which the certificate and key can be inde-
pendently retrieved from the DNS and authenticated per the DANE
mechanism described subsequently.

In addition, SP 800-177 notes that MUAs typically use S/MIME
private keys to decrypt the e-mail message each time it is displayed,
but leave the message encrypted in the e-mail store. This mode of oper-
ation is not recommended, as it forces recipients of the encrypted
e-mail to maintain their private key indefinitely. Instead, the e-mail
should be decrypted prior to being stored in the mail store. The mail
store, in turn, should be secured using an appropriate cryptographic
technique (for example, disk encryption), extending protection to
both encrypted and unencrypted e-mail.

OpenPGP
Pretty Good Privacy (PGP) was developed by Phil Zimmermann as
a publicly-available freeware package to enable individuals to
exchange secure e-mails without the need to rely on any institution.
Efforts began early on to develop Internet standards for PGP[21],
culminating in OpenPGP. OpenPGP[22, 23] is a proposed Internet
Standard for providing authentication and confidentiality for e-mail
messages. Although it is similar in purpose and functionality to
S/MIME, OpenPGP uses different message and key formats and a
different approach to establishing and using certificates. SP 800-177
cites many difficulties with OpenPGP, including lack of usability,
scalability issues related to key distribution, and lack of authentica-
tion of key owners. Further discussion can be found in [24] and [25].
Accordingly, SP 800-177 recommends the use of only S/MIME and
deprecates the use of OpenPGP.

DNS and DNSSEC
As background for the following sections, this section briefly reviews
DNS and DNSSEC. The Domain Name System (DNS) is a direc-
tory lookup service that provides a mapping between the name of a
host on the Internet and its numerical Internet address. Four elements
comprise the DNS. The domain name space is a tree-structured name
space to identify resources on the Internet. The DNS database is a
collection of resource records organized into a distributed database;
conceptually, each node and leaf in the name-space tree structure
names a collection of information (for example, IP address, name
server for this domain name) that is contained in Resource Records
[RRs]). Name Servers are server programs that hold information
about a portion of the domain-name tree structure and the associated
RRs. Resolvers are programs that extract information from name
servers in response to client requests. A typical client request is for an
IP address corresponding to a given domain name.

Internet E-Mail Security continued

The Internet Protocol Journal
13

The DNS database is divided into thousands of separately managed
zones, which are managed by separate administrators. Using this
database, DNS servers provide a name-to-address directory service
for network applications that need to locate specific application
servers.

Domain Name System Security Extensions (DNSSEC)[26] is used by
several protocols that provide e-mail security. DNSSEC provides
end-to-end protection through the use of digital signatures that are
created by responding zone administrators and verified by a recipi-
ent’s resolver software. In particular, DNSSEC avoids the need to
trust intermediate name servers and resolvers that cache or route the
DNS records originating from the responding zone administrator
before they reach the source of the query. DNSSEC consists of a set
of new resource record types and modifications to the existing DNS
protocol.

In essence, DNSSEC is designed to protect DNS clients from accept-
ing forged or altered DNS resource records. It protects these clients
by using digital signatures to provide: (1) data origin authentication
to ensure that a RR has originated from the correct source; and (2)
data integrity verification to ensure that the content of a RR has not
been modified. The DNS zone administrator digitally signs every
Resource Record set (RRset) in the zone, and publishes this collec-
tion of digital signatures, along with the zone administrator’s public
key, in the DNS itself.

In DNSSEC, trust in the public key (for signature verification) of the
source is established not by going to a third party or a chain of third
parties (as in Public-Key Infrastructure [PKI] chaining), but by start-
ing from a trusted zone (such as the root zone) and establishing the
chain of trust down to the current source of response through suc-
cessive verifications of the signature of the public key of a child by its
parent. The public key of the trusted zone is called the trust anchor.

DANE
DNS-Based Authentication of Named Entities (DANE)[27, 28] is a pro-
tocol that provides mechanisms for domains to specify which X.509
certificates, which are commonly used for Transport Layer Security
(TLS), should be trusted for the domain. DANE enables certificates
to be bound to DNS names using DNSSEC. It is proposed in RFC
6698[29] as a way to authenticate TLS client and server entities with-
out a Certificate Authority (CA).

Briefly, DANE is an alternative mechanism for securely distributing
information about domain names by using DNS. DANE defines a
new type of DNS record that enables a domain to sign statements
specifying which entities are authorized to represent it. Applications
can use these records either to augment the existing system of CAs or
to create a new chain of trust, rooted in the DNS.

The Internet Protocol Journal
14

The rationale for DANE is the vulnerability of the use of CAs in
a global Public-Key Infrastructure (PKI) system. Every browser
developer and operating system supplier maintains a list of CA root
certificates as trust anchors. These certificates are called the root cer-
tificates of the software and are stored in its root certificate store. The
PKI scheme allows a certificate recipient to trace a certificate back to
the root. So long as the root certificate remains trustworthy and the
authentication concludes successfully, the client can proceed with the
connection. However, if any of the hundreds of CAs operating on the
Internet is compromised, the effects can be widespread. The attacker
can obtain the private key of the CA, be issued certificates under a
false name, or introduce new bogus root certificates into a root cer-
tificate store. There is no limitation of scope for the global PKI, and
a compromise of a single CA damages the integrity of the entire PKI
system. In addition, some CAs have engaged in poor security prac-
tices. For example, some CAs have issued wildcard certificates that
allow the holder to issue sub-certificates for any domain or entity,
anywhere in the world.

The purpose of DANE is to replace reliance on the security of the
CA system with reliance on the security provided by DNSSEC. This
protocol is well expressed in RFC 6698:

“DNS-Based Authentication of Named Entities (DANE) offers the
option to use the DNSSEC infrastructure to store and sign keys
and certificates that are used by TLS. DANE is envisioned as a
preferable basis for binding public keys to DNS names, because
the entities that vouch for the binding of public key data to DNS
names are the same entities responsible for managing the DNS
names in question. While the resulting system still has residual
security vulnerabilities, it restricts the scope of assertions that can
be made by any entity, consistent with the naming scope imposed
by the DNS hierarchy. As a result, DANE embodies the security
“principle of least privilege” that is lacking in the current public
CA model.”

DANE defines a new DNS record type, TLSA, which can be used for
a secure method of authenticating Secure Sockets Layer/Transport
Layer Security (SSL/TLS) certificates. The TLSA provides for:

• Specifying constraints on which CA can vouch for a certificate, or
which specific PKI end-entity certificate is valid.

• Specifying that a service certificate or a CA can be directly authen-
ticated in the DNS itself.

The TLSA RR enables certificate issue and delivery to be tied to
a given domain. A server domain owner creates a TLSA resource
record that identifies the certificate and its public key. When a client
receives an X.509 certificate in the TLS negotiation, it looks up the
TLSA RR for that domain and matches the TLSA data against the
certificate as part of the client’s certificate validation procedure.

Internet E-Mail Security continued

The Internet Protocol Journal
15

Figure 4 shows the format of a TLSA RR as it is transmitted to a
requesting entity. It contains four fields. The Certificate Usage field
defines four different usage models, to accommodate users who
require different forms of authentication. The usage models follow:

• PKIX-TA (CA constraint): Specifies which CA should be trusted to
authenticate the certificate for the service. This usage model limits
which CA can be used to issue certificates for a given service on a
host. The server certificate chain must pass PKIX validation that
terminates with a trusted root certificate stored in the client.

• PKIX-EE (service certificate constraint): Defines which specific
end-entity service certificate should be trusted for the service. This
usage model limits which end-entity certificate can be used by a
given service on a host. The server certificate chain must pass PKIX
validation that terminates with a trusted root certificate stored in
the client.

• DANE-TA (trust anchor assertion): Specifies a domain-operated
CA to be used as a trust anchor. This usage model allows a domain-
name administrator to specify a new trust anchor—for example, if
the domain issues its own certificates under its own CA that is not
expected to be in the end users’ collection of trust anchors. The
server certificate chain is self-issued and does not need to verify
against a trusted root stored in the client.

• DANE-EE (domain-issued certificate): Specifies a domain-operated
CA to be used as a trust anchor. This certificate usage allows for
a domain-name administrator to issue certificates for a domain
without involving a third-party CA. The server certificate chain is
self-issued and does not need to verify against a trusted root stored
in the client.

Figure 4: TSLA RR
Transmission Format

Certificate Association Data

Certificate Usage

Bit: 0 8 16 24 31

Selector Matching Type

The first two usage models are designed to coexist with and strengthen
the public CA system. The final two usage models operate without
the use of public CAs.

The Selector field indicates whether the full certificate or just the
value of the public key will be matched. The match is made between
the certificate presented in TLS negotiation and the certificate in
the TLSA RR. The Matching Type field indicates how the match of
the certificate is made. The options are exact match, SHA-256 hash
match, or SHA-512 hash match. The Certificate Association Data is
the raw certificate data in hex format.

The Internet Protocol Journal
16

DANE can be used in conjunction with SMTP over TLS, as pro-
vided by STARTTLS, to more fully secure e-mail delivery. DANE can
authenticate the certificate of the SMTP submission server that the
user’s mail client (MUA) communicates with. It can also authenti-
cate the TLS connections between SMTP servers (MTAs). The use of
DANE with SMTP is documented in RFC 7672[30].

As discussed previously, SMTP can use the STARTTLS extension to
run SMTP over TLS, so that the entire e-mail message plus SMTP
envelope are encrypted. This option is used if both sides support
STARTTLS. Even when TLS is used to provide confidentiality, it is
vulnerable to attack in the following ways:

• Attackers can strip away the TLS capability advertisement and
downgrade the connection to not use TLS.

• TLS connections are often unauthenticated (for example, the
use of self-signed certificates as well as mismatched certificates is
common).

DANE can address both these vulnerabilities. A domain can use the
presence of the TLSA RR as an indicator that encryption must be
performed, thus preventing malicious downgrade. A domain can
authenticate the certificate used in the TLS connection setup using a
DNSSEC-signed TLSA RR.

DNSSEC can be used in conjunction with S/MIME to more fully
secure e-mail delivery, in a manner similar to the DANE functional-
ity. This use is documented in an Internet Draft[21], which proposes a
new SMIMEA DNS RR. The purpose of the SMIMEA RR is to asso-
ciate certificates with DNS domain names.

S/MIME messages often contain certificates that can assist in authen-
ticating the message sender and can be used in encrypting messages
sent in reply. This feature requires that the receiving MUA validate
the certificate associated with the purported sender. SMIMEA RRs
can provide a secure means of doing this validation.

In essence, the SMIMEA RR will have the same format and content
as the TLSA RR, with the same functionality. The difference is that
it is geared to the needs of MUAs in dealing with domain names as
specified in e-mail addresses in the message body, rather than domain
names specified in the outer SMTP envelope.

Sender Policy Framework
Sender Policy Framework (SPF) is the standardized way for a send-
ing domain to specify a list of MTAs that are authorized to send on
behalf of the domain. The problem that SPF addresses is the fol-
lowing: with the current e-mail infrastructure, any host can use any
domain name for each of the various identifiers in the mail header,
not just the domain name where the host is located.

Internet E-Mail Security continued

The Internet Protocol Journal
17

Two major drawbacks of this freedom follow:

• It is a major obstacle to reducing Unsolicited Bulk E-mail (UBE),
also known as spam. It makes it difficult for mail handlers to filter
out e-mails on the basis of known UBE sources.

• Administrative Management Domains (ADMDs) are understand-
ably concerned about the ease with which other entities can use
their domain names, often with malicious intent.

However, a basic limitation of SPF is that it forces mail to follow
a specific path and breaks when legitimate mail deviates from this
path, such as a message that goes through a mailing list.

RFC 7208 defines the SPF[31]. It provides a protocol by which ADMDs
can authorize hosts to use their domain names in the MAIL FROM
or HELO identities. (It is worth noting that this domain name is the
return address for error messages, rather than being required to be
the same as the author’s address.) Compliant ADMDs publish SPF
records in the DNS specifying which hosts are permitted to use their
names, and compliant mail receivers use the published SPF records to
test the authorization of sending MTAs using a given HELO or MAIL
FROM identity during a mail transaction.

SPF works by checking a neighboring, upstream client MTA IP
address against the policy encoded in any SPF record found at the
sending domain. The sending domain is the domain used in the SMTP
connection, not the domain indicated in the Author From field in the
message header as displayed in the MUA. Thus SPF checks can be
applied before the message content is received from the sender.

Figure 5 on the following page is an example in which SPF would
come into play. Assume that the sender’s IP address is 192.168.0.1.
The message arrives from the MTA with domain mta.example.net.
The sender uses the envelope MAIL FROM tag of alice@example.org,
indicating that the message originates in the example.org domain.
But the message header specifies alice.sender@example.net.
The receiver uses SPF to query for the SPF RR that corresponds to
example.org to check if the IP address 192.168.0.1 is listed as a
valid sender, and then takes appropriate action based on the results
of checking the RR.

A sending domain needs to identify all the senders for a given domain
and add that information into the DNS as a separate resource record.
Next, the sending domain encodes the appropriate policy for each
sender using the SPF syntax. The encoding is done in a TXT DNS
resource record as a list of mechanisms and modifiers. Mechanisms
are used to define an IP address or range of addresses to be matched,
and modifiers indicate the policy for a given match. The SPF syntax is
fairly complex and can express complex relationships between send-
ers. For more details, see RFC 7208.

The Internet Protocol Journal
18

Figure 5: Example in Which SMTP
Envelope Header Does Not

Match Message Header S: 220 foo.com Simple Mail Transfer Service Ready
C: HELO mta.example.net
S: 250 OK
C: MAIL FROM:<alice@example.org>
S: 250 OK
C: RCPT TO:<Jones@foo.com>
S: 250 OK
C: DATA
S: 354 Start mail input; end with <CRLF>.<CRLF>
C: To: bob@foo.com
C: From: alice.sender@example.net
C: Date: Today
C: Subject: Meeting Today
. . .

If SPF is implemented at a receiver, the SPF entity uses the SMTP enve-
lope MAIL FROM: address domain and the IP address of the sender
to query an SPF TXT RR. The SPF checks can be started before the
body of the e-mail message is received, possibly resulting in blocking
the transmission of the e-mail content. Alternatively, the entire mes-
sage can be absorbed and buffered until all the checks are finished. In
either case, checks must be completed before the mail message is sent
to the end user’s inbox.

The checking involves the following rules:

1. If no SPF TXT RR is returned, the default behavior is to accept the
message.

2. If the SPF TXT RR has formatting errors, the default behavior is
to accept the message.

3. Otherwise the mechanisms and modifiers in the RR are used to
determine disposition of the e-mail message.

With respect to SPF alone, to say in step 1, preceding, that the default
behavior is to accept the message is correct. However, it should be
noted that SPF is usually working within a mixture of anti-abuse
tools and the aggregate filtering engine typically does not accept a
message based on the results of only one of its tools, such as SPF.

Figure 6 illustrates SPF operation. As of 2016, more than 27% of all
Internet domains implement SPF[32].

Internet E-Mail Security continued

The Internet Protocol Journal
19

Figure 6: Sender Policy Framework Operation

Internet

Inbox

Junk E-mail

Quarantine

Block/Delete

Further Policy
Checks

Authorization
Pass/Fail

+

SPF Record
Lookup

?

DNS

Inbound
Mail Server

Sender

DKIM
DomainKeys Identified Mail (DKIM) permits a person, role, or orga-
nization that owns the signing domain to claim some responsibility
for a message by associating the domain with the message[33]. The
domain can be an author’s organization, an operational relay, or
one of their agents. DKIM separates the question of the identity of
the signer of the message from the purported author of the message.
Assertion of responsibility is validated through a cryptographic sig-
nature and by querying the signer’s domain directly to retrieve the
appropriate public key.

The qualifier some in the first sentence of the preceding paragraph is
important. In particular, the text directly “covered” by the signature
is not vetted for authenticity.

Message recipients (or agents acting in their behalf) can verify
the signature by querying the signer’s domain directly to retrieve
the appropriate public key and thereby can confirm that the mes-
sage was attested to by a party in possession of the private key for
the signing domain. DKIM is an Internet Standard defined in RFC
6376[34]. DKIM has been widely adopted by a range of e-mail pro-
viders, including corporations, government agencies, Gmail, Yahoo,
and many Internet Service Providers (ISPs). As of 2016, an estimated
40% of Internet sites deploy DKIM[35].

An Administrative Unit (AU) is that portion of the path of an e-mail
message that is under a single administration. DKIM focuses primar-
ily on attackers located outside of the AUs of the claimed originator
and the recipients, indirectly, by creating a verifiable signature of
valid mail from the administrative unit.

The Internet Protocol Journal
20

Internet E-Mail Security continued

It is with these external AUs that the trust relationships required for
authenticated message submission may not exist and do not scale
adequately to be practical. Conversely, within these AUs, there are
other mechanisms (such as authenticated message submission) that
are easier to deploy and more likely to be used than DKIM. External
bad actors are usually attempting to exploit the “any-to-any” nature
of e-mail that motivates most recipient MTAs to accept messages
from anywhere for delivery to their local domain. They may generate
messages without signatures, with incorrect signatures, or with cor-
rect signatures from domains with little traceability. They may also
pose as mailing lists, greeting cards, or other agents that legitimately
send or resend messages on behalf of others.

DKIM is designed to provide an e-mail authentication technique that
is transparent to the end user. In essence, a user’s e-mail message is
signed by a private key of the administrative domain from which the
e-mail originates. The signature covers none, some, or all of the con-
tent of the message and some of the e-mail message headers.

Note that the signature is not validating any of what is signed, as
digital signatures usually do. Rather, the choice of what to cover is
meant as a means of gluing the d = domain name to the overall mes-
sage in a way that is difficult to spoof. At the receiving end, the
Message Delivery Agent can access the corresponding public key via
a DNS and verify the signature, thus authenticating that the message
comes from the claimed administrative domain. Thus, DKIM allows
an enterprise to vouch for an e-mail message sent from a domain it
does not control. This approach differs from that of S/MIME, which
uses the originator’s private key to sign the content of the message.
The motivation for DKIM is based on the following reasoning:

• S/MIME depends on both the sending and receiving users employ-
ing S/MIME. For almost all users, the bulk of incoming mail does
not use S/MIME, and the bulk of the mail the user wants to send is
to recipients not using S/MIME.

• S/MIME signs only the message content. Thus, RFC 5322[36]
header information concerning origin can be compromised.

• DKIM is not implemented in client programs (MUAs) and is there-
fore transparent to the user; the user doesn’t need to take any
action.

• DKIM can be configured to apply to all mail from cooperating
domains.

• DKIM allows good senders to prove that they did send a particular
message and to prevent forgers from forging the DKIM signature.

Figure 7 is a simple example of the operation of DKIM. We begin
with a message generated by a user and transmitted into the Message
Handling Service (MHS) to an MSA that is within the user’s admin-
istrative domain. An e-mail message is generated by an e-mail client
program.

The Internet Protocol Journal
21

Figure 7: Simple Example of
DKIM Deployment

SMTP POP, IMAP

SMTP

SMTP

MUAMUA

SMTP

MSA DNS MDA

MTA MTA

Verifier

Signer

Mail Origination
Network

Mail Delivery
Network

DNS = Domain Name System
MDA = Mail Delivery Agent
MSA = Mail Submission Agent
MTA = Message Transfer Agent
MUA = Message User Agent

DNS Public
Key Query/Response

The content of the message, plus selected RFC 5322 headers, is
signed by the e-mail provider using the provider’s private key. The
signer is associated with a domain, which could be a corporate local
network, an ISP, or a public e-mail facility such as Gmail. The signed
message then passes through the Internet via a sequence of MTAs. At
the destination, the MDA retrieves the public key for the incoming
signature and verifies the signature before passing the message on to
the destination e-mail client. The default signing algorithm is RSA
with SHA-256. RSA with SHA-1 also may be used.

Figure 8 on the following page, from RFC 5585[37], provides a more
detailed look at the elements of DKIM operation. Basic message pro-
cessing is divided between a signing Administrative Management
Domain (ADMD) and a verifying ADMD. At its simplest, this pro-
cessing is between the originating ADMD and the delivering ADMD,
but it can involve other ADMDs in the handling path.

Signing is performed by an authorized module within the signing
ADMD and uses private information from a Key Store. Within the
originating ADMD, this signing might be performed by the MUA,
MSA, or an MTA. Verifying is performed by an authorized module
within the verifying ADMD. Within a delivering ADMD, verifying
might be performed by an MTA, MDA, or MUA. The module
verifies the signature or determines whether a particular signature
was required.

The Internet Protocol Journal
22

Verifying the signature uses public information from the Key Store.
If the signature passes, reputation information is used to assess the
signer and that information is passed to the message filtering system.

Figure 8: DKIM Functional Flow

Originating or Relaying ADMD:
Sign Message with SDID

RFC 5322 Message

Yes

Pass Fail

No

Relaying or Delivering ADMD
Message signed?

Relaying or Delivering ADMD:
Message Signed?

Verify
Signature

Private
Key

Store

(Paired)

Public
Key

Store

Remote
Sender

Practices

Local Info
on Sender
Practices

Reputation/
Accreditation

Information

Assessments

Message
Filtering
Engine

Check
Signing

Practices

Internet

If the signature fails or there is no signature using the author’s
domain, information about signing practices related to the author
can be retrieved remotely and/or locally, and that information is
passed to the message filtering system. For example, it the sender (for
example, Gmail) uses DKIM but no DKIM signature is present, then
the message may be considered fraudulent.

The signature is inserted into the RFC 5322 message as an addi-
tional header field, starting with the keyword Dkim-Signature. You
can view examples from your own incoming mail by using the “View
Long Headers (or similar wording) option for an incoming message.

Internet E-Mail Security continued

The Internet Protocol Journal
23

Before a message is signed, a process known as canonicalization is
performed on both the header and body of the RFC 5322 message.
Canonicalization is necessary to deal with the possibility of minor
changes in the message made en route, including character encoding,
treatment of trailing white space in message lines, and the “folding”
and “unfolding” of header lines. The intent of canonicalization is
to make a minimal transformation of the message (for the purpose
of signing; the message itself is not changed, so the canonicaliza-
tion must be performed again by the verifier) that will give it its best
chance of producing the same canonical value at the receiving end.
DKIM defines two header canonicalization algorithms (“simple” and
“relaxed”) and two for the body (with the same names). The simple
algorithm tolerates almost no modification, while the relaxed toler-
ates common modifications.

DMARC
Domain-Based Message Authentication, Reporting, and Conformance
(DMARC), defined in RFC 7489[38], allows e-mail senders to specify
policy on how their mail should be handled, the types of reports that
receivers can send back, and the frequency of those reports.

DMARC works with SPF and DKIM. SPF enables senders to advise
receivers, via DNS, whether mail purporting to come from the sender
is valid, and whether it should be delivered, flagged, or discarded.
However, neither SPF nor DKIM includes a mechanism to tell receiv-
ers if SPF or DKIM is in use, nor do they have a feedback mechanism
to inform senders of the effectiveness of the anti-spam techniques.
For example, if a message arrives at a receiver without a DKIM
signature, DKIM provides no mechanism to allow the receiver to
learn if the message is authentic but was sent from a sender that
did not implement DKIM, or if the message is a spoof. In essence,
DMARC addresses these issues by indicating whether SPF and/or
DKIM will be used, what a receiver should do when they aren’t, and
how receivers should report aggregate results for the domain.

DKIM, SPF, and DMARC authenticate various aspects of an individ-
ual message. DKIM authenticates the domain that affixed a signature
to the message. SPF focuses on the SMTP envelope, defined in RFC
5321[39]. It can authenticate either the domain that appears in the
MAIL FROM portion of the SMTP envelope or the HELO domain, or
both. These domains may be different, and they are typically not
visible to the end user.

DMARC authentication deals with the From domain in the mes-
sage header, as defined in RFC 5322. This field is used as the central
identity of the DMARC mechanism because it is a required message
header field and therefore guaranteed to be present in compliant mes-
sages, and most MUAs represent the RFC 5322 From field as the
originator of the message and render some or all of this content of
the header field to end users. The e-mail address in this field is the one
used by end users to identify the source of the message and therefore
is a prime target for abuse.

The Internet Protocol Journal
24

DMARC requires that the From address match (be aligned with) an
Authenticated Identifier from DKIM or SPF. In the case of DKIM,
the match is made between the DKIM signing domain and the From
domain. In the case of SPF, the match is between the SPF-authenticated
domain and the From domain.

A mail sender that uses DMARC must also use SPF or DKIM, or
both. The sender posts a DMARC policy in the DNS that advises
receivers on how to treat messages that purport to originate from the
sender’s domain. The policy is in the form of a DNS TXT resource
record associated with the sender’s domain name. The sender also
needs to establish e-mail addresses to receive aggregate and forensic
reports. Because these e-mail addresses are published unencrypted in
the DNS TXT RR, they are easily discovered, leaving the poster sub-
ject to unsolicited bulk e-mail. Thus, the poster of the DNS TXT RR
needs to employ some kind of abuse countermeasures.

Similar to SPF and DKIM, the DMARC policy in the TXT RR is
encoded in a series of tag=value pairs separated by semicolons. Once
the DMARC RR is posted, messages from the sender are typically
processed as follows:

1. The domain owner constructs an SPF policy and publishes it in
its DNS database. The domain owner also configures its system
for DKIM signing. Finally, the domain owner publishes via the
DNS a DMARC message-handling policy.

2. The author generates a message and hands the message to the
domain owner’s designated mail submission service.

3. The submission service passes relevant details to the DKIM sign-
ing module in order to generate a DKIM signature to be applied
to the message.

4. The submission service relays the now-signed message to its des-
ignated transport service for routing to its intended recipient(s).

A message generated on the sender side may pass through other relays
but eventually arrives at a receiver’s transport service. The typical
processing order for DMARC on the receiving side follows:

1. The receiver performs standard validation tests, such as check-
ing against IP blocklists and domain reputation lists, as well as
enforcing rate limits from a particular source.

2. The receiver extracts the RFC 5322 From address from the mes-
sage. This address must be a single, valid address or else the mail
is refused as an error.

3. The receiver queries for the DMARC DNS record based on
the sending domain. If none exists, DMARC processing is
terminated.

4. The receiver performs DKIM signature checks. If more than one
DKIM signature exists in the message, one must verify.

Internet E-Mail Security continued

The Internet Protocol Journal
25

5. The receiver queries for the SPF record of the sending domain
and performs SPF validation checks.

6. The receiver conducts Identifier Alignment checks between the
RFC 5321 From and the results of the SPF and DKIM records
(if present).

7. The results of these steps are passed to the DMARC module along
with the Author’s domain. The DMARC module attempts to
retrieve a policy from the DNS for that domain. If none is found,
the DMARC module determines the organizational domain
and repeats the attempt to retrieve a policy from the DNS.

8. If a policy is found, it is combined with the Author’s domain and
the SPF and DKIM results to produce a DMARC policy result
(a “pass” or “fail”) and can optionally cause one of two kinds of
reports to be generated.

9. Recipient transport service either delivers the message to the
recipient inbox or takes other local policy action based on the
DMARC result.

10. When requested, Recipient transport service collects data from
the message delivery session to be used in providing feedback.

Figure 9, based on one at DMARC.org, summarizes the sending and
receiving functional flow.

Figure 9: DMARC Functional Flow

DKIM

DKIM
SPF

SPF

Pass

Sender Receiver

Author Composes
and sends email

Standard Processing
(Including Antispam)

Sending Mail
Server Attaches
DKIM Signature

Retrieve verified
DKIM domains

Apply
DMARC
Policy

Failure
Report

Fail

QuarantineBlock

Retrieve
“Envelope

From” Via SPF

Update Periodic
Aggregate Report

To Be Sent
To Sender Standard Validation

Tests at Receiver
(Including IP
Blocklists,

Reputation,
Rate Limits, Etc)

http://DMARC.org

The Internet Protocol Journal
26

DMARC reporting provides the senders feedback on their SPF,
DKIM, Identifier Alignment, and message disposition policies, which
enables the sender to make these policies more effective. Two types of
reports are sent: Aggregate Reports and Forensic Reports.

Aggregate Reports are sent by receivers periodically and include
aggregate figures for successful and unsuccessful message authentica-
tions, including:

• The sender’s DMARC policy for that interval

• The message disposition by the receiver (that is, delivered, quaran-
tined, rejected)

• SPF result for a given SPF identifier

• DKIM result for a given DKIM identifier

• Whether identifiers are in alignment or not

• Results classified by sender subdomain

• The sending and receiving domain pair

• The policy applied, and whether it is different from the policy
requested

• The number of successful authentications

• Totals for all messages received

This information enables the sender to identify gaps in e-mail infra-
structure and policy. SP 800-177 recommends that a sending domain
begin by setting a DMARC policy of p=none, so that the ultimate
disposition of a message that fails some check is determined by
the receiver’s local policy. As DMARC aggregate reports are
collected, the sender will have a quantitatively better assessment of
the extent to which the sender’s e-mail is authenticated by outside
receivers, and will be able to set a policy of p=reject, indicating that
any message that fails the SPF, DKIM, and alignment checks really
should be rejected. From their own traffic analysis, receivers can
determine whether a sender’s p=reject policy is sufficiently trust-
worthy to act on.

Internet E-Mail Security continued

The Internet Protocol Journal
27

A Forensic Report helps senders refine the component SPF and DKIM
mechanisms as well as alerting them that their domain is being used
as part of a phishing/spam campaign. Forensic reports are similar in
format to aggregation reports, with these changes:

• Receivers include as much of the message and message header as is
reasonable to allow the domain to investigate the failure. Add an
Identity-Alignment field, with DKIM and SPF DMARC-method
fields as appropriate.

• Optionally add a Delivery-Result field. Add DKIM Domain,
DKIM Identity, and DKIM selector fields, if the message was
DKIM signed. Optionally also add DKIM Canonical header and
body fields.

• Add an additional DMARC authentication failure type, for use
when some authentication mechanisms fail to produce aligned
identifiers.

Since its introduction, DMARC has seen rapid acceptance. Thousands
of companies use it to prevent billions of messages fraudulently
using their Internet domains from reaching inboxes, thereby protect-
ing their customers and employees from phishing and other abuse.
Recently, two of the largest mailbox providers in the world—Google
and Yahoo—have announced that they are extending that protection
to cover more of their Internet domains[40].

Summary
The IETF has developed a suite of protocols that provide compre-
hensive Internet e-mail security. Many of these protocols have been
widely deployed, and the entire suite is recommended by NIST.

Acknowledgment
The author would like to express his gratitude to the reviewer for the
many detailed and helpful comments.

References
 [1] National Institute of Standards and Technology, “Trustworthy

Email,” NIST Special Publication 800-177, September 2016.

 [2] Dave Crocker, “Internet Mail Architecture,” RFC 5598, July
2009.

 [3] Crypto Portal, “Cryptology with Cryptool: Practical Intro-
duction to Cryptography and Cryptanalysis,” August 2010.

 https://www.cryptool.org/images/ct1/presentations/
CrypToolPresentation-en.pdf

 [4] National Institute of Standards and Technology, “Introduction
to Public Key Technology and the Federal PKI Infrastructure,”
NIST Special Publication 800-32, February 2001.

 [5] Paul Hoffman, “SMTP Service Extension for Secure SMTP over
Transport Layer Security,” RFC 3207, February 2002.

https://tools.ietf.org/html/rfc5598
https://www.cryptool.org/images/ct1/presentations/CrypToolPresentation-en.pdf
https://www.cryptool.org/images/ct1/presentations/CrypToolPresentation-en.pdf
https://tools.ietf.org/html/rfc3207

The Internet Protocol Journal
28

 [6] ZDNet, “Google, Microsoft, Yahoo: We want to stop e-mail
snooping by fixing these encryption flaws,” March 21, 2016.

 http://www.zdnet.com/article/google-microsoft-yahoo-
we-want-to-stop-e-mail-snooping-by-fixing-these-
encryption-flaws/#!

 [7] Facebook, “The Current State of SMTP STARTTLS Deploy-
ment,” May 13, 2014.

 https://www.facebook.com/notes/protect-the-graph/
the-current-state-of-smtp-starttls-deployment/
1453015901605223/

 [8] William Stallings, “SSL: Foundation for Web Security,” The
Internet Protocol Journal, Volume 1, No. 1, June 1998.

 [9] Andrea Peterson, “Facebook’s security chief on the Snowden
effect, the Messenger app backlash and staying optimistic,” The
Washington Post, August 12, 2014.

 [10] David Cohen, “Facebook: 95% of Notification Emails
Encrypted Thanks to Providers’ STARTTLS Deployment,”
AdWeek, August 19, 2014.

 [11] Marshall Rose and David Strom, “Secure E-Mail: Problems,
Standards, and Prospects,” The Internet Protocol Journal,
Volume 2, No. 1, March 1999.

 [12] Sean Turner and Blake Ramsdell, “Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Certificate Handling,”
RFC 5750, January 2010.

 [13] Sean Turner and Blake Ramsdell, “Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Message Specification,”
RFC 5751, January 2010.

 [14] Paul Hoffman, “Examples of S/MIME Messages,” RFC 4134,
July 2005.

 [15] Paul Hoffman, “Enhanced Security Services for S/MIME,” RFC
2634, June 1999.

 [16] Russ Housley, “Cryptographic Message Syntax (CMS),” RFC
5652, September 2009.

 [17] Russ Housley, “Cryptographic Message Syntax (CMS)
Algorithms,” RFC 3370, August 2002.

 [18] Jim Schaad and Sean Turner, “Multiple Signatures in S/MIME,”
RFC 5752, January 2010.

 [19] Sandy Murphy, Jim Galvin, Steve Crocker, and Ned Freed,
“Security Multiparts for MIME: Multipart/Signed and
Multipart/Encrypted,” RFC 1847, October 1995.

Internet E-Mail Security continued

http://www.zdnet.com/article/google-microsoft-yahoo-we-want-to-stop-e-mail-snooping-by-fixing-these-encryption-flaws/#!
http://www.zdnet.com/article/google-microsoft-yahoo-we-want-to-stop-e-mail-snooping-by-fixing-these-encryption-flaws/#!
http://www.zdnet.com/article/google-microsoft-yahoo-we-want-to-stop-e-mail-snooping-by-fixing-these-encryption-flaws/#!
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/
https://www.facebook.com/notes/protect-the-graph/the-current-state-of-smtp-starttls-deployment/1453015901605223/
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-18/ssl.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents/secure-email.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents/secure-email.html
https://tools.ietf.org/html/rfc5750
https://tools.ietf.org/html/rfc5751
https://tools.ietf.org/html/rfc4134
https://tools.ietf.org/html/rfc2634
https://tools.ietf.org/html/rfc2634
https://tools.ietf.org/html/rfc5652
https://tools.ietf.org/html/rfc5652
https://tools.ietf.org/html/rfc3370
https://tools.ietf.org/html/rfc5752
https://tools.ietf.org/html/rfc1847

The Internet Protocol Journal
29

 [20] Paul Hoffman and Jakob Schlyter, “Using Secure DNS to
Associate Certificates with Domain Names for S/MIME,”
Internet Draft, work in progress, draft-ietf-dane-smime-10,
February 24, 2016.

 [21] Philip Zimmermann, Derek Atkins, and William Stallings, “PGP
Message Exchange Formats,” RFC 1991, August 1996.

 [22] Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney Thayer,
and David Shaw, “OpenPGP Message Format,” RFC 4880,
November 2007.

 [23] Dave Del Torto, Michael Elkins, Raph Levien, and Thomas
Roessler, “MIME Security with OpenPGP,” RFC 3156, August
2001.

 [24] A. Whitten and J. Tygar, “Why Johnny can’t encrypt: a usability
evaluation of PGP 5.0,” Proceedings of the 8th conference on
USENIX Security Symposium - Volume 8 (SSYM’99), 1999.

 [25] Matthew Green, “What’s the Matter with PGP?” Cryptography
Engineering Blog, August 13, 2014.

 http://blog.cryptographyengineering.com/2014/08/
whats-matter-with-pgp.html

 [26] Miek Gieben, “DNSSEC: The Protocol, Deployment, and a Bit
of Development,” The Internet Protocol Journal, Volume 7,
No. 2, June 2004.

 [27] ichard Barnes, “Use Cases and Requirements for DNS-Based
Authentication of Named Entities (DANE),” RFC 6394,
October 2011.

 [28] Richard Barnes, “Let the Names Speak for Themselves:
Improving Domain Name Authentication with DNSSEC and
DANE,” The Internet Protocol Journal, Volume 15, No. 1,
March 2012.

 [29] Jakob Schlyter and Paul Hoffman, “The DNS-Based
Authentication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA,” RFC 6698, August 2012.

 [30] Viktor Dukhovni and Wesley Hardaker, “SMTP Security via
Opportunistic DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS),” RFC 7672, October
2015.

 [31] Scott Kitterman, “Sender Policy Framework (SPF) for
Authorizing Use of Domains in Email, Version 1,” RFC 7208,
April 2014.

 [32] “SPF-all Domain Survey,” http://spf-all.com/stats.html

https://tools.ietf.org/html/rfc1991
https://tools.ietf.org/html/rfc4880
http://blog.cryptographyengineering.com/2014/08/whats-matter-with-pgp.html
http://blog.cryptographyengineering.com/2014/08/whats-matter-with-pgp.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-28/dnssec.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-28/dnssec.html
 https://tools.ietf.org/html/rfc6394
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-55/151-dane.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-55/151-dane.html
http://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-55/151-dane.html
https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/rfc7672
https://tools.ietf.org/html/rfc7208
http://spf-all.com/stats.html

The Internet Protocol Journal
30

 [33] Barry Leiba and Jim Fenton, “DomainKeys Identified Mail
(DKIM): Using Digital Signatures for Domain Verification,”
CEAS 2007—Fourth Conference on E-mail and Anti-Spam,
August 2–3, 2007.

 [34] Murray Kucherawy, Dave Crocker, and Tony Hansen,
“DomainKeys Identified Mail (DKIM) Signatures,” RFC 6376,
September 2011.

 [35] “Global DKIM Deployment,”
 https://eggert.org/meter/dkim

 [36] Peter W. Resnick, “Internet Message Format,” RFC 5322,
October 2008.

 [37] Tony Hansen, Dave Crocker, and Phillip Hallam-Baker,
“DomainKeys Identified Mail (DKIM) Service Overview,”
RFC 5585, July 2009.

 [38] Murray Kucherawy and Elizabeth Zwicky, “Domain-based
Message Authentication, Reporting, and Conformance
(DMARC),” RFC 7489, March 2015.

 [39] John C. Klensin, “Simple Mail Transfer Protocol,” RFC 5321,
October 2008.

 [40] Dmarc.org, “Global Mailbox Providers Deploying DMARC to
Protect Users,” Dmarc Press Release, October 19, 2015.

WILLIAM STALLINGS is an independent consultant and author of numerous
books on security, computer networking, and computer architecture. His latest
book is Cryptography and Network Security (Pearson, 2016). He maintains a
computer science resource site for computer science students and professionals
at ComputerScienceStudent.com and is on the editorial board of Crypt-
ologia. He has a Ph.D. in computer science from M.I.T. He can be reached at
ws@shore.net

Internet E-Mail Security continued

https://tools.ietf.org/html/rfc6376
https://eggert.org/meter/dkim
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5585
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc5321
http://ComputerScienceStudent.com
mailto:ws%40shore.net?subject=

The Internet Protocol Journal
31

Cloudy-Eyed: Complexity and Reality with
Software-Defined Networks
by Russ White and Shawn Zandi, LinkedIn

S oftware-Defined Networks (SDN) are promoted as a way to
eliminate the complexity of distributed control planes, increase
network responsiveness to specific applications and business

requirements, and reduce operational and equipment cost. If this
description sounds like the classic “too good to be true” situation,
that’s because it might just be. Just like you can’t build a database
that has ideal consistency, accessibility, and partionability, you can’t
build a cheap network with optimal routing and minimal control-
plane state. It’s just a reality of the complexity built into the physical
shape of the universe that everything has a tradeoff—cheap, fast, and
high quality, choose two.

When we reach the top of the SDN hype cycle, what will our options
be? Perhaps the best place to start in answering this question is by
considering why the “big promise” of SDN hasn’t been really suc-
cessful in the real world.

Defining SDN: Then and Now
To really understand the hype and promise of SDNs, it’s important
to go back to the beginning and consider what the original promise
really was. There were originally three crucial elements to the SDN
story.

First, SDNs were supposed to remove the intelligence from distrib-
uted control planes, replacing them with the centralized calculation
of network paths in a controller. While an individual autonomous
router has only a localized view of network conditions, a centralized
controller can gain a more global view. A global view would allow
the controller to more efficiently manage and direct traffic through
the network in a way that improves both the efficiency of the network
and the performance of applications running across the network.

Second, SDNs were supposed to provide a much more granular
level of control—down to the flow level. This added level of control
would enable much better policy control in various ways, including
the discovery and direction of elephant flows, quality of service on a
per-application/per-user basis, and other options.

Third, SDN would enable the network to be programmable, thereby
reducing operational costs, enabling a more lean/agile view of the
network, and allowing applications to interact directly with the
network.

The definition of SDN has changed over the years, broadening so
that it now includes just about any network technology that allows
programmatic access to information about and control over the
network.

The Internet Protocol Journal
32

An SDN, in more recent terms, seems to include everything from the
ability of an application to schedule bandwidth (which is a rather
more complicated problem than it seems) to gaining better telemetry
data. The centralized controller, flow-based forwarding, and com-
moditization of hardware are still in scope, but they appear to be
mixed in with a much more limited view of the “core components”
of the SDN message. Why has the concept of the SDN changed across
time?

It’s possible to argue that this definitional change is just a matter of
the marketing departments at a wide array of vendors grabbing hold
of the term, but there seems to be something deeper here. Perhaps the
“something deeper” is the original ideals have proven more difficult
to achieve than were first thought. A short overview of the challenges
of deploying the original SDN ideal might be useful in understanding
the historical flow of these changes. Three larger areas are consid-
ered in the following sections: centralizing the calculation of network
paths, flow-based forwarding, and network programmability.

Centralizing the Calculation of Network Paths
Distributed control planes, such as Intermediate System-to-Inter-
mediate System (IS-IS) and Border Gateway Protocol (BGP), are often
(rightly) seen as one of the most complex components of a network.
In fact, entire networks are designed around the operation of these
routing protocols, including the consideration of topics like:

• Splitting up failure domains through information hiding

• Managing complex policies through communities, tags, and
metrics

• Choosing topologies based on fast convergence characteristics

• The interaction of multiple distributed control planes running on
a single network

Further, in order to support the complex processing and data handling
of distributed control planes, network devices are typically large,
expensive devices, with fast processors and large memory pools. In
particular, as the need for policy-driven path selection (which gener-
ally means choosing a path through the network that is less optimal
than the shortest path from a metrics perspective, but more optimal
from a network usage or quality-of-service perspective) increased,
the processing power and memory requirements of individual rout-
ers ramped up.

If distributed control planes could be eliminated and replaced by a
controller (or set of controllers), the complexity of each forwarding
device could be reduced dramatically, because the jobs of discover-
ing the local topology and calculating the best path per destination
would be offloaded from the individual boxes, and pushed onto
the controller. By removing this processing from the routers, small,
cheap, lightweight forwarding-only devices could be used instead of
the traditional router.

SDN Complexity and Reality continued

The Internet Protocol Journal
33

Hence the world could move to white-box devices that would be
available off the shelf and require little configuration.

Complexity, however, is not so easy to slay. The centralized con-
troller approach presents numerous problems that will, most likely,
forever limit it in scale and scope to something smaller than what
was originally envisioned, such as two or three controllers providing
forwarding information for tens of thousands of switches running at
scale. Some of these problems include the relationship between cen-
tralized computation and reactive control planes, remote reactions
to local topology and reachability changes, and what can fairly be
described as the halo effect around software engineering.

Centralized Control and Reactive Forwarding
Distributed control planes, such as IS-IS, are proactive in their
discovery of topology and reachability. Before the first packet is trans-
mitted across the network, the routing protocol must discover
a set of loop-free paths that can reach every destination in the
network. Since this discovery and calculation process typically involves
flooding, processing, and managing a lot of information, distributed
control planes often rely on information hiding through aggregation
to manage the amount and speed of state being carried in the proto-
col. For instance, in IS-IS intermediate systems in the level 2 flooding
domain don’t have any information about the topology of the outly-
ing level 1 flooding domains. In a similar way, intermediate systems
in a level 1 flooding domain know only about the topology within
the flooding domain and which intermediate systems are connected
to the level 2 flooding domain.

When the calculation of routes is centralized, there must still be some
form of information hiding to scale the control plane. Instead of
aggregation at specific topological points in the network, SDN con-
trol planes most often opt for moving to a reactive control plane,
meaning the forwarding devices discover reachability information
only when they receive the first packet in a flow. While this does
reduce the amount of forwarding state in any particular device, it
also has many drawbacks.

Specifically, reactive control planes disconnect the apparent state of
the network from the perspective of any attached device from the
actual state of the network. From the host’s perspective, the network
is up, and therefore there is a path to most destinations that begins
with the first packet in a flow. In a reactive control plane, however,
there is some amount of lag between the first packet in a flow being
transmitted and the path actually being available. One objection
to this observation is that the Domain Name System (DNS) is also
reactive in much the same way. However, end devices generally par-
ticipate in the DNS system, and hence know the state of their ability
to forward in terms of name resolution.

The Internet Protocol Journal
34

Further, while it’s always possible for the network to change state in
the middle of a flow being transmitted, reactive control planes suffer
from a wider set of causes for these changes. This situation is always
true, of course, but while proactive control planes treat a discon-
nect between apparent and actual states as an error condition to be
resolved, reactive control planes treat such a disconnect as a normal
state of affairs. In a larger sense, disconnects between the actual and
perceived states of the network are seen by attached devices as net-
work instability; the stronger the disconnect, the more unstable the
network appears to be. This condition can have an adverse effect on
applications and host behavior. Local cache timeouts, cache failures,
and other problems need to be included in the more general topol-
ogy changes and problems common to distributed control planes for
path failures.

Centralized Control and Fast Reaction to Changes in the Network
Centralized control planes disconnect local state from recalculation
of the best path. If a local node or link fails, information about the
state change must be transmitted to a remote device (the controller),
which must recalculate a new set of paths, and then distribute those
paths throughout the network. These operations can be made very
quickly using techniques such as calculating and installing a backup
route, but there is no simple way for a centralized controller to react
more quickly, and with less chance of an unanticipated failure mode
than with a distributed control plane.

The centralized/decentralized decision isn’t necessarily a better-
versus-worse decision, it’s just a different decision with a distinct set
of tradeoffs. Each path has its own complexities and problems to
address; no set of problems seems to be much less complex to solve
than any other set in this case.

The Halo of Software Development
Distributed control planes, as mentioned previously, are very com-
plex, and they require a lot of configuration to deploy, design,
troubleshoot, and manage. It seems simpler, in many ways, to just
replace all the people who do this configuring, troubleshooting, and
managing, with a small team of coders who can build and maintain a
controller. The code would be simpler because it’s all “in one place,”
and can be more customized to fit a particular business environment.
The reality, however, is far different.

But a single controller simply won’t do when it comes to scaling out
a network. Even if you could run a network of thousands of routers
with a single controller, it goes against every foundational concept
of solid system design to do so. There must be at least two control-
lers, in topologically diverse locations within the network, to provide
redundancy in support of overall system resilience. Moving from one
controller to two inevitably means providing some way to distribute
reachability and policy information between the controllers.

SDN Complexity and Reality continued

The Internet Protocol Journal
35

Ultimately, then, a distributed control plane must be built to allow
communication between the controllers.[1] Couldn’t this distribution
just be some standard distributed database? It could, but there’s a
difference between distributing a database and distributing the mean-
ing contained in the database. To distribute the meaning, you must
have an agreed-on format, encoding, and other things. If you examine
existing distributed routing protocol specifications, you’ll find they
spend a lot of time describing not only how to carry information,
but also how to specify what sort of information is being carried,
and consistent ways to interpret and use that information. To make
multiple controller configurations successful (especially across
multiple controller vendors), either it all will need to be rebuilt in
an inter-controller protocol, or—perhaps simpler—the controllers
could just use an existing routing protocol. Regardless of the solution
chosen, the problems involved in a distributed control plane haven’t
been removed from the network, they’ve just been moved to some-
place else in the network.

Further, the distributed protocols the SDN controller is designed to
replace are really just other software. The complexity in these pro-
tocols comes from the propensity of engineers to push functionality
into them to address an ever-expanding array of use cases. As time
passes and the larger (or perhaps more obvious) use cases are han-
dled, protocol developers chase smaller problems, finally reaching
into large amounts of code for what is really a set of corner cases.
But moving the development of the control plane from one place in
the network to another place in the network isn’t going to solve this
problem—the process of accretion of new features and an ever-larger
code base and inter-controller protocol specifications to support an
ever-increasing set of use cases is going to remain the same.

Flow-Based Forwarding
Standard IP headers contain at least five fields of interest to network
devices:

• Source IP address

• Source port number

• Destination IP address

• Destination port number

• Protocol number (or identifier)

Some transport protocols also include more information that might
be of interest, such as the Transmission Control Protocol (TCP)
socket number, which can indicate a particular application, and
information about the expected quality of service for this packet (and
ultimately flow). Much of this information (and more) could be used
to forward traffic into multiple paths through the network based on
policy and available bandwidth. However, existing routing protocols
are designed to provide reachability, and hence forwarding, informa-
tion based on the destination address only.

The Internet Protocol Journal
36

There has long been a desire to forward traffic based on much more
than the destination address, so that individual applications can be
independently routed through the network, and information other
than the destination address can be used to deny access to specific
network resources. These requirements have led to a string of work
in the area of accounting for the IP source, at the least, when making
forwarding decisions.[2]

Figure 1 provides an example.

Figure 1: Flow-Based Forwarding
Control Example

F

G

C

A

B D

E

In this example, Host A is sending a large file to Server F, while the
user at Host B, a small handheld mobile device, is participating
in a video conference through Server G. Assuming the two server
addresses are shared among numerous different services, destination-
based addresses cannot be used to differentiate between the large file
transfer and the video conference. In this case, if the network admin-
istrator knows about the file transfer, the source addresses of A and
B, along with the source and destination protocol information, can
be used to differentiate the two traffic streams. This solution would
allow the file-transfer traffic to be directed along the [C,D,E] link,
while the video conferencing traffic would be directed along the [C,E]
link. This traffic separation can be used to allow the video confer-
ence traffic to pass along links that aren’t being heavily used by the
file transfer.

Flow-based forwarding, however, presents many problems.

First, the amount of control-plane state required to forward every
flow in a large network individually would be far beyond reasonable.
The problem is not just the number of flows, but also the flow setup
rate. To put this idea in real terms, if there are 10,000 hosts such as
A and B in the illustration, and each attempts to open a different
website, and each website requires 20 TCP connections, the network
is required to calculate and install 2,000,000 flows in a matter of
seconds. Few controllers could handle flow setup rates at this level.[3]

Second, the hardware costs of implementing such a scheme would be
very high. The amount of flow state required in each device would be
incredibly large—larger than most commodity hardware can support.

SDN Complexity and Reality continued

The Internet Protocol Journal
37

In addition, the cost of examining the full header on each packet at
each hop in the network to achieve correct routing would be very high
as well. The cost includes not only the capital expenditures (CapEx)
of acquiring hardware that can support full header examination at
every hop, has the table space to hold per-flow tables across millions
of flows, and can support the flow setup rate required in a large fab-
ric, but also the operating expenses (OpEx) in terms of power use for
such devices. Power drives much more of large-scale design than is
often considered; however small the energy cost per packet to exam-
ine the entire header at each device, it can still add up, over billions
of packets switched, to significant numbers.

Third, the use cases for such flow-based forwarding, in the real
world, tend to be rather narrow. Replacing the control plane that
manages millions of flows through a large-scale data center fabric to
support custom routing for a few thousand flows at any given time
doesn’t appear to be a good tradeoff in terms of complexity and net-
work manageability.

Of course, SDNs can operate in a mode where most traffic is for-
warded based on the packet destination, and the small number of
flows that need special routing are handled by examining the full
packet header (the five tuples noted previously or deeper), but this
solution is a compromise with reality, rather than the original ideal of
SDNs. The concluding section of this article considers the more real-
istic option of compromising with reality, so it is not covered here.

Making the Network Programmable
Finally, SDNs have promised a great deal in terms of network pro-
grammability. The breakdown involves three different areas: dynamic
provisioning, and dynamic interactions between applications and the
network. These topics are considered in the sections that follow.

Dynamic Provisioning
If there’s one point virtually every network engineer agrees on, it’s
that large-scale networks are difficult to provision, monitor, and
troubleshoot. It would certainly be a boon to network operations,
particularly in large networks, if there were a single, unified interface
into every vendor’s platform, and every control-plane implemen-
tation deployed across the network, to facilitate provisioning and
management. While the idea of a single interface is noble, the reality
of the market is probably going to intercede—as it has many times
in the past—because vendors must be able to differentiate themselves
somehow in order to actually sell hardware, software, and services.
This reality isn’t an indictment of vendor business models, it’s just
reality as it exists. There are two ways to express this problem.

First, vendors try to differentiate themselves with new features, archi-
tectures, and ideas their competitors don’t have. New ideas, however,
require new models that can be used to configure and manage newly
designed and/or modified hardware and software.

The Internet Protocol Journal
38

If the vendor publishes standardized models for managing these
things before they are completed, they lose competitive advantage.

Second, vendors tend to be able to command higher returns on ver-
tically integrated solutions that are easy to deploy and manage as a
unit. Building vertically integrated solutions, however, tends to thrive
on well-integrated, single-vendor interfaces between the parts.

Both of these factors place vendors in the position of trying to balance
openness with profit margins. The market demands openness, but it
also demands simplicity and innovation, and these goals are some-
times (or even often) contradictory from the vendor’s perspective.

The most likely result of these two factors is that SDN interfaces
tend to be restricted in their scope and scale to the “lowest common
denominator” of available features. Some level of configuration and
trace information might be available through vendor-specific exten-
sions, but not on the “common model.” Models such as OpenFlow
tend to start with clean implementations, and then tend to fragment
over time as vendors rush to build product. There is little incentive
to consider additions to the base work, along with the rework such
additions would require on a per-vendor basis, over time.

There is tension around automated provisioning from the network
operator’s side, as well. On the positive side, dynamic provisioning
does take humans out of the repetitive action loop of quickly provi-
sioning network devices and virtual topologies. Thus the speed and
accuracy of configuration, provisioning, and fault isolation can be
improved dramatically; in other words, automation can reduce the
Mean Time Between Mistakes (MTBM). However, automating pro-
cesses also introduce a level of brittleness into the operational cycle
that can be undesirable.

Brittleness, in this context, can be seen as a set of systems that react to
a wide array of situations with a small set of behaviors. Just as there
can be monocultures in bacteria colonies, there can be monocultures
in networks. To give a specific example, if every implementation of
IS-IS in the network reacts the same way to a given situation, then it’s
possible for a single defect to cause every router in the network to fail
under a single (though perhaps unusual) set of conditions.

The same sorts of situations can arise in provisioning or managing a
network; an event that “slips through the cracks” of the automation
system, or an attacker who can feel out the perimeters of defense, can
take an entire system down very quickly. Another term for this situa-
tions is “robust yet fragile”:

At some point, any complex system becomes brittle—robust yet
fragile is one phrase you can use to describe this condition. A sys-
tem is robust yet fragile when it is able to react resiliently to an
expected set of circumstances, but an unexpected set of circum-
stances will cause it to fail.[4]

SDN Complexity and Reality continued

The Internet Protocol Journal
39

The best ways to counter are to intentionally avoid monocultures
where possible, and intentionally inject human decision points in
the process. Reducing repetitive human work is good, but removing
humans from the entire decision process is bad. This brittleness can
end up replacing a large number of smaller failures due to human
error and replace them with large systemic failures.

Application Interaction
Combining dynamic provisioning and dynamic policy results in what
can be called an Application Programming Interface (API) for the
network itself. Treating the network as a programmable entity allows
applications to directly interact with the network as a system. The
general idea can look something like this:

• An application needs a certain amount of bandwidth with specific
quality-of-service parameters at a particular time.

• The application uses an interface into a controller to reserve this
bandwidth, providing the controller with the impacted endpoints,
etc.

• The controller uses some means to build the right network condi-
tions to accommodate the needs of the application.

Another example might be offloading the processing of packets for
security reasons into the network. Applications and operating system
security are becoming more widely deployed as encryption of data
in motion becomes more common. For instance, LinkedIn currently
deploys Transport Layer Security (TLS) on all external-facing con-
nections, and is in the midst of deploying TLS across the data center
fabric among internal applications. This type of encryption reduces
the usefulness of firewalls as network appliances (or a “bump in the
wire”) for blocking various types of attacks. The movement towards
application and operating system security, however, means the host
must perform all filtering, and must also forward traffic that needs to
be forwarded to a honeypot or collection point for further processing.
If the network has a policy interface, however, the host could instruct
the controller to install policy at any point in the network that makes
sense to either block or redirect attacker flows. This model would
take security-related packet processing off the host and place it into
the network, where specialized hardware can be deployed, and traffic
can be optimally redirected or dropped more optimally.

The same objections that can be raised for dynamic provisioning can
be raised for direct interaction between applications and the network,
such as brittleness. To such interactions can be added the potential
for feedback loops between various applications and network condi-
tions (the main reason live measurement of network conditions was
removed from the Enhanced Interior Gateway Protocol [EIGRP],
soon after its first deployments, and replaced with relatively static
metrics).

The Internet Protocol Journal
40

Summary of Network Programmability
Once a dynamic interface to the network as a network is in place, this
abstraction can breed complexity beyond what the engineers respon-
sible for maintaining and troubleshooting the network can readily
understand. This complexity leads to several different problems, such
as the “magic-button effect,” where no one really knows why “doing
x” solves a particular problem, but since no one can figure it out
(and no one has time to figure it out), someone writes a script that
“pushes the button” every time “x” happens.

Overall, then, the promise of SDNs in the provisioning space is
great—but parallel complexities must be managed. At this point,
there is little sense that our understanding of SDN complexity has
matured to the point of being able to use the full potential of the
technology in the provisioning space.

Conclusion: Looking to the Future
While SDNs aren’t poised to “consume the world” in their original
form because of issues surrounding centralized controllers, scale, and
speed, the concepts involved are beginning to be applied to many dif-
ferent problem spaces. A hybrid-mode approach that allows a more
standard distributed control plane to provide forwarding informa-
tion for the bulk of the traffic based on the destination address, but
allows overriding forwarding decisions based on other factors for a
small percentage of the traffic, is gaining traction in data center fab-
rics of all sizes. Programmability is being used in long-haul networks,
particularly in conjunction with optical transport, to handle custom-
ized forwarding as well. Essentially, the model that’s being adopted
in the real world is splitting policy from base reachability, leaving
the base reachability under the control of distributed control planes,
while moving policy-based forwarding into a controller.

Leaving the the proven scalable distributed control plane in place and
using SDN to take advantage of the perks such as traffic engineering,
bandwidth optimizations, intelligent routing, special policies, and
other uses seems to be the most practical path forward. Network
operators may find themselves deploying different mixes of SDN-type
controls and distributed control planes based on application support
and business strategy, but there’s little doubt that both distributed
control planes and what will be called SDN—programmability lay-
ered on top of the distributed control plane—will both continue to be
used into the foreseeable future.

SDN is not a product. Rather, it’s a methodology or tool; not a desti-
nation, goal, or product to sell, or sometimes to market, and should
not be considered a target to reach but a strategy to perform certain
tasks depending on real needs and if certain requirements apply.

SDN Complexity and Reality continued

The Internet Protocol Journal
41

References
 [1] See, for instance, Liron Schiff, Stefan Schmid, and Petr

Kuznetsov, “In-Band Synchronization for Distributed SDN
Control Planes,” ACM SIGCOMM Computer Communication
Review, Volume 46, Number 1, January 2016,

 http://www.sigcomm.org/sites/default/files/ccr/
papers/2016/January/0000000-0000004.pdf

 [2] Such as the Internet Drafts draft-baker-ipv6-isis-dst-src-
routing, draft-baker-ipv6-ospf-dst-src-routing, and
draft-ietf-spring-segment-routing.

 [3] OpenFlow 1.3 moves towards the proactive installation of for-
warding-table information in recognition of the timing issues
involved in reactive control planes. This ability does resolve
some components of this problem, but not others.

 [4] Russ White and Jeff Tantsura, Navigating Network Complexity:
Next-Generation Routing with SDN, Service Virtualization, and
Service Chaining, Addison-Wesley Professional, 2015, ISBN-13:
978-0133989359.

RUSS WHITE has more than 20 years of experience in designing, deploying, break-
ing, and troubleshooting large-scale networks. Across that time, he has co-authored
more than 40 software patents, has spoken at venues throughout the world, has
participated in the development of several Internet standards, has helped develop the
Cisco Certified Design Expert (CCDE) and Cisco Certified Architect Certification
(CCAR) certifications, and has worked in Internet governance with the Internet
Society (ISOC). Russ is currently a member of the Architecture Team at LinkedIn,
where he works on next-generation data center designs, complexity, and security. His
most recent books are The Art of Network Architecture and Navigating Network
Complexity. Russ holds an MSIT from Capella University; an MACM from
Shepherds Theological Seminary; CCIE #2635, CCDE 2007:001, and CCAR certi-
fications, and is currently working on a PhD at Southeastern Theological Seminary.
You can find Russ at http://ntwrk.guru/ and linkedin.com/in/riw777

SHAWN ZANDI is a lead infrastructure architect with LinkedIn, where he builds
large-scale data center and core networks. Shawn currently lives in San Francisco,
California. For the past 15 years, he has worked as network and security architect
for consulting firms from Dubai to Silicon Valley. In addition to a bachelor’s degree
in computer science from ATS University of Technology, Shawn holds more than 40
industry certifications including triple Cisco Certified Internetwork Expert (CCIE)
and CCDE certifications. He can be reached via linkedin.com/in/szandi

The Internet Protocol Journal is published under the “CC BY-NC-ND” Creative Commons
Licence. Quotation with attribution encouraged.

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

http://www.sigcomm.org/sites/default/files/ccr/papers/2016/January/0000000-0000004.pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2016/January/0000000-0000004.pdf
http://ntwrk.guru/
http://linkedin.com/in/riw777
http://linkedin.com/in/szandi
http://creativecommons.org/

The Internet Protocol Journal
42

Thank You!
Publication of IPJ is made possible by organizations and individuals around the world dedicated to
the design, growth, evolution, and operation of the global Internet and private networks built on the
Internet Protocol. The following individuals have provided support to IPJ. You can join them by visiting
http://tinyurl.com/IPJ-donate

Fabrizio Accatino
Scott Aitken
Matteo D’Ambrosio
Danish Ansari
John Bigrow
Axel Boeger
Kevin Breit
Ilia Bromberg
Christophe Brun
Gareth Bryan
Scott Burleigh
Jon Harald Bøvre
Olivier Cahagne
Roberto Canonico
Lj Cemeras
Dave Chapman
Stefanos Charchalakis
Greg Chisholm
Narelle Clark
Steve Corbató
Brian Courtney
Dave Crocker
John Curran
Morgan Davis
Freek Dijkstra
Geert Van Dijk
Karlheinz Dölger
Andrew Dul
Peter Robert Egli
George Ehlers
Torbjörn Eklöv
Peter Eisses
ERNW GmbH
ESdatCo
Mikhail Evstiounin
Paul Ferguson
Christopher Forsyth
Tomislav Futivic
Edward Gallagher
Chris Gamboni
Xosé Bravo Garcia
Serge Van Ginderachter
Greg Goddard

Octavio Alfageme Gorostiaga
Barry Greene
Geert Jan de Groot
Gulf Coast Shots
Martin Hannigan
John Hardin
Headcrafts SRLS
Edward Hotard
Bill Huber
Hagen Hultzsc
Karsten Iwen
David Jaffe
Dennis Jennings
Jim Johnston
Jonatan Jonasson
Daniel Jones
Amar Joshi
Merike Kaeo
David Kekar
Shan Ali Khan
Nabeel Khatri
Henry Kluge
Alexader Koga
John Kristoff
Terje Krogdahl
Bobby Krupczak
Warren Kumari
Darrell Lack
Yan Landriault
Markus Langenmair
Fred Langham
Richard Lamb
Tracy LaQuey Parker
Robert Lewis
Sergio Loreti
Guillermo a Loyola
Hannes Lubich
Dan Lynch
Alexis Madriz
Michael Malik
Yogesh Mangar
Bill Manning
Harold March

David Martin
Timothy Martin
Gabriel Marroquin
Carles Mateu
Juan Jose Marin Martinez
Brian McCullough
Carsten Melberg
Kevin Menezes
Bart Jan Menkveld
William Mills
Charles Monson
Andrea Montefusco
Fernando Montenegro
Tariq Mustafa
Stuart Nadin
Mazdak Rajabi Nasab
Krishna Natarajan
Darryl Newman
Ovidiu Obersterescu
Mike O’Connor
Carlos Astor Araujo
Palmeira
Alexis Panagopoulos
Manuel Uruena Pascual
Ricardo Patara
Alex Parkinson
Dipesh Patel
Dan Paynter
Chris Perkins
Rob Pirnie
Blahoslav Popela
Tim Pozar
David Raistrick
Priyan R Rajeevan
Paul Rathbone
Justin Richards
Mark Risinger
Ron Rockrohr
Carlos Rodrigues
Boudhayan Roychowdhury
RustedMusic
Babak Saberi
George Sadowsky

Scott Sandefur
Arturas Satkovskis
Phil Scarr
Jeroen Van Ingen
Schenau
Roger Schwartz
SeenThere
Scott Seifel
Yaron Sheffer
Tj Shumway
Thorsten Sideboard
Helge Skrivervik
Darren Sleeth
Mark Smith
Job Snijders
Peter Spekreijse
Thayumanavan Sridhar
Matthew Stenberg
Adrian Stevens
Clinton Stevens
Viktor Sudakov
Edward-W. Suor
Roman Tarasov
Phil Tweedie
Unitek Engineering AG
John Urbanek
Martin Urwaleck
Betsy Vanderpool
Surendran Vangadasalam
Alejandro Vennera
Luca Ventura
Tom Vest
Dario Vitali
Andrew Webster
Tim Weil
Jd Wegner
Rick Wesson
Peter Whimp
Jurrien Wijlhuizen
Pindar Wong
Bernd Zeimetz

http://tinyurl.com/IPJ-donate

The Internet Protocol Journal
43

Supporters and Sponsors

For more information about sponsorship, please contact sponsor@protocoljournal.org

Ruby Sponsor Sapphire Sponsors

Diamond SponsorsSupporters

Emerald Sponsors

Corporate Subscriptions

Your logo here!

mailto:sponsor%40protocoljournal.org?subject=
http://www.internetsociety.org
www.cisco.com
http://afilias.info/
http://apia.org/
http://labs.verisigninc.com
http://www.apnic.net/
http://www.wide.ad.jp/
http://www.team-cymru.org
http://www.ripe.net
http://www.juniper.net
http://www.equinix.com
http://comcast.net
http://de-cix.net
http://www.limelight.com/
http://www.netnod.se/
https://ams-ix.net
http://www.sidn.ni
http://icann.org
http://www.us.ntt.net/
http://nsrc.org/

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

David Conrad, Chief Technology Officer
Internet Corporation for Assigned Names and Numbers

Dr. Steve Crocker, Chairman
Internet Corporation for Assigned Names and Numbers

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

Geoff Huston, Chief Scientist
Asia Pacific Network Information Centre, Australia

Dr. Cullen Jennings, Cisco Fellow
Cisco Systems, Inc.

Olaf Kolkman, Chief Internet Technology Officer
The Internet Society

Dr. Jun Murai, Founder, WIDE Project, Dean and Professor
Faculty of Environmental and Information Studies,
Keio University, Japan

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is published
quarterly and supported by the Internet
Society and other organizations and indivi-
duals around the world dedicated to the
design, growth, evolution, and operation
of the global Internet and private networks
built on the Internet Protocol.

Email: ipj@protocoljournal.org
Web: www.protocoljournal.org

The title “The Internet Protocol Journal” is
a trademark of Cisco Systems, Inc. and/or
its affiliates (“Cisco”), used under license.
All other trademarks mentioned in this
document or website are the property of
their respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal
NMS
535 Brennan Street
San Jose, CA 95131

ADDRESS SERVICE REQUESTED

http://creativecommons.org/licenses/by-nc-nd/2.0/

